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Abstract: Amyloid fibrils are thought to grow by a two-step dock-lock mechanism. However,
previous simulations of fibril formation (i) overlook the bi-molecular nature of the docking step and
obtain rates with first-order units, or (ii) superimpose the docked and locked states when computing
the potential of mean force for association and thereby muddle the docking and locking steps. Here,
we developed a simple microkinetic model with separate locking and docking steps and with the
appropriate concentration dependences for each step. We constructed a simple model comprised of
chiral dumbbells that retains qualitative aspects of fibril formation. We used rare events methods to
predict separate docking and locking rate constants for the model. The rate constants were embedded
in the microkinetic model, with the microkinetic model embedded in a population balance model
for “bottom-up” multiscale fibril growth rate predictions. These were compared to “top-down”
results using simulation data with the same model and multiscale framework to obtain maximum
likelihood estimates of the separate lock and dock rate constants. We used the same procedures
to extract separate docking and locking rate constants from experimental fibril growth data. Our
multiscale strategy, embedding rate theories, and kinetic models in conservation laws should help to
extract docking and locking rate constants from experimental data or long molecular simulations
with correct units and without compromising the molecular description.

Keywords: amyloid fibril growth; rare events; coarse-grained MD; population balance models

1. Introduction

Proteins and peptides interact with water and with each other via numerous hy-
drophobic residues, charged residues, and hydrogen bond donors and acceptors [1–3].
Their diverse functional groups allow them to engage in a huge variety of intramolecular
folds and intermolecular associations. The enormous number of conformational states and
intramolecular interactions make the protein folding problem extremely challenging [4–6].
Likewise, protein–protein complex formation and peptide fibril assembly are complicated
by the enormous number of intra- and intermolecular interactions.

Interest in protein folding drove tremendous efforts to develop accurate force
fields [7–10], efficient molecular dynamics codes [10–12], advanced sampling
methods [13–17], and data analysis tools [18–21]. Many of the MD codes and force fields
developed for performing and analyzing protein folding simulations are directly useful for
studies of fibril growth and other biomolecular self-assembly processes [22,23]. However,
the intramolecular conformational transitions in folding and the intermolecular associ-
ation steps in fibril growth also require different advanced sampling and data analysis
tools [22,24–26].

The mechanism by which protein fibrils form has been studied extensively [27–32].
At a coarse level of detail, fibril formation begins with one or two-step [27,28] versions
of one-dimensional nucleation [33–36] followed by non-equilibrium growth. Processes
such as secondary nucleation, i.e., breakage of fibrils to create new nuclei, and merging of
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fibrils can also contribute to the fibril formation kinetics [27]. The growth mechanism and
kinetics are the primary focus of this paper. Growth is thought to proceed by the addition
of monomers in a two-step dock-lock mechanism [37–39]. The monomer first “docks” on
the end of the fibril and forms initial interactions. It then “locks” into the morphology
of the stable fibril structure while expelling any intervening water molecules. A single
peptide can explore multiple docked states on a preformed fibril before it finally locks into
the fibril’s native structure. As such, the energy surface associated with these systems is
rugged, with numerous local minima. Moreover, many of the docked states are off-path
and meta-stable complexes [40]. These aspects of the docked state(s) make simulation of
fibril growth extremely difficult.

Past simulations of fibril growth can be grouped into two main categories: (1) studies
that compute the association constant for the combined docked and locked states [41–45],
and (2) studies that focus on the time required to lock from the docked states, e.g., with
Markov state models [46–54]. However, the docking and locking steps, with different
concentration dependences, are rarely considered together as required for an accurate pre-
diction of the overall growth rate. The schematics in Figure 1 depict these two incomplete
modeling strategies.
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Figure 1. (a) Viewing the fibril formation process as an association problem obscures the kinetically important dock-to-lock
transitions. (b) Markov state modeling and other approaches that begin from peptide-fibril-associated (docked) states
neglect the concentration dependence of the docking step and its contribution to the fibril growth process.

Recently, Plattner et al. used a hidden Markov modeling approach coupled with the
Northrup, Allison, McCammon (NAM) diffusion framework [55] to describe the association
of a Barnase and Barstar complex [56]. Their atomistic simulations give rate constants with
correct units: events/time/concentration for association and events/time for transitions
between bound states.

Fawzi et al. studied the critical nucleus size and the elongation mechanism of two
different quaternary forms of Aβ (1–40) [57]. Using a coarse-grained model of Aβ (1–40),
they computed the fraction of trajectories that docked at the fibril end when started at a
specific distance from the fibril. This is a key step in the NAM framework [55], but they
did not complete the calculations to obtain docking and locking rate constants.

In this article, we treated each step in the lock-dock mechanism separately, using a
microkinetic model to combine both steps into an overall fibril growth rate expression. The
rate expression allowed us to extract rate constants from previously obtained experimental
data. Using a simple fibril assembly model, we also parametrized the microkinetic model
with docking and locking rates from separate rare events calculations and compared
predictions to direct simulations of fibril growth. Finally, we integrated the growth rate
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expression in a population balance model to describe an ensemble of growing fibrils. This
multiscale treatment (Figure 2) of the growth process allowed us to directly use simulation
or experimental data of fibril length vs. time to extract the rate constants for the proposed
growth rate model. We demonstrate this in the last section by using our model together
with experimental and simulation growth data for Aβ (1–42).
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Figure 2. The strategy in this work exploited the multiscale nature of the fibril growth process. As we went up in length
scales, the importance of treating the problem with atomistic details decreased. The protein structures depicted here are
from PDB entries of Aβ − 42 monomer and fibril and are for illustration purposes only.

2. Docking and Locking Constants

For bimolecular reactions between spheres or charged spheres in solution, one can
obtain rate constants from the steady-state Smoluchowski [58] or Debye [59] theories. For
irregular molecules, one can monitor many reactive Brownian dynamics (BD) trajectories
to calculate the rate constants. However, this is in practice impossible in an infinite domain
because it requires us to simulate a huge box and wait for long times as the reactants
diffuse from large distances to react (which may never happen). An alternative route to
the docking rate constant kD is that developed by Northrup, Allison, and McCammon
(NAM) [55]. NAM connected the probabilities calculated from finite domain BD trajectories
to the corresponding probabilities in the infinite domain. In their method, they place the
binding site of one molecule at the origin. A second molecule is placed on the surface of a
sphere of radius b1 from the origin. The distance b1 is selected so that the two molecules
interact only through an isotropic coulomb potential U(r) for separation r > b1. A second
sphere with radius b2 > b1 is also centered at the origin as a cutoff distance for terminating
Brownian trajectories that wander too far from the target. Multiple trajectories are then
initiated from distance b1 to estimate the probability that the second molecule docks at the
fibril end (origin) before reaching the outer sphere at radius b2

p =
trajectories that reach docked state before b2

total no. trajectories
. (1)

Figure 3 shows the set-up for the BD trajectories in the NAM method. Note that p
is smaller than probability p∞ that the second molecule will dock rather than escape by
diffusion to an infinite distance from the fibril end. NAM showed that

p∞ =
p

(1− (1− p)Ω)
. (2)
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where Ω is the probability that a particle at r = b2 will eventually return to r = b1. This is
obtained analytically from the Smoluchowski equation [58] as

Ω =

(∫ ∞

b1

dr
[

exp[βU(r)]
4πr2D(r)

])−1(∫ ∞

b2

dr
[

exp[βU(r)]
4πr2D(r)

])
. (3)
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Figure 3. Schematics of the NAM procedure for calculating reaction rate constant of a diffusion-
controlled step.

When the potential of mean forces U(r) is zero and D is constant outside sphere with
radius b1, Equation (3) simplifies to Ω = b2/b1. The overall rate constant can be defined as
the rate of diffusion to the surface of a sphere with radius b1 (Smoluchowski’s 4πD0b1) [58]
multiplied by the probability of reacting rather than diffusing to infinite separation, starting
from separation b1(p∞) [55]:

kd = 4πD0b1
p

(1− (1− p)Ω)
. (4)

Here, D0 is the diffusion constant for relative motion of the particles, equal to the
sum of their self-diffusion constants when no forces or hydrodynamic interactions exist for
r > b1 [55].

For complex systems where p might be extremely small, e.g., because of large pep-
tides that interact with the fibril over long distances and therefore require a large value
of b1. These systems may require more sophisticated sampling methods such as tran-
sition interface sampling (TIS) [60] or forward flux sampling (FFS) [61] to estimate the
committor p.

In atomistic simulations, the dock to lock transition is extremely complicated. Much
like the protein folding problem, there are many docked states and only one (or per-
haps two) locked states. Advanced sampling techniques for rare events are useful in
studying the complicated dock-to-lock transition but most of these techniques require
reaction coordinates that can describe the transition well. Finding a suitable reaction coor-
dinate can be difficult [62], but there have been successful examples using native contact
maps [47,48,50].
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In this work, we used umbrella sampling and Langer’s method [63] to study the dock
to lock transition. Starting from a set of reaction coordinates q and the free energy surface
(FES) from umbrella sampling, we could expand the FES around the saddle point (q‡) as

F(q‡ + ∆q) ≈ F(q‡) +
1
2

∆q†A∆q. (5)

Matrix A should have n− 1 positive eigenvalues and a single negative eigenvalue
where n is the number of dimensions in q. The same free energy expansion can be used for
the reactant basin

F(q0 + ∆q) ≈ F(q0) +
1
2

∆q†A0∆q, (6)

where q0 is the coordinate of the bottom of the well of the reactant basin. The diffusion
tensor at the saddle point is also needed for Langer’s theory

2Dijt =
〈
δqi(t)δqj(t)

〉
‡. (7)

Here, δqi(t) = qi(t)− 〈qi(t)〉‡ and the double dagger sign indicates that the average
is calculated using trajectories started at the saddle point. Having calculated Dij, we could
obtain the locking rate constant from

kL =
1

2π

(
detA0

|detA|

)1/2
λ+ exp

(
−β
(

F(q‡)− F(q0)
))

, (8)

where −λ+ is the single negative eigenvalue of the matrix DA,

DAu = −λ+u. (9)

3. Microkinetic Model

Although many studies refer to one step as fast [39,64], the docking and locking
processes happen at the same net rate when fibril is growing at a steady state. The
forward and backward docking and locking rates also depend differently on the monomer
concentration, and thus kD and kL have different units. The docking process is a diffusion-
controlled, bi-molecular association process, and therefore kD has units of L/mol/s [44,65].
The locking process, however, is a conformational rearrangement with a first-order rate
constant similar to a protein folding process, with units of events/s [47].

An overall rate law for the dock-lock growth mechanism can be developed using
microkinetic modeling techniques that are familiar in catalysis [66]. For example, Massi and
Straub developed a microkinetic model for the elongation rate of a fibril [65]. They included
two different states for both the fibril and the monomer and derived a rate expression with
six different rate constants. Massi and Straub’s work is too elaborate to be fitted with most
datasets, but they extracted each constant using multiple fitting techniques and data from
multiple experimental methods.

Here, we try to simplify the growth rate expression by proposing a model where the
fibril end is always in either a docked state or a locked state. The underlying assumption
is that the docked states of the system inter-convert on a faster timescale than the locking
process and the overall growth process, and therefore all the docked states can be lumped
into one. This means that the system has no on- or off-path meta-stable states other than
the docked state mentioned above. We further assumed that the monomers can only bind
to a locked end. Figure 4 shows the overall schematic of the growth process.
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By using pseudo-steady state approximation and computing the net flux between any
docked and locked state, we obtained the net growth rate as [66]

rgrowth =
kLkD[M]− kDK−1

D kUL

kL + kDK−1
D + kUL + kD[M]

. (10)

Here, kD is the docking rate constant, kL is the locking rate constant, [M] is the
monomer(peptide) concentration, kUL is the reverse rate for the locking step, and KD is the
equilibrium constant for the docking step.

4. Population Balance Model

Here, we assume that fibrils grow irreversibly, e.g., because the monomers do not
unlock once they are locked into a fibril (kUL = 0) or because the docking equilibrium
constant KD is large. If we take the case where kUL = 0, then the growth rate equation
will be

rg =
kLkD[M]

kL + kDK−1
D + kD[M]

(11)

and the following master equation describes the fibril population

dρ(L, t)
dt

= −rg([M])ρ(L, t) + rg([M])ρ(L− 1, t). (12)

The equation for dρ/dt would also contain ρ(L + 1, t) terms if we considered fibril
dissolution. Expanding ρ(L− 1, t) around L and keeping terms up to the second order gives

ρ(L− 1, t) = ρ(L, t)− ∂ρ(L, t)
∂L

+
1
2

∂2ρ(L, t)
∂L2 . (13)

Putting Equation (13) back into Equation (12) gives

∂ρ(L, t)
∂t

+ rg([M])
∂ρ(L, t)

∂L
=

rg([M])

2
∂2ρ(L, t)

∂L2 . (14)

This is now a Fokker–Planck equation for variable L. We note that Equation (14) only
describes growth. Nucleation, aggregation, and breakage of fibrils can be included in
more elaborate PBEs [67], but we do not attempt that here. Moreover, note that there are
no nucleation or fragmentation events in the PDE, and thus the total number of fibrils
is constant,

ρtot =

∞∫
0

ρ(L, t)dL ∀t. (15)
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In a finite closed system with a fixed number of monomers, the concentration of free
dissolved monomers [M] decreases as they attach to the fibrils:

d[M]

dt
= −rg([M])

∞∫
0

ρ(L, t)dL. (16)

Equations (14) and (16) describe the case where the fibril grows from only one end. In
cases where the fibril can grow from both ends, the coefficients for length derivatives in
Equation (14) and the right side of Equation (16) should be multiplied by a factor of 2.

The monomer concentration might be held constant at [M] = [M]0 throughout the
experiment, e.g., by a continuous flow of solution over immobilized fibrils. In this case,
Equation (14) can be simplified by the substitution

dt = rg([M]0)dt (17)

to give
∂x(L, t)

∂t
+

∂x(L, t)
∂L

=
1
2

∂2x(L, t)
∂L2 , (18)

where x(L, t) = ρ(L, t)/ρtot. Full derivation steps are available in the accompanying
Supplementary Information. The solution to Equation (18) with the initial distribution

x(L, 0) = x0(L) (19)

Is

x(L, t) =
∞∫

0

dL0g(L, t|L0)x0(L0) . (20)

Here, g(L, t|L0) is the Green’s function given by

g(L, t|L0) =
1√
2πt

exp

(
− (L− L0 − t)2

2t

)
. (21)

Figure 5 shows the solution to the population balance model at various dimensionless
times t vs. fibril length L.
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Figure 5. Solutions to Equation (20) plotted at different values of t as a function of fibril length (L,
number of monomers). Initial fibril size distribution is x0(L) = δ(L− 10).
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When the system has a fixed total number of peptides so that growth depletes
monomer concentration, Equation (16) can be written as

1 + αm
(1 + α)m

dm = −εdt, (22)

where m ≡ [M](t)/[M]0, α ≡ kDk−1
L [M]0/(1 + kDK−1

D k−1
L ), ε ≡ ρtot/[M]0, and ρtot is

defined as in Equation (15). The solution to Equation (22) is

m(t) =
1
α

W
[
αeαe−εte−αεt]. (23)

In Equation (23), W(z) is the Lambert W function, which is the solution w to z = wew.
Using Equation (23), we can rewrite the population balance model in Equation (14) for a
system with a fixed number of peptides. Division through by rg([M]0) and ρtot gives

∂x(L, t)
∂t

+
rg([M])

rg([M]0)

∂x(L, t)
∂L

=
1
2

rg([M])

rg([M]0)

∂2x(L, t)
∂L2 . (24)

Dividing Equation (24) by rg([M])/rg([M]0) now gives

∂x(L, τ)

∂τ(t)
+

∂x(L, τ)

∂L
=

1
2

∂2x(L, τ)

∂L2 , (25)

where dτ(t) = rg([M])/rg([M]0)dt = (1 + α)m/(1 + αm)dt. The initial distribution for
Equation (25) is

x(L, 0) = x0(L). (26)

The solution to Equation (25) will have the same format as Equation (18), i.e.,

x(L, τ) =

∞∫
0

dL0g(L, τ|L0)x0(L0) (27)

with τ defined as

τ =

t∫
0

m(t)(1 + α)

1 + αm(t)
dt =

1
ε

[
1− 1

α
W
[
αeαe−(1+α)εt

]]
. (28)

Note that all the variables and kinetic parameters of the system (i.e., [M]0, ρtot, kD, kL,
and KD) are now absorbed into α and ε. Figure 6 illustrates the relation between τ and t for
different values of α. The relation between τ and t changes from equality in the constant
monomer concentration case to a Lambert W function in the monomer depletion case.
Equation (28) shows that the time scale of the growth process “stretches” as monomers are
consumed. This is consistent with our intuition—as the monomer concentration decreases,
the driving force for growth reduces, it takes longer for the monomers to find fibril ends,
and the time needed for the addition of monomers to the fibril increases.
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Figure 6. Plot of Equation (28) at different values of α. The curves start with a slope of one at low values of t, which is where
the monomer concentration is still high and plateau as time passes and monomers are consumed. After the monomers are
consumed, the slopes of the curves become zero, indicating that the addition of monomers to the fibrils has stopped.

We can also use Equation (28) to create a plot like Figure 5 for the varying monomer
concentration case. Figure 7 shows how the fibril populations change with t when the
monomer concentration is not held constant. As expected, the population of fibrils with
L = 10 (initial length) grows towards longer fibrils until the system runs out of monomers.
The growth process is also slowed down by the fact that the driving force for growth (i.e.,
monomer concentration) is constantly decreasing. This means that at the same t, the peaks
in Figure 7 are higher and at lower L values compared to their counterparts in Figure 5.
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Figure 7. Solutions to Equation (27) with τ defined by Equation (28). Initial fibril length distribution
is x0(L) = δ(L− 10). The same values of α and ε are used so that Figures 5 and 7 are comparable.
The inset shows the change in dimensionless monomer concentration m with dimensionless time
(Equation (23)).

The analysis laid out above allows us to use time-series data of monomer concentration
and fibril length from simulation data or experimental results together with Equation (21)
or Equation (27) to extract values for kD, KD, and kL.
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5. Simple Model and Simulations

To test our rate equation with simulation data, we developed a simple model system
with two types of diatomic molecules that associate in “docked” or “locked” states. The
docked and locked states in our model correspond to fibril ends with a specific chirality as
shown in Figure 8. The interaction potential is made up of several components:

Utot = ∑
bonds

kb
2 (r− r0)

2

+ ∑
atoms

4εlj

((
rm

lj

21/6r

)12
−
(

rm
lj

21/6r

)6
)

+ ∑
dumbbells

4εlj,c

((
rm

lj,c

21/6rCOM

)12
−
(

rm
lj,c

21/6rCOM

)6
)

+
r≤rm

WCA
∑

atoms

[
4εWCA

((
rm

WCA
21/6r

)12
−
(

rm
WCA

21/6r

)6
)
+ εWCA

]
+ ∑

dumbbells
ew exp

(
−(rCOM−r0,w)2

2s2
r,w

)
exp

(
−(q−q0,w)2

2s2
q,w

)
+ ∑

dumbbells
ec exp

(
−(rCOM−r0,c)

2

2s2
r,c

)
exp

(
−(q−q0,c)

2

2s2
q,c

)
+ ∑

dumbbells
et exp

(
−(rCOM−r0,t)

2

2s2
r,t

)
exp

(
−(q−q0,t)

2

2s2
q,t

)
.

(29)
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Figure 8. Dumbbells model. The addition of a dumbbell to the fibril happens through a two-step
mechanism where the dumbbell initially docks with the wrong chirality and then locks into the
correct chirality. The dumbbell and the fibril end have the same rCOM value but different q values in
the docked and locked states.

The components shown in Equation (29) are defined as follows (line by line):

1. Particles of each dumbbell are bonded together with a harmonic potential (1–2 and
3–4 interactions in Figure 8).

2. Particles of types 1 and 2 interact with particles of types 3 and 4 through a Lenard–
Jones potential. This potential contributes equal stability to both the docked and
locked states.

3. The centers of mass (COM) of molecules of type 1–2 and 3–4 interact through a short-
ranged Lenard–Jones potential. This potential stabilizes the fibril and prevents it from
dissociating. Inclusion of these LJ interactions also allows us to reduce the strength
of LJ interactions between edges of the fibril and molecules in solution, which might
otherwise promote branching and secondary nucleation.
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4. A Weeks–Chandler–Andersen potential between the particles in the same type of
molecule, i.e., between 1 and 1, 1 and 2, 2 and 2, 3 and 3, 3 and 4, and 4 and 4, prevents
the fibril from forming unstructured oligomers.

5. A channel that guides incoming dumbbells to the docked state is introduced by using
a combination of three 2D Gaussian functions (lines 5, 6, and 7 in Equation (29)):

• The wall: This part of the force field prevents the dumbbells from directly locking
into the fibril (vertical wall near rCOM = 2 in Figure 9).

• The channel: This guides the trajectories into the docked basin after they pass
the wall.

• Locked state tilting: This Gaussian function is included to make the locked state
more favorable than the docked state.

Values of the energy and geometry parameters of the interaction potential are shown
in Table 1.

The reaction coordinates that describe the dumbbells and their relative positions are
as follows: rCOM is the center-of-mass to center-of-mass coordinate distance between two
dumbbells, and q is a chirality coordinate that describes the structure of each dimer. These
are defined for each pair of molecules using the positions of the particles 1 through 4 via
the following definitions:

→
u =

1
2
(
→
x 1 +

→
x 2)−

1
2
(
→
x 3 +

→
x 4), (30)

→
v = (

→
x 4 −

→
x 3)× (

→
x 2 −

→
x 1), (31)

rCOM =
‖u‖
r0

, (32)

q =
u.v

r02‖u‖ . (33)

Here, r0 is the equilibrium bond length. The chirality coordinate is defined to differen-
tiate between the two enantiomers. Values of q range from −1 to 1, where −1 and 1 (at a
known separation r) are the two possible enantiomers. The extrema of q are not exactly
equal to −1 and 1, due to the vibrations of the bonds during the simulation.

All the trajectories are generated following the overdamped dynamics and using the
Euler–Maruyama integrator [68]

x(t + ∆t) = x(t)− D
∂βF
∂x

∆t +
√

2D∆tξ, (34)

where D is diffusivity (identical for all atoms), β = 1/kBT, and ξ is a Gaussian random
number with zero mean and unit variance.

NAM analysis is performed following the protocol described in Section 2 by putting
a fibril made of four dumbbells in the center of the simulation box and a dumbbell of
type 3–4 at a given distance b1. The trajectories will run until the distance between the
dumbbells becomes either smaller than the average center-to-center distance in the docked
(or locked) state or greater than the predefined cut-off distance b2. Depending on the
starting separation, 10,000 or 20,000 trajectories are launched from distance b1= 12, 13, 14,
15, and 16 Å. The number of successful trajectories are counted, and success probability
is then calculated using Equation (1). The number of trajectories that go directly to the
locked state is also tracked to make sure that nearly all dumbbells initially attach in the
docked state.



Life 2021, 11, 570 12 of 18

Table 1. Values and definitions of the interaction potential parameters.

Parameter Value Description

Bonded Potential

kb 1000 kBT/Å2 Bond strength parameter

r0 2.0 Å Equilibrium bond length

Lennard–Jones and WCA Potentials

εlj 3.0 kBT Depth of atom–atom LJ
potential well

rm
lj 2 Å

Atom–atom LJ equilibrium
bond length

εlj,c 5.0 kBT Depth of COM–COM LJ
potential well

rm
lj,c 1.4 Å

COM–COM LJ equilibrium
bond length

εWCA 15.0 kBT Depth of WCA potential well

rm
WCA 2.8 Å

WCA equilibrium bond
length

Gaussian Potentials

ew 6.0 kBT Peak size of the wall

r0,w 2.2 Å
Location of the wall peak on

the rCOM axis

sr,w 0.4 Å SD of the wall (width in rCOM)

q0,w −1.0 Location of the wall peak on
the q axis

sq,w 1.2 SD of the wall (width in q)

ec −8.0 kBT Peak size of the channel

r0,c 1.7 Å
Location of the channel peak

on the rCOM axis

sr,c 1.0 Å
SD of the channel (width in

rCOM)

q0,c 0.65 Location of the channel peak
on the q axis

sq,c 0.6 SD of the channel (width in q)

et −35.0 kBT Peak size of the tilting

r0,t 1.4 Å
Location of the tilting peak on

the rCOM axis

sr,t 0.4 Å
SD of the tilting (width in

rCOM)

q0,t −1.0 Location of the tilting peak on
the q axis

sq,t 0.6 SD of the tilting (width in q)
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The free energy profile between a dumbbell and a preformed fibril of length L = 6 as
a function of rCOM and q is calculated using umbrella sampling. The free energy profile is
then used in Langer’s theory as described in Section 2 to calculate the locking rate constant.
The docking equilibrium constant (KD) is also calculated using the free energy profile.

6. Results and Discussion

The docking rate was computed through the NAM method described in Section 2.
Table 2 shows results for different starting separations b1 and cutoff distances b2.

Table 2. Docking rate constants kD calculated from NAM simulations.

Initial Distance b1 (Å) Cut-Off Distance b2 (Å)
p
%

kD
(L/mol/s)

% Directly to
Locked

12 20 22 1.30 × 109 5.40

13 22 16 1.11 × 109 0.00

14 24 17 1.23 × 109 3.21

15 26 15 1.20 × 109 4.11

The success probability p was calculated using Equation (1). The results
presented in Table 2 show that a very low percentage of trajectories directly went to the
locked state, and thus the dynamics of the model system were consistent with
the assumed sequence of events in the dock-lock mechanism. The docking rates pre-
sented in the table were calculated using Equation (4). As expected, the computed value
kD = (1.21± 0.01)× 109 L/mol/s, did not depend on b1 and b2.

The trajectories that fell directly into the locked state were omitted from the results
above and were assumed to introduce negligible error in the rate calculation procedure
(less than ≈6% of the trajectories).

Bottom-up rate constants were obtained using free energy surface and short trajecto-
ries with methods in Section 2. Specifically, we calculated the diffusivity tensor used in
Langer’s theory using pico-second long trajectories started near the saddle point. Using
Equation (7), we calculated diffusivities as Drr = 1.696× 1010 Å2/s, Dqq = 1.600× 1010/s,
and Drq = Dqr = 7.808× 108Å/s. The free energy surface obtained from umbrella sampling
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(shown in Figure 9) was used to expand the free energy around the minimum of the docked
basin and the saddle point. Finally, we used Equation (8) to calculate kL = 9.852× 107/s.
The docking equilibrium constant was also calculated from the free energy surface to be
KD = 8.440× 102 mol/L.

To demonstrate how the population balance model can be used in top-down data
analysis to extract rate parameters, we filled a periodic simulation box of size (60 Å)3 with
individual dumbbells and a preformed fibril of initial length 10 dumbbells. We prevented
the nucleation of new fibrils by constantly checking for dimers, separating them, and
(randomly) throwing the dumbbells back in the box. The dumbbell concentration was
held constant by adding a dumbbell to the box in a random position every time the fibril
grew. Results from this simulation were used with maximum likelihood estimation (MLE)
to extract the rate constants from brute-force simulations. Results were compared to the
values calculated from Langer’s theory.

Top-down estimates of the same rate constants were obtained from simulations of
fibril growth in 50 identical boxes at five different concentrations, each one held at fixed
dumbbell concentration with seeded fibrils of length L0 = 6. Figure 10 shows a snapshot
of the simulation box. The data from these simulations were then used to extract rate
constants with MLE. To this end, the growth rate expression in Equation (11) had to be
re-casted in a form that enabled the identification of free parameters for optimization.
Division through by kD gave

rg =
kL[M]

K + [M]
(35)

where K = kL/kD + KD
−1. The code used for the top-down analysis is available in the

Supplementary Information. Table 3 shows the results from top-down analysis and bottom-
up predictions side-by-side.
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Figure 10. Snapshot of the simulation box with a single fibril of length 10 and 50 dumbbells visualized
by VMD [70].

Table 3. Rate constants calculated by rare events methods (bottom-up) and by MLE (top-down).

Rate Constant Rare Events MLE

kL (/s) 9.8 × 107 8.3 × 106

K (mol/L) 0.08 0.07

There was reasonable (order-of-magnitude) agreement between the values for kL and
K as calculated from rare events methods and MLE. The difference between the bottom-up
and the top-down kL values could arise for two reasons. First, errors in the computed free
energy surface were exponentially magnified in Langer theory for kL. Second, the data
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provided to MLE for fitting was limited to≈100 ns at five different monomer concentrations.
The predictions would be more accurate with longer trajectories and a wider range of
concentrations. MLE code and the contour plot showing the log-likelihood as a function of
kL and K are available in the Supplementary Information.

To further demonstrate the top-down extraction of rate constants from MLE with
our population balance model and growth rate expression, we used previously published
experimental data from Young et al. [71] for the growth of Aβ (1–42). In their analysis,
Young et al. used a two-step Michaelis–Menten kinetic model to describe the results. In
this work, we derived our rate law for fibril growth on the basis of the two-step dock-lock
mechanism and by using microkinetic model techniques. This provided a mechanistic basis
for the Michaelis–Menten expression and a molecular interpretation for its fit parameters.
We calculated kL = 21.10 /s and K = 2.71× 10−5 mol/L. Young et al. reported a value
of K = (7.2± 2.4)× 10−5 mol/L. Note that Young et al. invoked an additional “pause
state” beyond the dock and lock states to explain intermittent plateaus in their fibril length
vs. time data. They did not provide details on how they treated the pauses in their data
analysis, e.g., whether they truncated or abridged the data to remove pauses in computing
K. We obtained the value K = 2.71 × 10−5 mol/L by fitting their entire dataset with
no adjustments. Potential differences in our analysis strategies may therefore have been
responsible for the threefold difference in estimates of K.

7. Conclusions

This study presented a multiscale rare events strategy for the dock-lock mechanism of
fibril growth. Our strategy separately computes dock and lock rate constants with correct
units and incorporates them in a microkinetic model for the growth (or dissolution) rate as
a function of monomer concentration. The microkinetic model is further embedded in a
population balance model to predict the evolving length distribution in an ensemble of
growing fibrils. The population balance model provides a direct connection to experimental
data and/or to large-scale molecular simulation data of fibril growth. We demonstrated
how this framework can be used for top-down extraction of kinetic parameters from exper-
imental data and molecular simulation data. For the simulation data, we demonstrated
that the top-down analysis yielded rate constants in reasonable agreement with those from
rare events calculations for the dock and lock steps.

Apart from the multiscale framework, a central contribution of this work is a blueprint
for computing second-order docking rate constants and constructing proper concentration-
dependent fibril growth rate laws from molecular level rare events calculations. Although
fibril growth mechanisms will vary by sequence and solvent composition, possibly intro-
ducing additional intermediates and kinetic traps, the multiscale analysis strategy here
should help to connect simulations and experiments. We note that it should also be possible
to obtain second-order docking rate constants from MSM results, but to our knowledge, the
calculation has not been done. As outlined in Joswiak et al. [72], one must first assume that
fibril–solute encounters are rare, i.e., that finding a solute in the simulation box is already a
rare event. Then, Poisson statistics give the probability to find a solute in the simulation
box as Vbox[M], where Vbox[M] << 1. Now suppose the MSM approach finds a docking
rate constant kMSM with units/s. The MSM result is a conditional transition probability
per time given that a solute is in the box. This means that the true rate, using conditional
probability rules, is

rD = kMSMVbox[M]. (36)

From this, we identify kD = kMSMVbox, which should make it possible to revisit
many MSM predictions, convert them to second-order kD values, and compare them
to experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life11060570/s1, Derivations of Equation (18), the code for MLE analysis, Figure S1: The
contour plot of the negative log-likelihood around the minimum.

https://www.mdpi.com/article/10.3390/life11060570/s1
https://www.mdpi.com/article/10.3390/life11060570/s1
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