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Abstract: Despite the contemporary treatment of acute coronary syndromes, arrhythmic complica-
tions occurring prior to medical attendance remain significant, mandating in-depth understanding
of the underlying mechanisms. Sympathetic activation has long been known to play a key role
in the pathophysiology of ischemia-induced arrhythmias, but the regulating factors remain under
investigation. Several lines of evidence implicate the endothelin system (a family of three isopeptides
and two specific receptors) as an important modulator of sympathetic activation in the setting of acute
coronary syndromes. Such interaction is present in the heart and in the adrenal medulla, whereas
less is known on the effects of the endothelin system on the central autonomic network. This article
summarizes the current state-of-the-art, placing emphasis on early-phase arrhythmogenesis, and
highlights potential areas of future research.
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1. Introduction

Acute coronary syndromes, the most common clinical manifestation of coronary artery
disease, remain a major health-related problem worldwide. Myocardial ischemia in this
setting has been linked to the onset of ventricular tachyarrhythmias (VTs) (i.e., ventricular
tachycardia and ventricular fibrillation) that often have a lethal outcome. The incidence of
sustained VTs complicating acute coronary syndromes is estimated at the range of 10% of
cases, although the precise epidemiologic burden is uncertain [1].

The temporal pattern of VTs observed in response to acute ischemic injury has been
the subject of preclinical and clinical research. Early and delayed distinct peaks have been
described in various species, albeit less discernible in others; despite the limitations in
extrapolating these findings to man, clinical data indicate that a bimodal distribution is
likely [2]. Regardless of the pathophysiologic background, a distinction between early and
delayed VTs is of major clinical significance, as they invariably correspond to pre- and
in-hospital phases, respectively.

Prompt revascularization strategies and continuous monitoring in coronary care units
have markedly lowered the incidence of delayed VTs and have decreased in-hospital
mortality of acute coronary syndromes. By contrast, the prognosis of out-of-hospital, early-
phase ischemia-induced VTs remains dismal, despite the continuous refinement of the
emergency medical services [2]. Driven by the societal impact of sudden cardiac death, an
in-depth understanding of the underlying pathophysiology remains at the core of research
efforts, aiming at devising preventive strategies.

2. Sympathetic Activation during Myocardial Ischemia

Sympathetic activation in response to acute coronary occlusion has been long recog-
nized as an important contributor to arrhythmogenesis. Following an immediate exocytotic
phase, norepinephrine is released from sympathetic nerve terminals in the ischemic my-
ocardium via non-exocytotic mechanisms, with such local release demonstrated in isolated,
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ex vivo beating preparations [3]. In the in vivo setting, ischemia-induced sympathetic
activation entails more complex responses that involve the entire sympatho-adrenal axis.
Catecholamines are secreted from chromaffin cells in the adrenal medulla, whereas efferent
discharges from the brain stem stimulate myocardial sympathetic nerve endings globally
in the heart [4]. Understanding the complex sympathetic activation during acute coronary
syndromes is important, based on the spatial variations associated with each arm. More
specifically, the effects of circulating and neurally mediated norepinephrine differ, as circu-
lating catecholamines can only reach myocardial sites with adequate perfusion, in contrast
to local release that occurs in the synaptic cleft of ischemic areas [5].

Sympathetic activation elicits positive inotropic effects that serve the maintenance of
cardiac output but creates a highly arrhythmogenic milieu in the ventricular myocardium.
Studies in conscious large-animal models [6] and patients [7] have demonstrated the
precedence of VTs by enhanced sympathetic activity, supporting epidemiologic data in
patients with acute coronary syndromes complicated by early-phase VTs [8].

Sympathetic activation participates in the genesis of VTs via several mechanisms [1]. It
raises the cardiomyocyte resting membrane potential, thereby enhancing automaticity, and
induces delayed afterdepolarizations that can lead to triggered activity; ectopic rhythms
are sustained by the dispersion of ventricular repolarization that forms areas with inho-
mogeneous local electrophysiologic properties [9]. The latter mechanism prevails in the
setting of myocardial ischemia, due to its opposite actions on the repolarization of the non-
ischemic versus the ischemic myocardium, consisting of shortening versus prolongation,
respectively [10]. As a result, spatial differences in excitability are enhanced, particularly at
the rim of the ischemic zone, thereby creating functional substrates for reentrant circuits.

3. The Endothelin System during Acute Coronary Syndromes

The endothelin system consists of a family of three endothelin isopeptides (ET-1, ET-2,
and ET-3), produced by numerous cell types, and two specific receptors (ETA and ETB)
that are widely expressed throughout the body. Endothelin is synthesized and released
continuously, but it is also stored in intracellular endothelial storage pools and secreted by
exocytosis. Shortly after its discovery, it was shown in animal models [11] and patients [12]
that endothelin plasma levels rise shortly after acute coronary occlusion (Figure 1).
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Figure 1. Endothelin-1 (ET-1) plasma levels (red) increase sharply shortly after acute coronary
occlusion; creatine kinase (CK) levels shown (green) for comparison. Reprinted with permission from
ref. [12]. Copyright 1991, American College of Cardiology Foundation, Published by Elsevier Inc.

The main source of circulating endothelin in the setting of acute coronary syndromes
appears to be the ischemic myocardium, as demonstrated in large animal models [13,14],
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with plasma levels correlating with the incidence of VTs [14]. Prognostic implications
were shown clinically [15], indicating that this ubiquitous peptide participates in several
pathophysiologic processes during myocardial ischemia. In addition to its vasoconstrictive
effects in the coronary circulation, endothelin is implicated in ischemia-induced arrhythmo-
genesis, both directly and indirectly, the latter mode exerted by modulating sympathetic
responses [16].

3.1. Direct Effects

Endothelin exerts arrhythmogenic effects in isolated ventricular cardiomyocytes, con-
sisting of enhanced automaticity and early afterdepolarizations [17]. Several cellular mech-
anisms underlying these actions have been proposed, such as enhanced calcium release
from the sarcoplasmic reticulum (acting via inositol trisphosphate receptors), inhibition of
delayed rectifier potassium current, or activation of the Na+/H+ exchanger [18]. Moreover,
endothelin may impair the gap junctional coupling of cardiomyocytes, thereby contributing
to anisotropic conduction [19]. The latter mechanism has been demonstrated in cellular
electrophysiologic studies, but its importance during acute myocardial ischemia is unclear.
Of note, preliminary in vivo experiments by our group lend support to these findings, after
the analysis of local activation in the ventricular myocardium, by means of multi-electrode
array recordings [20]. Based on the potential importance of this mechanism, further investi-
gation is required on the effects of the endothelin system on electrical conduction in the
ischemic myocardium.

3.2. Indirect Effects

In addition to the direct arrhythmogenic properties of endothelin, several lines of
evidence have demonstrated a complex interplay between the endothelin system and
sympathetic activation [21]. This is present at the adrenal gland level and at the ventricular
myocardial level, with endothelin receptors exerting opposing effects [16].

3.3. ETA and ETB Receptors in the Adrenal Gland

The role of endogenous endothelin in catecholamine secretion in response to electrical
stimulation was first investigated in isolated, perfused adrenal glands of rats [22]; in these
experiments, selective ETA-receptor blockade inhibited catecholamine output, whereas
pre-treatment with selective ETB-receptor blockade abolished this response.

The significance of these findings on arrhythmogenesis during acute coronary syn-
dromes is uncertain. Utilizing the adrenalectomy and ETB-deficient rat models, our group
examined the contribution of the adrenal medulla on ischemia-induced VTs and the modu-
latory effects exerted by the endothelin system [23]. Contrasting delayed VTs, we found
evidence that circulating catecholamines represent only a minor contribution to early-phase
arrhythmogenesis, with functioning ETB receptors in the ventricular myocardium exerting
protective effects (Figure 2).

3.4. Endothelin Receptors in the Myocardium

The presence of both endothelin receptors in cardiac sympathetic nerve varicosities
were first demonstrated in guinea pig hearts and subsequently in other species, including
man [24]. In healthy hearts, the endothelin system interferes with exocytotic norepinephrine
release, with the ETA-mediated inhibition of norepinephrine re-uptake exceeding the ETB-
receptor-mediated attenuation of norepinephrine release [25]. The endothelin system plays
a prominent role also in non-exocytotic norepinephrine release during myocardial ischemia
(Figure 3).
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tective effects of functioning ETB receptors in the ventricular myocardium (* denotes significant dif-
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Figure 2. Early-phase arrhythmogenesis, i.e., within the first hour after coronary ligation in rats.
Adrenalectomy did not affect ventricular tachyarrhythmias in wild-type rats, indicating minor
contribution of circulating catecholamines. However, the total duration of ventricular tachycardia
(VT) and fibrillation (VF) episodes was shorter in adrenalectomized ETB-deficient rats, suggesting
protective effects of functioning ETB receptors in the ventricular myocardium (* denotes significant
difference). Reprinted from ref. [23].
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Non-exocytotic norepinephrine release in myocardial sympathetic nerve varicosities
is enhanced by the activation of ETA receptors via the stimulation of the neuronal Na+/H+

exchanger. Na+ influx in exchange for H+ leads to an accumulation of axoplasmic Na+,
which, in turn, triggers excessive axoplasmic norepinephrine release via the norepinephrine
transporter functioning in reverse mode (i.e., transporting norepinephrine from the in-
tracellular to extracellular space). By contrast, ETB receptors decrease norepinephrine
overflow, possibly by enhancing nitric oxide production via nitric oxide synthase [21]. Such
opposing effects of endothelin receptors on sympathetic nerve endings during myocardial
ischemia were elegantly demonstrated in the ex vivo experimental setting [26], with the
role of ETB receptors assessed by means of pharmacological blockade and with the use of
the subtraction model of ETB-deficient rats (Figure 4).
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Figure 4. Opposing effects of ETA- and ETB-receptor blockade on norepinephrine (NE) overflow in
ischemic rat hearts (* denote significant differences compared to the no addition group). Reprinted
with permission from ref [26]. Copyright 2005, Wolters Kluwer Health.

In a series of experiments [27–29], our group extrapolated these findings, examining
their impact on arrhythmogenesis. Utilizing the in vivo rat model, we reported a lower total
duration of VTs during both (early and delayed) phases post-coronary ligation after ETA-
receptor blockade, confirming its pathophysiologic role [27]. Despite the pathophysiologic
value, the clinical significance of these findings is uncertain, due to the scarcity of relevant
clinical data. Preliminary observations in patients with posterior-wall myocardial infarction
showed neutral effects on delayed VTs after intravenous ETA-receptor blockade, but the
small sample size precludes firm conclusions [30].

To examine the role of the ETB receptor, we evaluated the effects of dual (ETA and
ETB) endothelin-receptor blockade in rats in vivo; in these experiments [28], a decreased
incidence of VTs was confined to the delayed phase post-ligation, strongly suggesting the
beneficial effects of functioning ETB receptors in the ventricular myocardium during the
early phase. We further examined the role of ETB receptors on arrhythmogenesis during
myocardial ischemia, using wild-type and ETB-deficient rats [29]; this protocol circumvents
the limitations associated with selectivity issues after pharmacologic blockade of endothelin
receptors. In these experiments [29], the critical role of ETB receptors in ameliorating early-
phase sympathetic activation and arrhythmogenesis was reiterated; specifically, early-phase
arrhythmogenesis in ETB-deficient rats was markedly higher than wild-type rats, resulting
in excessive mortality during this period (Figure 5).
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4. Central Autonomic Network

Autonomic responses during acute coronary syndromes include short-term homeo-
static feedback mechanisms, followed by the activation of higher centers in the brain [31].
Central actions play an important role in the genesis of ischemia-induced VTs, although
autonomic dysfunction varies depending on the location of the ischemic area [32].

4.1. Brain Endothelin System

The factors regulating the central autonomic network during myocardial ischemia
are complex and remain incompletely understood. In addition to adrenal and myocardial
sites, there is growing evidence that the endothelin system also modulates central auto-
nomic inputs, based on its wide distribution in the brain and spinal cord of experimental
animals [33] and humans [34]. Indeed, early studies have described potent hemodynamic
changes after intracisternal endothelin administration [35]. Although initially attributed
to cerebrovascular effects, the non-vascular location pattern of endothelin receptors in
the brain points towards neuromodulatory actions [36], which are likely mediated by
alterations in calcium influx and neuronal conduction [37].

Anatomical and functional studies have provided further support to the concept of
central autonomic control exerted by the brain endothelin system [38]. For example, tyro-
sine hydroxylase activity measurements have demonstrated the interaction between the
endothelin and the olfactory system [39]. Moreover, functional studies using cellular c-fos
expression showed the activation of the brainstem after intracerebroventricular endothelin
administration, an action mediated by ETA receptors [40]. Lastly, cardiac sympathetic re-
sponses were modulated after exogenous endothelin administration in the paraventricular
nucleus in rats; these effects were dose-dependent and were prevented by pretreatment
with ETA-receptor blockade [41].

Although the physiologic role of the endothelin system in the brain is emerging, its
effects during myocardial ischemia remain incompletely understood. Our group has pro-
vided some insights on this issue in a series of in vivo experiments [42–44]. We initially
studied wild-type and ETB-deficient rats after permanent coronary ligation, with or without
pretreatment with the centrally acting sympatholytic agent clonidine; in these experiments,
cardiac rhythm was continuously recorded by implantable telemetry devices [42]. We re-
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ported important inputs of central sympathetic activation on early-phase arrhythmogenesis,
which were attenuated by ETB receptors in the myocardium.

4.2. Brain Endothelin System during Myocardial Ischemia

To further assess the role of the brain endothelin system during myocardial ischemia,
we examined the effects of intracerebroventricular ETA-receptor blockade in rats [43]; this
protocol targets the endogenous endothelin system and avoids the confounding effects of
exogenous endothelin administration. We reported beneficial effects on delayed arrhyth-
mogenesis post-coronary ligation, whereas infarct size was unchanged. We subsequently
extended our observation period to include both early and delayed arrhythmogenic phases
post-coronary occlusion [44]. We found decreased sympathetic activity, evidenced by non-
invasive indices derived from heart rate variability analysis (Figure 6), with an improved
autonomic function associated with a lower incidence of VTs during both phases.
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A causative relation between intervention and lower arrhythmogenesis was strength-
ened by the attenuated regional myocardial repolarization inhomogeneity in the treated
group. In the same work [44], we also examined the role of ETB receptors, with or with-
out concurrent ETA-receptor blockade. A between-groups comparison indicated that the
antiarrhythmic effects were mainly attributed to ETA-receptor blockade; however, pharma-
cologic selectivity issues may be particularly relevant in the brain endothelin system [45],
mandating further research on the role of ETB receptors in the brain.

4.3. Brain Endothelin System and Vagal Activity

In addition to the sympathetic component, there is now sufficient evidence to suggest
that autonomic modulation by the endothelin system also encompasses vagal responses.
Early studies have demonstrated the presence of endothelin receptors in the dorsal vagal
complex of the brainstem [46], with vagal activation elicited after intracisternal endothelin
administration [47]. These findings were subsequently confirmed after selective endothelin
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microinjections into the dorsal vagal complex of anesthetized rats; this intervention mod-
ulated gastric motor, arterial blood pressure, and heart rate, with such effects mediated
via ETA receptors [48]. These findings are in keeping with our aforementioned study [44],
reporting a moderately enhanced vagal activity after intracerebroventricular ETA-receptor
blockade.

Taken together, previous studies indicate that the brain endothelin system modulates
vagal responses in the setting of myocardial ischemia. The pathophysiologic importance
of these observations is substantial, given the salutary vagal effects on cardiomyocyte
refractoriness and ventricular fibrillation threshold [49]. However, several electrophysio-
logical aspects of autonomic activation during acute coronary syndromes remain under
investigation. For instance, excessive vagal activity can trigger bradycardia-induced VTs,
whereas vagal activation without reciprocal sympathetic withdrawal can also be earrhyth-
mogenic [50]. Thus, the effects of the brain endothelin system on vagal activity and
arrhythmogenesis during acute coronary syndromes are far from being understood and
constitute a subject for future studies.

5. Acute Emotional Stress and Arrhythmogenesis during Myocardial Ischemia

Acute emotional stress evokes complex autonomic responses, displaying distinct
features from those elicited during physical exertion [51]. A considerable amount of
evidence suggests that the endothelin system is also implicated in autonomic responses
during emotional stress. In rats, acute psychosocial stress increases plasma endothelin
levels [52] and lowers vagal activity [53]. Remarkably, similar findings were reported in
response to acute emotional excitement in healthy subjects and in patients with previous
myocardial infarction [54]. The origin of circulating endothelin in such cases has been
debated, but the vascular endothelium appears to be the most likely cellular source [55].

The implications of these observations on ischemia-induced VTs are poorly defined.
Irrespective of the possible causative link between acute emotional stress and coronary
artery disease, this clinical setting is common in contemporary society. An example (per-
haps in extremis) is given by the high incidence of VTs among patients with implanted
defibrillators following the World Trade Center terrorist attack in 2001 [56]. Furthermore, a
cohort study [57], examining patients admitted with acute coronary syndrome after intense
excitement, reported profoundly increased endothelin (and inflammatory markers, such
as monocyte chemoattractant protein-1) when compared to either a reference group or to
healthy controls (Figure 7).
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without preceding emotional stress (R, blue bar) or healthy controls (C, green bar); * denote significant
differences. (b) Receiver-operating characteristic curves (with areas under the curve, AUC) for the
assessment of endothelin-1 (ET-1) (green line) and monocyte chemoattractant protein (MCP)-1 (red
line) as specific markers of stress-associated acute coronary syndrome. Reprinted with permission
from ref. [57]. Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc.

Examined collectively, current evidence suggests a pathophysiologic role of the en-
dothelin system in acute coronary syndromes associated with acute emotional stress, but
the possible ramifications on early-phase arrhythmogenesis warrant further investigation.

6. Conclusions

Early-phase VTs in the setting of acute coronary syndromes often lead to sudden
cardiac death and remain an important health-related problem worldwide. Myocardial
ischemia induces major changes that favor the onset of VTs via all known arrhythmogenic
mechanisms. This milieu is further altered by sympathetic activation, consisting of local
and systemic catecholamine release, each with a distinct electrophysiologic impact. The
endothelin system augments both processes via ETA receptors, whereas ETB receptors in the
myocardium ameliorate local early-phase sympathetic activation and arrhythmogenesis.

Acute coronary syndromes are often accompanied by autonomic dysfunction that
contributes to VTs, but the underlying pathophysiology is complex and incompletely under-
stood. The role of the brain endothelin system in modulating sympathetic and vagal activity
has recently emerged, particularly in cases of acute emotional stress preceding myocardial
ischemia. The interaction between the endothelin system and the autonomic nervous
system is currently under investigation, with a view towards implementing therapeutic
strategies that will lower the incidence of sudden cardiac death.
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