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Abstract: Human health deteriorates due to the generation and accumulation of free radicals that
induce oxidative stress, damaging proteins, lipids, and nucleic acids; this has become the leading
cause of many deadly diseases such as cardiovascular, cancer, neurodegenerative, diabetes, and
inflammation. Naturally occurring polyphenols have tremendous therapeutic potential, but their
short biological half-life and rapid metabolism limit their use. Recent advancements in polymer
science have provided numerous varieties of natural and synthetic polymers. Chitosan is widely
used due to its biomimetic properties which include biodegradability, biocompatibility, inherent
antimicrobial activity, and antioxidant properties. However, due to low solubility in water and
the non-availability of the H-atom donor, the practical use of chitosan as an antioxidant is limited.
Therefore, chitosan has been conjugated with polyphenols to overcome the limitations of both chi-
tosan and polyphenol, along with increasing the potential synergistic effects of their combination
for therapeutic applications. Though many methods have been evolved to conjugate chitosan with
polyphenol through activated ester-modification, enzyme-mediated, and free radical induced are
the most widely used strategies. The therapeutic efficiency of chitosan-polyphenol conjugates
has been investigated for various disease treatments caused by ROS that have shown favorable
outcomes and tremendous results. Hence, the present review focuses on the recent advancement of
different strategies of chitosan-polyphenol conjugate formation with their advantages and limita-
tions. Furthermore, the therapeutic applicability of the combinatorial efficiency of chitosan-based
conjugates formed using Gallic Acid, Curcumin, Catechin, and Quercetin in human health has
been described in detail.
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1. Introduction

Reactive Oxygen Species (ROS) play an important role as intermediates in various
metabolic pathways, but the accumulation of ROS induces Oxidative Stress (OS), damaging
proteins, lipids, and nucleic acids. This has become the major cause of several deadly
diseases. Epidemiological evidence indicates that the risk of premature mortality from
major clinical conditions like cardiovascular disease (CVD), neurodegenerative disease,
and cancers can be decreased by a high dietary intake of polyphenols [1–6]. Polyphenols
are naturally occurring secondary metabolite micronutrients in plants, which contain
hydroxyl groups in their aromatic ring [7–10]. The pictorial representation of different
classes and subclasses of polyphenols, their chemical structures, and their sources are
shown in Figure 1 [11]. Polyphenols form a natural defense system for plants, protecting
them from UV radiation and pathogenic invasion, and are also responsible for oxidative
stability and organoleptic properties [12–17].

Polyphenols attract immense attention for their potential nutraceutical and phar-
maceutical impacts on human health, due to their inherent biological properties such
as antioxidant, anti-allergic, antibacterial, anti-inflammatory, antitumor, anti-diabetic,
and antiviral [18–30]. They also keep blood vessels healthy and flexible by managing
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blood pressure levels that is helpful for good blood circulation [31–33]. Hence, health
professionals, researchers, and consumers are interested in natural antioxidants based on
polyphenols to be incorporated into various therapeutic products and medicines [34–38].
Polyphenols such as curcumin [39–41], resveratrol [42], quercetin [43], and catechins [44]
show protective abilities against neurodegenerative diseases (Alzheimer’s-like diseases
and dementia) through their antioxidant, immunomodulatory, and scavenging proper-
ties. They inhibit the neurotoxic effects of accumulated beta-amyloid protein, which is
a major protein linked to the cause of Alzheimer’s disease. Moreover, the chelating ca-
pacities of some polyphenols like curcumin, epigallocatechin gallate (EGCG), myricetin
etc., with iron also prevent neurotoxicity [45]. They are also known to modulate in-
flammatory responses through the mitigation of cytokine pathways and hence prevent
systemic and/or localized inflammation [46]. In the case of CVD, flavonoids and resver-
atrol are well known polyphenols that block cholesterol oxidation to reduce the risk
of disease [47,48]. Anthocyanins are the most substantiated polyphenol that helps to
regulate glycemic levels through the protection of β-cells from glucose toxicity; their
their antioxidant and anti-inflammatory effects that leads to prevent and maintain type
2 diabetes [49,50]. Some polyphenols possess anti-obesogenic effects that help in weight
loss and health maintenance by adipocyte oxidation, inhibition of lipogenesis, reduction
in inflammation, and increase in energy expenditure [51]. The therapeutic actions of
phenolic compounds for different diseases is pictorially represented in Figure 2 [52]. The
ability of polyphenols to donate an electron/hydroxyl ion that binds and neutralizes the
free radicals formed in the body [53]. This property also helps them bind to the biomacro-
molecules to form stable chemical compounds and reduces the ability of the complex
to react further [54]. Polyphenols are also known to reduce OS by producing hydrogen
peroxide. However, one of the negative impacts of polyphenols includes complex forma-
tion with biological elements inside the body. This results in a pro-oxidant nature under
certain circumstances and their reduced efficiency due to various factors, i.e., pH of body
fluid, presence of enzymes, and limited solubility [55]. Polyphenols are absorbed by the
cell membrane, interact with the enzymes, and can chelate with metals, which leads to
the mechanism of their antimicrobial nature [56,57]. However, due to short biological
half-life, rapid metabolism, low water solubility and bioavailability, limits their success
in clinic [58,59]. The absorption of polyphenols is dependent on its chemical structure
and molecular weight by cells/tissues which also limits their oral administration. In ad-
dition, gastrointestinal enzymes, nutrients, microbiota, and other factors decrease their
potential health benefits [60]. Moreover, environmental factors such as heat, moisture,
oxygen, and light irradiation also affect the topical use of polyphenols due to degra-
dation [61,62]. Therefore, many pharmaceutical and biomedical industries are hesitant
to use polyphenol based compounds for translational medicine. All these limitations
make it difficult for the systemic therapies of polyphenols [24,63–68]. Over the decades,
continuous research is being made to overcome the deficiencies of polyphenols. Some of
the well-used approaches include hydrogels, simple emulsions, nano-formulations, lipid
encapsulation, liposomes etc. [24,69–72] In recent years, the conjugation of polyphenols
with natural and/or synthetic polymers to enhance the therapeutic efficacy without
losing any bioactive properties has been a spot of continuous attraction [72,73]. A widely
studied natural cationic polymer, chitosan acts as an excellent delivery agent and is also
being used as biomolecule conjugate for regenerative medicine along with inherent an-
tibacterial, antioxidant, antitumor, and anti-inflammatory properties [74–81]. The radical
scavenging nature of chitosan is due to active hydroxyl and amino groups that react with
free radicals [82]. Several researchers have proposed that the binding of hydroxyl groups
of chitosan to the free radicals forms a macromolecular stable compound that helps to
reduce OS in the human body; whereas, some others have proposed that amino groups
are react with free radicals [83]. Moreover, chitosan is also a potential metal chelator due
to the presence of amino and hydroxyl groups which makes it easier for modification
with other biomolecules [84]. However, low water solubility and poor availability of
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H-atom donor limit the practical use of chitosan as an antioxidant. Hence, grafting
hydrophilic functional groups can increase solubility; providing H-atom donor can
improvethe efficiency and applicability of chitosan [85]. Therefore, the conjugation of
chitosan and polyphenol has become the most potentially beneficial agent to complement
each other and enhance their therapeutic efficacy in human health. The flow diagram
of the limitations and advantages of chitosan, polyphenols, and chitosan-polyphenol
conjugates is given in Figure 3. Conjugation of polyphenols onto chitosan prevents the
degradation of polyphenols in a biological environment (from light, pH, temperature,
oxygen, enzymes, etc.) of the human body.
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Figure 2. Mechanism of action underlying the therapeutic activities of phenolics in different diseases,
adapted from Ref. [52].

Many of the synthesis strategies to couple chitosan and polyphenol have been inten-
sively investigated, and have been explored from chemical modifications, such as ester
modification, enzyme-mediated, and free radical induced processes [86]. Several studies
have been performed to evaluate the therapeutic efficiency of chitosan-polyphenol conju-
gates for various diseases [87–91]. However, not a single review has been made that only
concentrates on chitosan-polyphenol conjugates for different disease treatments for human
health. In this review, different recently used strategies of chitosan-polyphenol conjugate
formation, with their advantages and limitations, have been described. Furthermore, the
applicability of the combinatorial efficiency of both chitosan and polyphenol for therapeutic
application in human health has been described in detail.
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2. Chitosan-Polyphenol Conjugates

Chitosan-polyphenol conjugates impart properties of both components with high
efficiency; however, both chitosan and polyphenol possess some disadvantages, such as
poor solubility, dietary metabolism, and poor availability of H-atom donor etc., when used
alone [85]. Conjugation of both has been able to overcome the limitations and shown a
synergistic effect with tremendous potential as an antioxidant for various ROS-induced
diseases [86]. Several strategies have been used for the conjugation, but chemical (ac-
tivated ester-mediated modification), enzyme-mediated, and free radical induced are
recently developed and widely used methods [86]. Activated ester modification uses
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), which is a carboxylic activating
agent and act as a cross-linker to link chitosan and the polyphenol. EDC generates an
O-acylisourea intermediate when added to polyphenols by activating the carboxyl group;
it then couples with primary amine group of chitosan through amide bonds (Figure 4A).
However, several studies have reported that there may be a possibility of hydrolysis
and carboxyl group regeneration from the intermediate [92] and hence, introduction of
N-hydroxysuccinimide (NHS) after the formation of O-acylisourea solved the issue [93].
Addition of NHS forms a stable active intermediate, unlike the previous one, which then
reacts with chitosan’s amino or hydroxyl group to form chitosan-polyphenol conjugate (Fig-
ure 4B). Unfortunately, the strategy of free radical synthesis to prepare chitosan-polyphenol
conjugates shows low derivatization degree and hence, chemical and enzyme-mediated
methods are being explored recently [94]. In case of enzyme-mediated strategy, phenolic
compounds are converted to O-quinones using oxidases, a very reactive intermediate. Then,
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it attaches to the amine groups of chitosan by either a Michael type or Schiff base reaction
demonstrated in the Figure 5A. On the contrary, a mixture of hydrogen peroxide and ascor-
bic acid is used to generate a redox system that induces amino, hydroxyl, and α-methylene
groups of chitosan to form radicals in the free radical induced method. The polyphenols
are then attached to the specific radicals through covalent bond formation (Figure 5B). The
position of conjugation remains unclear and needs more understanding of the mechanisms
to elucidate the bond formation between chitosan and polyphenols [86]. As mentioned in
the introduction, chitosan-polyphenol conjugates overcome the limitations of both com-
pounds when being used alone as therapeutic agents. The half-life of polyphenols in the
human body is about 1–28 h which is too low to exert significant bioactive effects [95,96].
However, studies have shown that the half-life of chitosan can be extended up to 84 days
by increasing the degree of deacetylation, which lowers its degradation rate [97]. Hence, it
is evident and proven that the shelf-life of polyphenols can be increased by conjugation
with chitosan. This prevents polyphenol degradation in biological environments [98,99].

It is also well known that both chitosan and polyphenol in their native form show
antioxidant properties, but they lose their activity due to certain limitations in biological
environment. In recent years, there are several studies that demonstrate that the antioxidant
ability of chitosan and polyphenols can be improved by conjugation. Pasanphan and co-
workers designed a chitosan-GA conjugate that imparted a synergistic scavenging ability
that was greater than chitosan alone, but not significant as compared to GA [85]. Similarly,
in another study the conjugate showed an increase of radical scavenging activity (92.26%)
when compared to chitosan control (28%). Authors also observed increase in antioxidant
activity with increase in GA content. Conjugation of GA onto chitosan enhanced the ability
of GA to donate hydrogen/electron [64]. Similarly, the conjugates were also tested for
their inhibitory action on the intracellular ROS in vivo. The results demonstrated that the
chitosan-polyphenol conjugates were cytocompatible and able to significantly inhibit the
intracellular ROS that was formed in the mouse [64]. In another study, Rui et al., have also
proved the significant efficiency of chitosan-polyphenol conjugates for radical scavenging
ability rather than being used alone [100].
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The next section describes the efficiency of chitosan conjugated with polyphenols
which include GA, Curcumin, Catechin, and Quercetin for treatment of various diseases,
for which the overview has been presented in the Figure 6.
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2.1. Chitosan-Gallic Acid Conjugates

GA also known as 3,4,5-tri hydroxy benzoic acid, is an abundant polyphenol primarily
found in the bark of oak species and Boswellia dalzielii, an African tree [104]. It is a colorless
or slightly yellow colored polyphenol with extensive pharmaceutical applications [105].
Its properties include anti-microbial [106,107], anti-obesity [108,109], and anti-oxidant
properties [106,110,111]. Owing to the structural chemistry of GA, upon conjugation of GA
with chitosan, it becomes easier to improve the water solubility, antioxidant properties, and
metal chelating ability of the conjugate. Properties such as high reducing potential, low
dissociation enthalpy of OH bonds present on the benzene ring, bulky groups obstructing
the hydrogen bonds of chitosan, and hydrophilicity of GA are attractive results of being
conjugated with chitosan [85]. Chemical synthesis of chitosan-GA is represented in Figure 7,
which utilizes NHS/EDC for intermediate generation, and then binds to the reactive amine
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group of chitosan. Recently, GA has been conjugated with chitosan through various
strategies imparting certain advantages and enhancing the properties of GA. Lišková et al.,
has enriched chitosan, sodium beta-glycerophosphate (Na-β-GP) and alkaline phosphatase
(ALP)with phloroglucinol (PG) and GA to form injectable hydrogels [112]. These hydrogels
were prepared for bone regeneration and their physicochemical and biological properties
were characterized. The addition of polyphenols had no substantial negative effect on
the hydrogel system for colony forming ability of E. coli in liquid medium. Antioxidant
and free radical scavenging activity was observed to be higher in case of unmineralized
hydrogels containing polyphenols rather than the mineralized state due to steric hindrances
of concentrated minerals around GA (Figure 8). GA addition increased the antibacterial
activity (Figure 8II) but was toxic and affected the cell growth. However, there is no negative
effect on growth and cell adhesion of MG63 cell lines [112]. Coupling the properties of
chitosan and polyphenol, Giacomo et al., developed a system that was a combination of
hydroxyapatite, chitosan for modulated swelling, and release of polyphenols extracted from
grape pomace. It was observed that the system remained stable at normal physiological
conditions, whereas a high release profile was seen in case of inflammation. Moreover,
some amounts of polyphenols were still bound to the complex after being released, so
the formulation maintained longer time antioxidant and radical scavenging activities
(Figure 9) [88]. In a similar study, Liu et al., grafted GA onto chitosan (GA-g-CS) by the
novel process of free radical synthesis. GA-g-CS showed high inhibitory activity for α-
amylase and α-glucosidase, which concludes the potential of the graft for anti-diabetic
properties. However, the graft was observed to have less thermal stability and crystallinity
as compared to chitosan [113].
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It is reported that, the calcium oxalate crystals can be formed in the presence of chitosan
which is responsible for kidney stones; hence, researchers have proved the efficiency of
chitosan-GA conjugates to overcome the limitation. Queiroz et al. [114], have observed the
high anti-oxidant and calcium oxalate crystals reduction ability of the conjugate. Hence,
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the chitosan-GA conjugate can form an efficient platform for the treatment of kidney stones
in near future.
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Figure 8. (I) Antioxidant activity of chitosan hydrogels enriched with GA (a), PG (b), and without
tannins (c) before and after mineralization. (II) Antibacterial activity of chitosan hydrogels enriched
with GA and PG. (a) Growth of E. coli in liquid culture in presence of hydrogels (b) Relative colony-
forming ability of E. coli on agar after incubation with hydrogels (CFU counts were normalized to
values at time 0 h). Mean values are shown (n = 4). Error bars show standard deviation, adapted
with permission from Ref. [112], © 2022 Elsevier Ltd.
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2.2. Chitosan-Curcumin Conjugates

Curcumin is a yellow pigment polyphenol found primarily in turmeric, naturally
possessing anti-inflammatory, antioxidants and anti-cancer properties [115]. However,
low solubility and the rapid metabolic nature of curcumin limit its broad applicability.
Functionalized chitosan such as carboxymethyl chitosan (CMCS) has been widely used
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as a conjugate for increasing the bioavailability and as an efficient absorption agent for
curcumin. The presence of NH2 and COOH active groups in CMCS is available for binding
to functional groups of hydrophobic curcumin, which helps to enhance the therapeutic
capability [116]. The schematic representation of chemical synthesis of chitosan-curcumin
conjugate is shown in Figure 10. In another study, authors have conjugated curcumin
with alginate, chitosan and pluronic F127. It was observed that pluronic F127 enhanced
the solubility of curcumin. The successful delivery of the curcumin loaded composite
was confirmed by inverted fluorescent microscope images of HeLa cells (green fluores-
cence) shown in Figure 11, and was found to be nontoxic at a concentration of 500 µg/mL.
From the above experiment it was evident that the conjugate had potential anti-cancerous
ability [117]. Curcumin is a lipophilic compound and hence, is susceptible to reticuloen-
dothelial uptake. Therefore, Duan et al., have designed a novel conjugate that includes
cationic poly (butyl) cyanoacrylate NPs conjugated with chitosan (PBCA) for encapsulation
and increased therapeutic concentration of the delivered curcumin at its target. This system
can enable parenteral means of administration of curcumin in an aqueous phase medium
to utilize the efficiency of this agent against cancer. The authors tested the anti-cancer
activity of the curcumin-PBCA conjugate in human hepatocellular carcinoma cells, which
showed a decrease in the growth of hepatic carcinoma cells (Figure 12) and angiogenic
effects [118]. In the continuation of the above study, doxorubicin (DOX) and curcumin were
co-encapsulated in poly (butyl cyanoacrylate) NPs (PBCA-NPs) to access the anticancer
and multi drug resistance reversal properties [119]. In a similar study, authors have encap-
sulated curcumin-γ-hydroxypropyl cyclodextrin (CUR-CD) hollow spheres into chitosan
to form CUR-CD-CS NPs by using spray drying method. The efficacy of the formula-
tion was tested against SCC25 cell lines, which were observed to be highly toxic when
compared to the control groups. The cytotoxicity results showed 100% apoptosis in the
human cancer cell line SCC25 as shown in Figure 13. Experimental results also proved that
chitosan not only helps to enhance the solubility of curcumin but it also boosts its cellular
uptake [120]. Researchers reported the use of curcumin NP and tripolymeric composite
(chitosan, poly-g-glutamic acid, and pluronic) as a delivery agent for accelerating wound
healing (Figure 14A,B). The composite was prepared using the simple technique of ionic
gelation, and pluronic was used for enhancing the solubility of curcumin, lowering the
bacterial infection and inflammation while wound healing. In vitro analysis confirmed the
controlled release of curcumin in a simulated skin model. Neo collagen regeneration and
enhanced tissue reconstruction was also observed when the conjugate was applied in an
in vivo model [121].
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2.3. Chitosan-Catechin Conjugates

Catechin is a polyphenol belonging to the flavonoid group which is known for its
excellent antioxidant properties [123–125]. Studies, including catechin and chitosan formu-
lations have been performed to investigate its antidiabetic potential due to the presence
of phenolic groups. The interactions between chitosan-catechin are hydrogen bonding,
hydrophobic interaction, and/or van der Waals contacts, and it is seen that more stable
conjugates are formed with catechins [126]. Catechin-grafted chitosan (catechin-g-chitosan)
shows a much higher hydroxylradical scavenging activity (46.81%) and DPPH radical
scavenging activity (67.08%) than that of the control at 1mg/mL. An in vitro study of the
graft for antidiabetic potential showed an increased α-glucosidase inhibitory effect and a
low α-amylase inhibitory effect. The incredible antioxidant and antidiabetic potential of
the graft can be a promising therapeutic tool in the biomedical sciences and pharmaceutical
industry [127]. In another study, the free radical mediated conjugation method was used
to conjugate chitosan-catechin and was tested for its potential activity for H2O2-induced
hepatic damage in HeLa derivative human normal Chang liver cells. The conjugate was
observed to reduce lipid peroxidation and intracellular ROS generation. It also increases
the level of glutathione (both in normal and under OS conditions). EGCG is the most
potent anti-proliferative property possessing polyphenol. EGCG significantly induces cell
cycle arrest in the G1 phase and hence, induces cell apoptosis. The free radical synthesis
mechanism of chitosan-catechin has been demonstrated in Figure 15. Siddiqui et al. [128]
have demonstrated pro-apoptotic effects and anti-proliferative effect of EGCG against
human melanoma cell growth both in vitro and in vivo. The authors had already demon-
strated the above mentioned properties in their previous paper [129], but the doses were
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not achievable at physiological levels of EGCG. Hence, they have tried introducing a novel
concept of nano chemoprevention, where the EGCG was encapsulated in chitosan NPs
suitable for oral consumption that remained stable in acidic conditions. The formulation
had 8-fold dose advantages over the native EGCG when tested against human melanoma
Mel 928 cells. The tumor cells showed inhibition of cell cycle and induction of apoptosis in
in vitro. The in vivo studies in tumorous mice, it inhibited proliferation of PCNA and Ki 67
inducing apoptosis (Figure 16). To overcome the limitation of polyphenol bio-availability,
a concept of nano chemoprevention was introduced by Naghma et al. [130]. The authors
have synthesized chitosan epigallocatechin-3-gallate NPs (Chit-nanoEGCG) for the slow
and controlled release of polyphenol to treat prostate cancer. The EGCG was released
slowly and in a faster rate in simulated gastric juice (acidic) and in simulated intestinal
fluid, respectively. Chit-nanoEGCG secreted a higher prostate-specific antigen as compared
to the control groups and also showed significant inactivation of tumor cells (Figure 17).
The efficacy of the Chit-nanoEGCG was also investigated in tumor cells of the mouse. The
observed events included induced poly (ADP-ribose) polymerases cleavage, increased Bax
protein expression, decreased Bcl-2, activated caspases with reduced Ki-67, and proliferat-
ing cell nuclear antigen. They have chosen chitosan to protect the polyphenol degradation
in acidic pH and to maintain its slow-release profile during oral administration. Chit-nano
EGCG has been tested in preclinical setup to treat prostate cancer, their results provide
a non-invasive potential platform to replace many harmful procedures like chemo and
radiation therapy.
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Figure 12. In vivo efficacy of curcumin-PBCA NPs and empty PBCA NPs in HepG2 hepatocellular
cancer xenograft. (A) The images of HepG2 xenograft-bearing mice treated with curcumin-PBCA
NPs, empty PBCA NPs and control tumor; changes in body weight of animals (B) and tumor volume
(C) as a function of time in subcutaneous HepG2 xenograft. Straight line: physiological saline; dashed
line: empty PBCA NPs; double dot dashed line: curcumin PBCA NPs, adapted with permission from
Ref. [118], © 2022 Elsevier B.V.
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Figure 14. (A) Representative photographs of wounds following full thickness skin excision at 3, 6, 9,
12, and 15 days after surgery; (B) Percentage wound closure is presented at the indicated time points,
adapted with permission from Ref. [121], © 2022 Wiley Periodicals, Inc. J Biomed Mater Res Part B:
Appl Biomater.
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sion of CD31 and VEGF in tumor tissues of athymic nude mice. Tumor sections from athymic nude 
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and VEGF immunoreactivity score (right panel) was scored as 0+ (no staining), 1+ (weak staining), 

Figure 16. Comparative effects of nonencapsulated EGCG and nano-EGCG on markers of apoptosis,
cell cycle, and Proliferation markers in tumors isolated from nude mice. (A) Protein expression of Bax,
Bcl2, and the Bax/Bcl2 ratio and PARP. (B) Protein expression of Cyclins A, B1, E, E2, CDK 4, and
CDK6. The cells were treated with each agent and harvested 24 h after treatment. Equal loading was
confirmed by stripping the membrane and reprobing it with β-actin. Each experiment was repeated
twice with similar results. (C) Effect of the treatments on expression of Ki-67 and PCNA in tumor
tissues isolated from athymic nude mice. Tumor sections were stained using specific antibodies as
detailed in Materials and Methods. Counterstaining was performed with hematoxylin. Scale bar,
50 µm. Photomicrographs (magnification, 20×) show representative pictures from two independent
samples, adapted with permission from Ref. [128], © 2022 Elsevier Inc.
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Figure 17. (I) (A) Effect of Chit-nanoEGCG on expression of Ki-67 and PCNA in tumor tissues of
athymic nude mice. Tumor sections from athymic nude mice were stained using specific antibodies
as detailed in Materials and Methods. Counterstaining was performed with hematoxylin. Scale
bar, 50 µm. Photomicrographs (magnification, ×20) show representative pictures from two inde-
pendent samples. (B) Proliferation index for Ki-67 (left panel) and PCNA (right panel) is shown.
* p < 0.05 and ** p < 0.01 and *** p < 0.001, versus control group. (II) (A) Effect of Chit-nanoEGCG
on expression of CD31 and VEGF in tumor tissues of athymic nude mice. Tumor sections from
athymic nude mice were stained using specific antibodies as detailed in Materials and Methods.
Counterstaining was performed with hematoxylin. Scale bar, 50 µm. Photomicrographs (magnifi-
cation, 20×) show representative pictures from two independent samples. (B) Tumor microvessel
density (left panel) and VEGF immunoreactivity score (right panel) was scored as 0+ (no stain-
ing), 1+ (weak staining), 2+ (moderate staining), 3+ (strong staining), and 4+ (very strong staining).
* p < 0.05 and ** p < 0.01 and *** p < 0.001, versus control group, adapted with permission from
Ref. [130], © 2022 Oxford University Press.

2.4. Chitosan-Quercetin Conjugates

Quercetin is another flavonoid with tremendous therapeutic potential, but due to
its hydrophilicity and low percutaneous absorption, that limits its wide applications
in vivo [131,132]. The conjugation of quercetin onto chitosan can further enhance the
absorption and efficiency of quercetin in biological environments. The chitosan-quercetin
conjugate through free radical mechanism, which is shown in Figure 18. In a recent study,
the bioavailability and solubility of paclitaxel (PTX) is increased by carboxymethyl chitosan-
quercetin (CQ) polymeric micelles. The formulation helps the drug bypassing multidrug
transporter P-glycoprotein (P-gp) efflux pump. This also shows sustained-release profile as
compared to the control and hence, can be a helpful agent for oral delivery of anticancer
drugs that are water-insoluble [133]. Another study by Vedakumari et al. [134] studied
the effect of conjugated chitosan-fibrin composite (CF) scaffolds containing quercetin for
wound healing applications using a freeze-drying technique. The scaffold exhibited an-
tibacterial effect against Escherichia coli (abundantly found on wound bed) and was proved
to be non-toxic through MTT (3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bro-
mide) assay. High mechanical strength and maximum tensile strength was also observed,
which is a property of an ideal wound dressing. In vivo studies with topical application of
the dressing on albino rat excision wounds showed excellent wound healing properties
(Figure 19). The efficiency of quercetin-chitosan NPs has been intensively studied for
sustained release in HCT 116 cell lines of colorectal cancer treatment. In vitro release profile
and in vivo anti-cancer properties have proven the potential of the formulation for oral
delivery of therapeutics in colorectal cancer [135]. In another study, authors prepared a
pH-responsive Chitosan, Quercetin, Citraconic anhydride nanomicelle, that enhanced the
inhibitory activity of quercetin against multidrug resistance (MDR) related tumor therapy
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when combined with the drug DOX. The nanomicelle bypassed the lysosomal degradation
and also enhanced the uptake of DOX by the MCF-7/ADR cell line. This formulation
provides a potential platform for the delivery of quercetin and DOX to the MDR cancer
cells [136]. Rashedi et al. [137] studied the cross-linked chitosan-quercetin nanoparticles
(NPs) to treat induced adenocarcinoma tumors in the colon of male Wistar rats. Histopatho-
logical studies (Figure 20) showed a high apoptosis rate, decreased microvascular density,
and mitosis count that was a result of target-specific controlled release of quercetin by
CS-NPs. Tzankova et al., have designed quercetin loaded chitosan/alginate NPs to treat
ROS induced liver impairment in human hepatoma HepG2 cells in vitro. They have also
shown decreased cell viability when the HepG2 cells were pretreated, and in vivo studies
with paracetamol induced liver injury in male Wistar rats significantly lowered the high
levels of serum transaminases alanine transaminase and aspartate aminotransferase, low-
ered the lipid peroxidation, and restored glutathione’s level. The effect of quercetin was
seen to be much higher in case of encapsulation with chitosan/alginate rather than the
quercetin alone. The study suggested the potential of chitosan/alginate encapsulation that
can enhance the activity of quercetin to treat stress induced injuries [138].
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Figure 20. Histological sections of adenocarcinomas from Wistar rat colon. Paraffin embedded
sections were stained with H&E. (A) Cancerous control group, (B) Treatment group; cancerous rats
were administered by Qu loaded CS NPs through enema. The black arrows indicate apoptotic
bodies and the white and green arrows indicate mitotic cells and microvasculars, respectively (400×)
Adapted from Ref. [137].

3. Conclusions and Future Prospective

In recent years, natural antioxidants have been in great demand due to their po-
tential therapeutic advantages for human health. Both chitosan and polyphenols are
well-recognized antioxidant and antimicrobial agents, but both suffer due to certain in-
herent limitations, which reduce their therapeutic efficacy in the biological environment.
Hence, the conjugation of chitosan-polyphenol emerges as a potential candidate to over-
come the drawbacks of both compounds and impart synergistic health benefits over native
ones. Though many strategies have been adopted to design chitosan-polyphenol conju-
gates, free radical induced conjugation was the most effective. The therapeutic efficacy of
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chitosan-polyphenols is attributed to the presence of an active amine group in chitosan
and phenolic hydroxyl groups of polyphenols. Several studies have been conducted to
evaluate the chitosan-polyphenol therapeutic efficacy that can be used against various
deadly diseases like infectious, neurodegenerative, cancer, diabetes, and CVD, etc. Al-
though in vitro analyses yield much success, their applicability in human trials in clinic
is still limited. Some studies have observed controversial results, such as sub-chronic
and oral toxicity in animal studies. Therefore, detailed studies need to be performed to
evaluate the safety and efficacy on human health. Extensive research on optimal safe doses
and modes of administration is needed to be evaluated to avoid the toxic effects of the
chitosan-polyphenols conjugate. Determining the action of specific polyphenols against a
particular disease is still a significant concern to be investigated in human health. Hence,
developing reliable methods to measure the individual polyphenol activity in body tissues
and fluids with their physiological relevance to a particular disease is highly necessary
to target the exact pathway with efficient polyphenolic compounds.Moreover, their appli-
cations in pharmaceutics and biomedicine are scarce due to various drawbacks of both
chitosan and polyphenols, mainly being less stable in the human body. Therefore, it is
essential to understand the biosynthesis pathways by using high throughput techniques.
Improvements in the conjugation methods and nanotechnology can improve their in vivo
applications in the future, widening the scope of pharmaceutical companies and biomedical
fields. There is a lot of future research that needs to be done, but chitosan-polyphenol
conjugates undoubtedly offer great potential for human health.

Author Contributions: Conceptualization, A.P., S.P. and S.K.S.; writing—review, editing, and visual-
ization, S.K.S. and S.P.; supervision. All authors have read and agreed to the published version of
the manuscript.

Funding: This literature research was funded by [Department of Science and Technology, Department
of Biotechnology and Indian Council of Medical Research -Regional Medical Research Center] grant
number [45/01/2022-Nano/BMS, SB/S2/RJN-038/2016, BT/HRD/35/02/2006].

Acknowledgments: Ananya Pattnaik acknowledges the Indian Council for Medical Research for
awarding the fellowship of ICMR-SRF (Letter No. 45/01/2022-Nano/BMS). Sangram Keshari Samal
acknowledges the Ramanujan fellowship (SB/S2/RJN-038/2016) of the Department of Science and
Technology, and Ramalingaswami Re-entry fellowship (Ref: D.O. No. BT/HRD/35/02/2006) of
Department of Biotechnology, Government of India. The authors also thank the Indian Council of
Medical Research-Regional Medical Research Centre, Bhubaneswar for providing a scientific platform.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shutava, T.G.; Balkundi, S.S.; Vangala, P.; Steffan, J.J.; Bigelow, R.L.; Cardelli, J.A.; O’Neal, D.P.; Lvov, Y.M. Layer-by-Layer-Coated

Gelatin Nanoparticles as a Vehicle for Delivery of Natural Polyphenols. ACS Nano 2009, 3, 1877–1885. [CrossRef] [PubMed]
2. O’Neill, E.J.; Moore, J.; Song, J.; Tsiani, E.L. Inhibition of Non-Small Cell Lung Cancer Proliferation and Survival by Rosemary

Extract Is Associated with Activation of ERK and AMPK. Life 2021, 12, 52. [CrossRef] [PubMed]
3. Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The Effects of Polyphenols and Other Bioactives on Human Health.

Food Funct. 2019, 10, 514–528. [CrossRef] [PubMed]
4. Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009,

2, 270–278. [CrossRef] [PubMed]
5. Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention

of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [CrossRef]
6. Higbee, J.; Solverson, P.; Zhu, M.; Carbonero, F. The Emerging Role of Dark Berry Polyphenols in Human Health and Nutrition.

Food Front. 2022, 3, 3–27. [CrossRef]
7. Li, Z.; Chen, Z.; Chen, H.; Chen, K.; Tao, W.; Ouyang, X.; Mei, L.; Zeng, X. Polyphenol-Based Hydrogels: Pyramid Evolution from

Crosslinked Structures to Biomedical Applications and the Reverse Design. Bioact. Mater. 2022, 17, 49–70. [CrossRef] [PubMed]
8. Zhang, X.; Li, Z.; Yang, P.; Duan, G.; Liu, X.; Gu, Z.; Li, Y. Polyphenol Scaffolds in Tissue Engineering. Mater. Horiz. 2021, 8,

145–167. [CrossRef]
9. Shavandi, A.; Bekhit, A.E.-D.A.; Saeedi, P.; Izadifar, Z.; Bekhit, A.A.; Khademhosseini, A. Polyphenol Uses in Biomaterials

Engineering. Biomaterials 2018, 167, 91–106. [CrossRef]

http://doi.org/10.1021/nn900451a
http://www.ncbi.nlm.nih.gov/pubmed/19534472
http://doi.org/10.3390/life12010052
http://www.ncbi.nlm.nih.gov/pubmed/35054445
http://doi.org/10.1039/C8FO01997E
http://www.ncbi.nlm.nih.gov/pubmed/30746536
http://doi.org/10.4161/oxim.2.5.9498
http://www.ncbi.nlm.nih.gov/pubmed/20716914
http://doi.org/10.3390/nu2111106
http://doi.org/10.1002/fft2.128
http://doi.org/10.1016/j.bioactmat.2022.01.038
http://www.ncbi.nlm.nih.gov/pubmed/35386465
http://doi.org/10.1039/D0MH01317J
http://doi.org/10.1016/j.biomaterials.2018.03.018


Life 2022, 12, 1768 19 of 23

10. Kawakami, S.; Morinaga, M.; Tsukamoto-Sen, S.; Mori, S.; Matsui, Y.; Kawama, T. Constituent Characteristics and Functional
Properties of Passion Fruit Seed Extract. Life 2021, 12, 38. [CrossRef]

11. Meccariello, R.; D’Angelo, S. Impact of Polyphenolic-Food on Longevity: An Elixir of Life. An Overview. Antioxidants 2021, 10,
507. [CrossRef]

12. Stiller, A.; Garrison, K.; Gurdyumov, K.; Kenner, J.; Yasmin, F.; Yates, P.; Song, B.-H. From Fighting Critters to Saving Lives:
Polyphenols in Plant Defense and Human Health. Int. J. Mol. Sci. 2021, 22, 8995. [CrossRef]

13. Chowdhary, V.; Alooparampil, S.; Pandya, R.V.; Tank, J.G. Physiological Function of Phenolic Compounds in Plant Defense System.
In Phenolic Compounds-Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications;
IntechOpen: London, UK, 2022.

14. Pratyusha, S. Phenolic Compounds in the Plant Development and Defense: An Overview. In Plant Stress Physiology-Perspectives in
Agriculture; IntechOpen: London, UK, 2022.

15. Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of Phenolic Compounds in Plant-Defensive Mechanisms. In Plant Phenolics in
Sustainable Agriculture; Springer: Singapore, 2020; pp. 517–532.

16. Tuladhar, P.; Sasidharan, S.; Saudagar, P. Role of Phenols and Polyphenols in Plant Defense Response to Biotic and Abiotic Stresses.
In Biocontrol Agents and Secondary Metabolites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 419–441.

17. Singh, S.; Kaur, I.; Kariyat, R. The Multifunctional Roles of Polyphenols in Plant-Herbivore Interactions. Int. J. Mol. Sci. 2021, 22,
1442. [CrossRef] [PubMed]

18. Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and
Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [CrossRef] [PubMed]

19. Daglia, M. Polyphenols as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [CrossRef] [PubMed]
20. Sant’Anna, V.; Biondo, E.; Kolchinski, E.M.; da Silva, L.F.S.; Corrêa, A.P.F.; Bach, E.; Brandelli, A. Total Polyphenols, Antioxidant,

Antimicrobial and Allelopathic Activities of Spend Coffee Ground Aqueous Extract. Waste Biomass Valorization 2017, 8, 439–442.
[CrossRef]

21. Deng, Y.; Zhao, Y.; Padilla-Zakour, O.; Yang, G. Polyphenols, Antioxidant and Antimicrobial Activities of Leaf and Bark Extracts
of Solidago canadensis L. Ind. Crops Prod. 2015, 74, 803–809. [CrossRef]
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