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Abstract: Populus is a genus of globally significant plantation trees used widely in industrial and
agricultural production. Poplars are easily damaged by Micromelalopha troglodyta and Hyphantria
cunea, resulting in decreasing quality. Bt toxin-encoded by the Cry gene has been widely adopted in
poplar breeding because of its strong insect resistance. There is still no comprehensive and sufficient
information about the effects of Cry1Ah1-modified (CM) poplars on the ecological environment.
Here, we sampled the rhizosphere soils of field-grown CM and non-transgenic (NT) poplars and
applied 16S rRNA and internal transcribed spacer amplicon Illumina MiSeq sequencing to determine
the bacterial community associated with the CM and NT poplars. Based on the high-throughput
sequencing of samples, we found that the predominant taxa included Proteobacteria (about 40% of
the total bacteria), Acidobacteria (about 20% of the total bacteria), and Actinobacteria (about 20% of the
total bacteria) collected from the natural rhizosphere of NT and CM poplars. In addition, studies on
the microbial diversity of poplar showed that Cry1Ah1 expression has no significant influence on
rhizosphere soil alkaline nitrogen, but significantly affects soil phosphorus, soil microbial biomass
nitrogen, and carbon. The results exhibited a similar bacterial community structure between CM
varieties affected by the expression of Cry1Ah1 and non-transgenic poplars. In addition, Cry1Ah1
expression revealed no significant influence on the composition of rhizosphere microbiomes. These
results broadly reflect the effect of the Bt toxin-encoded by Cry1Ah1 on the ecology and environment
and provide a clear path for researchers to continue research in this field in the future.

Keywords: Bt toxins; Cry1Ah1 transgenic poplar; ecology; environment; rhizosphere

1. Introduction

Poplar (Populus) is a genus of globally important plantation trees used widely in
industrial and agricultural production [1]. However, with the deterioration of the global
environment, characterized by increasing salt, drought, pest, and disease stresses, the global
production of poplar is becoming challenging. One approach to address this challenge is
genetic modification. The manipulation of critical genes has been applied to alter poplar
characteristics in transgenic lines, resulting in improved traits for better growth in adverse
environments [2–4].

Insecticide resistance based on Bacillus thuringiensis (Bt) has allowed the development
of a variety of insect resistance proteins for commercial genetically modified (GM) crops [5].
In addition, Bt toxin-encoded Cry genes have been widely applied in commercial GM
crops, improving plant resistance to insect pests [6,7]. Despite the benefits of Bt-modified
plants, a significant potential disadvantage is their effect on soil chemical properties and
the structure and diversity of rhizosphere microorganisms, including bacteria and fungi [6].
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Therefore, rhizosphere microorganisms associated with Bt-modified plants are highly
interesting [8–10]. However, regarding the complexity of field conditions and the lack of a
unified approach to microorganism analysis, studies exploring the influence of Bt-modified
plants on soil microorganisms sometimes produce conflicting results [11–14]. For example,
one study showed that soil microorganisms are not adversely affected by the cultivation of
Bt-modified cotton plants [15].

In contrast, another study suggested that exogenous gene products expressed by
Bt-modified transgenic crops may interact with soil microorganisms and affect their activi-
ties and functions [16]. Bt-modified plants have been found to alter bacterial population
diversity compared with non-transgenic (NT) plants [17] and may enhance the population
size of soil microbial communities [18,19]. Compared with NT rice, Bt-modified rice has
been found to have a short-term effect on rhizosphere microbial community function [20].
Thus, there are some differences among studies on the impact of Bt-modified plant varieties
on the soil microbial community. Further research is needed to evaluate the safety of
Bt-modified crop plants. Since the commercialization of GM plants, the global planting
area of GM crops has been overgrown, and new varieties of GM plants have been emerging
continually [21]. GM plants have provided great economic and environmental benefits
worldwide, such as increased plant yield and reduced chemical fertilizer and pesticide
application. However, the potential impacts of GM plants on the ecological environment
have raised concerns [22]. Soil microorganisms are essential to the soil ecosystem and
involve various biochemical processes, including organic matter accumulation, mineraliza-
tion, nutrient transformation, and circulation [23]. In addition, GM plants communicate
with soil microorganisms during the growth process; therefore, research on the potential
effects of GM plants on the soil microbial community is of great significance in evaluating
their potential risks [24–26]. The study aimed to identify the effects of Cry1Ah1-modified
(CM) poplar plantation on soil chemical properties and the diversity and structure of the
soil microorganism community after three years of growth under field conditions. We
applied high-throughput sequencing of 16S rRNA and internal transcribed spacer 1 (ITS1)
to evaluate the diversity and composition differences in rhizosphere microorganisms be-
tween NT and CM varieties. The results contribute to our knowledge of how CM varieties
affect rhizosphere soil microbial community function and provide reference information
for evaluating the safety of CM varieties.

2. Materials and Methods
2.1. Plant Material and Experimental Field Design

In the previous study, the Cry1Ah1 gene was cloned into the destination vector pH35GS.
CM poplars, ’Nanlin 895’ (Populus deltoides × Populus euramericana), were regenerated by
inoculating poplar leaf discs with Agrobacterium tumefaciens strain LBA4404, including
recombinant plasmid pH35GS-Cry1Ah1 [2]. To study the effects of CM poplars on a natural
soil ecosystem, we designed a field test in Sihong, Jiangsu Province (118◦68 N, 33◦72 E).
To identify the influence of CM varieties on the rhizosphere soil microbiome, we planted
NT poplars in the experimental field. Three-year-old NT and CM varieties marked as
A5-0, A4-6, Z1-3, A5-23, and A3-4 were selected, and six plots were established with four
replicates per clone (Figure S1). An additional 3 m wide isolation zone was established
between communities, with about 676 m2 (26 m × 26 m). The poplars were cultivated by
cutting in March 2017 with permission from the State Forestry Administration. Moreover,
the topography, physiognomy, soil, air temperature, vegetation, cultivation management,
and other natural conditions were consistent. In addition, the experimental field was
managed conventionally without chemical fertilizers or pesticides. The experimental field
also confirmed similar soil characteristics and microenvironment.

There are four poplars in each small line area, including NT and CM varieties (lines
A5-0, A4-6, Z1-3, A5-23, and A3-4) (Figure S1). The weeds and leaves were removed
from the soil surface and a soil extractor was used to take out a soil column about 50 cm
(diameter 8 cm) around every poplar rhizosphere. The fine roots in the 10–30 cm soil
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column were carefully taken out and the soil within 3 mm of fine roots was considered
the rhizosphere soil. The rhizosphere soil of every four poplar trees in the small area was
collected and mixed into one sample. The rhizosphere soil samples were taken out from
the entire experimental field through this sampling method, and there were six duplicate
rhizosphere soil samples for NT and each CM variety. All rhizosphere soil samples were
passed through a 10-mesh sieve, mixed thoroughly, added to sterile centrifuge tubes, and
then placed in a liquid nitrogen tank for transport to the laboratory.

2.2. Identification of Cry1Ah1 Expression Level and Insecticidal Activity

The fully expanded poplar leaves were collected from NT and CM varieties, and the
collected samples were placed in a liquid nitrogen tank for transport to the laboratory.
All the collected leaves, including NT and CM varieties, were assayed to detect Cry1Ah1
expression levels using an ELISA kit (EnviroLogix, Portland, ME, USA). In addition, pupae
of Micromelalopha troglodyta were collected from poplars cultivated in the field and
hatched in a culture room at 27 ± 2 ◦C and 74% humidity with a 14 h light/10 h dark
photoperiod. The eggs were collected from female adults and instar larvae were fed with
NT and CM varieties. Larval mortality of M. troglodyta was counted on the 6th and 12th
days. Three independent biological samples were performed.

2.3. Determination of Rhizosphere Soil Physical and Chemical Indices

Fumigation with chloroform was used to obtain the microbial biomass of nitrogen
(MBN), microbial biomass of carbon (MBC), and microbial biomass of phosphorus (MBP)
from the soil in the rhizosphere [12,27–29]. The rhizosphere soil samples treated with
chloroform fumigation and non-chloroform fumigation were extracted with K2SO4 so-
lution. The rhizosphere MBC, MBN, and MBP were measured using a Vario TOC cube
analyzer (Elementar, Langenselbold, Germany). Briefly, fresh rhizosphere soil samples
were dissolved in chloroform and the mixtures were boiled for 5 min in a vacuum. Then,
0.5 mol/L K2SO4 was added to the mixtures and subjected to fumigation in the dark at
25 ◦C for 24 h. The resulting mixture was then filtered with a quantitative filter paper.
Simultaneously, the control groups were performed similarly, except that the rhizosphere
soil samples were added to the reaction mixture for detection.

The rhizosphere soil alkaline nitrogen was determined using the Conway method
(i.e., the alkali hydrolysis diffusion method). Briefly, 10 mL of NaOH was used to dissolve
air-dried soil samples set in the outer chamber of a diffusion dish and 2 mL of boric acid
(an indicator solution) was placed in the inner chamber. After incubation at 40 ◦C for 24 h,
NH3 in the inner chamber absorption solution was titrated with 0.005 mol/L H2SO4 as a
standard solution. Simultaneously, the control groups were performed similarly, except
that the rhizosphere soil samples were added to the reaction mixture for detection.

The rhizosphere soil phosphorus was identified by molybdenum–antimony colorime-
try. Briefly, air-dried soil samples were mixed with 0.5 mol/L NaHCO3 and activated
carbon, shaken for 30 min, and filtered immediately with phosphate-free filter paper. Then,
1–5 mL of filtrate was extracted and the absorbance value was determined. Soil pH was
also measured using the glass electrode method. Finally, the rhizosphere soil samples were
mixed with 2.5× water volume and the suspension pH was determined using a PP-25
Professional Meter electrode (Sartorius, Germany). Simultaneously, the control groups were
performed similarly, except that the rhizosphere soil samples were added to the reaction
mixture for detection.

2.4. Rhizosphere Soil DNA Extraction and High-Throughput Sequencing

Using the Fast DNA Spin kit for soil (MP Biomedicals, Santa Ana, CA, USA), 36 independent
rhizosphere soil samples were obtained from the NT poplars and five CM varieties (lines A5-0,
A4-6, Z1-3, A5-23, and A3-4). Triplicate DNA extractions from each replicate of rhizosphere soil
samples were mixed and composited into one DNA sample to overcome the heterogeneity. The
quality and integrity of the DNA were determined by electrophoresis on 0.8% agarose gel and
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the extracted DNA samples were diluted 10-fold and stored at −80 ◦C for further molecular
analyses. Using the extracted genomic DNA as a template, the V3-V4 region (515f/907r) of the
16S rRNA gene and ITS1 region (1737f/2043r) of the ITS1 rRNA gene were amplified to identify
the composition and diversity of the microbiological community [30,31]. We then performed high-
throughput sequencing using the Illumina novaseq platform. The raw data were filtered using
the Trimmatic software to obtain high-quality clean paired-end reads, spliced using the FLASH
software. The minimum overlap length was set to 10 bp and the maximum mismatch ratio of the
splicing sequence was 0.1. After filtering, influential splicing segment clean tags were obtained. All
clean tags were clustered using the VSEARCH software (https://github.com/torognes/vsearch,
accessed on 12 April 2021). The clean tags were denoised in amplicon sequence variants (ASVs)
and chimeras were filtered with UNOISE3. Taxonomic assignment of ASVs was performed in
QIIME 2 v2018.2 [32] (https://qiime2.org, accessed on 12 April 2021) using the QIIME 2 feature
classifier plugin [33].

All data analyses were performed using SPSS 19.0 software (IBM, Armonk, NY, USA).
Differences in the physical and chemical properties between NT and CM varieties were
evaluated using one-way analysis of variance (ANOVA) and Tukey’s post hoc comparison.
The alpha diversity analyses were performed using the Chao1. It showed species indices to
determine the community diversity of rhizosphere bacteria and the phylogenetic diversity
(PD) whole-tree and Shannon indices to determine community richness and evenness [34].
According to ASVs’ clustering results, alpha diversity was calculated in Mothur v.1.30.1
with rarefaction analysis after subsampling the libraries to an exact size [35]. UniFrac was
conducted with beta diversity analysis and phylogenetic analysis. Bray–Curtis distances
between NT and CM varieties were calculated and visualized with principal component
analysis (PCA).

3. Results
3.1. Effects of CM Varieties on M. Troglodyta

The Bt-Cry1A ELISA kit was used to identify the Cry1Ah1 expression level in NT and
CM varieties. The results showed that Cry1Ah1 was expressed in CM varieties, and lines
A4-6 and A5-0 had a higher Cry1Ah1 expression level. Conversely, line A3-4 had a lower
Cry1Ah1 expression level (Table S1). In addition, the insecticidal activities of CM varieties
were identified, and the results showed that the CM varieties had higher insecticidal activity
to M. troglodyta than NT poplars (Figure S2). Significantly, lines A4-6 and A5-0 with higher
Cry1Ah1 expression levels exhibited relatively more substantial insecticidal activity than
M. troglodyta.

3.2. Effects of CM Poplars on Rhizosphere Soil Chemistry Patterns

During the first three years of poplar establishment, the mean soil pH ranged from
7.73 to 8.23 in rhizosphere soil (Figure 1A). Moreover, there was no significant change
in rhizosphere soil pH between NT and CM varieties by the sampling date. For the CM
varieties (lines A5-0, A4-6, Z1-3, A5-23, and A3-4), rhizosphere soil alkaline nitrogen ranged
from 64.54 to 83.15 mg/kg, with similar values observed for NT poplars, and no significant
difference between NT and CM varieties (Figure 1B). However, the CM varieties had
significantly lower rhizosphere soil available phosphorus in the field-grown stage than
NT poplars (Figure 1C). The rhizosphere MBC contents of NT poplars ranged from 160
to 172 mg/kg and differed significantly from those of the CM varieties (Figure 1D). In
addition, CM varieties had significantly lower MBN and MBP contents than NT poplars
(Figure 1E,F).

https://github.com/torognes/vsearch
https://qiime2.org
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Figure 1. Evaluation of rhizosphere soil physical and chemical properties in non-transgenic (NT)
and Cry1Ah1-modified (CM) poplar varieties. Analysis of rhizosphere soil pH (A), rhizosphere soil
alkaline nitrogen (B), rhizosphere soil phosphorus (C), rhizosphere microbial biomass carbon (D),
rhizosphere microbial biomass nitrogen (E), and rhizosphere microbial biomass phosphorus (F) in
NT and CM poplar varieties. Data were analyzed using one-way analysis of variance (ANOVA) and
Tukey’s post hoc comparison. *** p < 0.001.

3.3. Data Quality Control and ASVs’ Analysis

Using the Illumina hiseq, an average of 53,567 and 68,783 16S rDNA tags and 33,750
and 87,922 ITS1 tags were generated from the rhizosphere microbiome. Chimeras and short
tag sequences were removed to obtain high-quality clean tags comprising an average of
33,390 and 86,787 16S rDNA tags and 21,523 and 22,555 ITS1 tags (Table S2). Moreover,
clean tag distributions of rhizosphere bacteria were visualized. The results showed that
clean tags ranged from 200 to 440 bp and clean tags with lengths of 420 to 440 bp occupied
the largest proportion (Figure S3A). In contrast, clean tag distributions of rhizosphere fungi
ranged from 200 to 360 bp and clean tags with lengths of 200 to 260 bp occupied the largest
proportion (Figure S3B). Using Qiime ver. 2.0 and Vsearch 2.7.1, the chimeric and organelle
sequences were removed to produce 10,787 rhizosphere bacterial community sequencing
ASVs and 7732 fungal community sequencing ASVs (Table S3).

3.4. Rhizosphere Bacterial Diversity

To construct alpha rarefaction curves and evaluate the putative differences in the
alpha diversity, the mothur was applied to perform ASV rarefaction analysis based on ASV
clustering results. The sample rarefaction curves of rhizosphere bacteria illustrated that
most NT and CM varieties saturate around 6500–7000 ASVs, suggesting slight differences
in the diversity of the rhizosphere bacterial community between NT and CM varieties
(Figure 2A). The Shannon–Wiener curves were also constructed to evaluate the rhizosphere
bacterial diversity. The results showed that the Shannon curves are flat when the number
of reads reaches 10,000, illustrating that the amount of sequencing data is sufficient to
reflect the vast majority of rhizosphere bacterial information in the 36 samples. In addition,
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Shannon curves of the 36 samples fitted together (Figure 2B) suggested that rhizosphere
bacterial communities in different sequencing depths share similar diversity.
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Figure 2. Based on the results of ASV clustering, the rarefaction of ASV has been analyzed.
(A), Differences in the diversity of the rhizosphere bacterial community between NT and CM varieties
have been shown. (B), The diversity of the rhizosphere bacteria from NT and CM has been compared
by Shannon-Wiener curves.

The alpha diversity analysis was used to reflect the richness and diversity of rhi-
zosphere bacteria. The Chao1 indexes in NT poplars had highly similar results in CM
varieties, including A5-23, Z1-3, and A3-4. At the same time, the Cry1Ah1 expression might
increase the community richness of rhizosphere bacteria, for which the analysis of Chao1
showed no dominant difference between NT and CM varieties (Figure 3A and Table S4).
Moreover, the observed species in NT poplars had no dominant differences compared with
CM varieties, except for line A4-6 (Figure 3B and Table S4). The PD whole tree in NT and
CM varieties shared similar features with the observed species (Figure 3C and Table S4).
There are no significant differences in the analysis of the Shannon curves (Figure 3C,D and
Table S4), which suggests that the community diversity of rhizosphere bacteria was similar
between NT and CM varieties. Based on the alpha diversity, we concluded that Cry1Ah1
expression slightly influences the rhizosphere bacterial richness, but does not affect the
community diversity of rhizosphere bacteria.
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Figure 3. The analysis of the taxonomic distinctiveness of rhizosphere bacteria has been presented
based on the alpha diversity as (A) the Chao1 index, (B) the observed species index, (C) the phy-
logenetic diversity (PD) whole-tree index, and (D) the Shannon index. Data were analyzed using
one-way ANOVA and Tukey’s post hoc comparison. Significant differences (p < 0.05) are indicated in
lowercase letters. The NT, A5-23, Z1-3, A3-4, A5-0, and A4-6 lines were represented by orange, green,
fusica, yellow, juniper, and violet rectangles, respectively.

A Bray–Curtis dissimilarity matrix was calculated on normalized and square-root-
transformed read abundance data to compare the composition of rhizosphere bacterial
members between NT and CM varieties. Based on weighted UniFrac, beta diversity analysis
with PCA was applied to analyze the bacterial community structures among NT, A5-0,
A4-6, Z1-3, and A5-23, and A5-0, A4-6, Z1-3, A5-23, A3-4, and NT overlapped each other
and could not be separated (Figure 4), which indicated that the community structures of
NT and CM varieties were similar. The Cry1Ah1 expression did not affect the bacterial
community structures.

3.5. The Higher Cry1Ah1 Expression Level May Have Marginal Effects on Rhizosphere Bacteria of
Field-Grown Poplars

We investigated the taxonomic distinctiveness of poplar rhizosphere bacteria to deter-
mine the effect of Cry1Ah1 expression on the rhizosphere bacteria. In addition, the DeSeq2
was used to select the putative statistically differential rhizosphere bacteria. The relative
abundances of NT and CM varieties of rhizosphere bacteria at the phylum, class, order,
family, and genus levels were identified. At the phylum level, Firmicutes, Myxococcota, Ni-
trospirota, Sva0485, Fibrobacterota, Latescibacterota, Desulfobacterota, and Proteobacteria,
considered the dominant bacteria, were found in the rhizosphere bacterial community (Fig-
ure 5A). The DeSeq2 analysis found that the dominant bacteria share similar abundances
between NT and CM varieties. In contrast, the relative abundances of Cyanobacteria and
Methylomirabilota showed a significant difference between NT and line A3-4 (Figure 6A).
Moreover, Methylomirabilota, Proteobacteria, Zixibacteria, MBNT15, Dadabacteria, Ther-
moplasmatota, Cyanobacteria, Chloroflexi, Bacteroidota, Acidobacteriota, Firmicutes, and
Myxococcota were present at different abundances between NT and line A4-6 (Figure 6B).
In addition, a few rhizosphere bacteria abundances were the difference between NT and
A5-0, A5-23, or Z1-3 (Figure 6C–E). According to the above evidence, Cry1Ah1 expression
does not influence most rhizosphere bacteria abundances and only changes a small part of
rhizosphere bacteria abundances.
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At the class level, the rhizosphere bacterial community composition of NT and CM
varieties was similar (Figure 5B). The relative abundances of rhizosphere bacteria had no
significant difference between NT and line A3-4, except for Cyanobacteria and Methy-
lomirabilia (Figure 7A).

In native fields, Alphaproteobacteria, Deltaproteobacteria, Betaproteobacteria, Sub-
group6, Blastocatellia, and Thermoleophilia accounted for approximately 60% of the total
rhizosphere bacteria and were present at similar relative abundances in NT and CM vari-
eties (Figure 5B). In addition, rhizosphere bacteria with lower relative abundances, such as
Actinobacteria, Gemmatimonadetes, Nitrospira, Holophagae, and Acidimicrobiia, were
significantly different between NT and line A4-6 (Figure 7B). Compared with NT, the
relative abundances of rhizosphere bacteria in lines A5-0, A5-23, and Z1-3 were similar and
only small parts of rhizosphere bacteria abundances displayed differences (Figure 7C–E).
At the species level, a minor part of rhizosphere bacteria abundances from NT was slightly
lower or higher than the CM varieties, indicating that the CM varieties had little influence
on rhizosphere bacteria with lower relative abundances (Figure 8). We investigated the
taxonomic distinctiveness of poplar rhizosphere soil fungi to determine whether Cry1Ah1
expression affected rhizosphere fungus communities. The Chao1 analysis showed that
the community richness of rhizosphere fungi in CM varieties shares a similar community
richness to NT, except for line A5-0 (Figure S4A). In addition, no significant difference
was present in the observed species, PD whole tree, and Shannon between NT and CM
varieties. However, the observed species and PD whole tree in line A5-23 had no slight
difference in line Z1-3 (Figure S4B–D). The alpha diversity showed that Cry1Ah1 expression
may slightly improve the fungal community richness, but does not influence the diver-
sity of rhizosphere fungi. PCA was used to evaluate the fungal community structures
among NT and CM varieties based on the Bray–Curtis dissimilarity matrix. The results
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showed that NT and CM varieties are gathered together and the Cry1Ah1 expression does
not affect the fungal community structures (Figure S5). The dominant fungal phyla in
poplar rhizosphere soils included Ascomycota, Basidiomycota, and Mortierellomycota
(Figure S6A); the sequence load of the six dominant phyla, represented by high sequence
numbers, represented more than approximately 80% of the total sequence, whereas that of
low-abundance phyla comprised less than 20% of the entire sequence (Figure S6A). Except
for Ascomycota, there was no significant difference among rhizosphere fungi between
NT and CM varieties (Table 1). Based on the analysis of rhizosphere fungal abundance in
NT and CM varieties, we concluded that Cry1Ah1 expression has no significant influence
on the relative abundances of most rhizosphere fungi and only affects a few rhizosphere
fungal abundances. We filtered extremely rare ASVs from the dataset to determine relative
abundances at the class, order, family, and genus levels.
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Table 1. The relative abundances of rhizosphere fungi at the phylum level between NT and CM
varieties. Data were analyzed using the Kruskal–Wallis comparison. “p < 0.05” indicates a significant
difference between NT and CM varieties.

ASV
Test-

Statistic
p FDR P

Bonferroni
P

A5-0 Mean NT Mean
A5-23
Mean

A4-6 Mean A3-4 Mean Z1-3 Mean

p__Ascomycota 13.56156156 0.018647881 0.354309737 0.354309737 0.38735852 0.61138326 0.61042142 0.243904621 0.484990829 0.392447323

p__Basidiomycota 10.16216216 0.070768701 0.391712711 1 0.227967163 0.135322999 0.253847358 0.417125218 0.331415246 0.198798819

p__Chlorophyta 10.15615616 0.070929628 0.391712711 1 0.01805686 0.011899969 0.006559522 0.009774974 0.01853778 0.021434483

p__Chytridiomycota 9.092451776 0.105432904 0.391712711 1 0.001884535 0.003696372 0.001263812 0.000542433 0.000810853 0.002152955

p__Cercozoa 8.697065259 0.121774576 0.391712711 1 0.045888695 0.017676598 0.006710509 0.007348007 0.007040442 0.00904241

p__unidentified 8.156156156 0.147836947 0.391712711 1 0.159939382 0.07572809 0.076952758 0.25286315 0.111400036 0.232972084

p__Entomophthoromycota 7.806407963 0.167232549 0.391712711 1 0.000117434 0.000849998 0.000995392 6.15 × 10−5 6.15 × 10−5 3.36 × 10−5

p__Rozellomycota 7.579196217 0.181002706 0.391712711 1 0.000380262 0.001314141 0.000665459 0.000687827 0.00061513 0.001101642

p__Mortierellomycota 7.507507508 0.185548126 0.391712711 1 0.13757102 0.115996734 0.026478549 0.028184136 0.020472643 0.116136536

p__Blastocladiomycota 6.846918489 0.232276395 0.44132515 1 0.003265781 0.001213484 4.47 × 10−5 0.003282557 0.00246052 0.001302957

p__Olpidiomycota 5.728450555 0.333544833 0.537634093 1 0.000866774 5.03 × 10−5 7.83 × 10−5 0.000111842 0.000117434 0.000123026

p__Zoopagomycota 5.322944896 0.377751263 0.537634093 1 0.000715788 0.002024337 0.000419407 0.000726972 0.000726972 0.001588154

p__Glomeromycota 5.162162162 0.396412153 0.537634093 1 0.01409766 0.021809153 0.014824632 0.034631817 0.017508836 0.021311457

p__Entorrhizomycota 5 0.415880187 0.537634093 1 0 0 1.12 × 10−5 0 0 0

p__Monoblepharomycota 4.930281072 0.424447968 0.537634093 1 0.000352302 0.000335525 6.71 × 10−5 4.47 × 10−5 0.000173355 0.000313157

p__Ciliophora 3.628726784 0.60400532 0.61504672 1 0.000363486 1.12 × 10−5 4.47 × 10−5 5.59 × 10−6 0.002829598 0.000184539

p__GS19 3.627922155 0.604125841 0.61504672 1 2.80 × 10−5 0 2.24 × 10−5 0 3.91 × 10−5 5.59 × 10−6

p__Kickxellomycota 3.615658975 0.605963711 0.61504672 1 0.00096184 0.000548025 0.00048092 0.000570393 0.000609538 0.00072138

p__Mucoromycota 3.555235853 0.61504672 0.61504672 1 0.000184539 0.000139802 0.000111842 0.00013421 0.000190131 0.000329933

Similar relative abundances of most rhizosphere fungi were observed between NT and
CM varieties (Figure S6B–E). However, the relative abundances of Archaeosporomycetes,
Agaricostilbomycetes, Lobulomycetes, Cystobasidiomycetes, Schizosaccharomycetes, Sor-
dariomycetes, and Ascomycota Incertae sedis at the class level were different between NT
and CM varieties (Table S5). Compared with NT poplars, only 13 kinds of 148 rhizosphere
fungi relative abundances in CM varieties were different (Table S6). Moreover, the major
rhizosphere fungi at the family level showed similar abundances between NT and CM
varieties. In contrast, only 7.9% of rhizosphere fungi with a lower abundance were present
at differences between NT and CM varieties (Table S7). In addition, most rhizosphere
fungi abundances were found to have no differences between NT and CM varieties at the
genus level (Table S8). The rhizosphere fungal abundance analysis indicated that most
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rhizosphere fungi are low and not significantly different between NT and CM varieties.
Only relative abundances of a few rhizosphere fungi were different in NT poplars and
CM varieties.

4. Discussion

Biological diversity comprises community composition, structure, and function [36].
Interactions between soil microorganisms and other organisms influence nutrient cycling,
which is essential in soil condition, quality, and health [12,37,38]. The rhizosphere is a
functional interface for material exchange between plants and soil ecosystems. Plants
assimilate CO2 during photosynthesis and transport some photosynthetic products to their
underground parts, promoting the growth and metabolism of soil microorganisms, which
transform organic nutrients into inorganic forms for plant absorption and utilization [39].
With the recent emergence of transgenic plants, the impact of their cultivation on the struc-
ture and function of the rhizosphere microbial community has become a concern [16,40,41].
Therefore, the structural diversity of the rhizosphere microbial community is an essential
index for evaluating the effects of GM on the soil ecological environment.

4.1. Changes in Rhizosphere Soil MBC, MBN, and MBP Content in NT and CM Varieties

The rhizosphere soil microbial biomass is essential for assessing active soil nutrients
and a sensitive indicator of environmental change in terrestrial ecosystems [42–44]. In
addition, MBC, MBN, and MBP participate in the ecosystem cycling of carbon, nitrogen,
and phosphorus [45,46]. However, the effects of GM plants on MBC, MBN, and MBP
have not been reported. Therefore, in the present study, we examined the impact of field-
cultivated CM plants on MBC, MBN, and MBP contents to study the relationship between
CM plant growth and carbon, nitrogen, and phosphorus transformation in natural soil. As
a part of active soil carbon, MBC is the driving force of soil organic matter decomposition,
closely related to the cycling of soil elements. We found that rhizosphere MBC content is
significantly higher in CM varieties than in NT poplars.

Conversely, rhizosphere MBN content decreased in CM varieties grown in the field,
affecting rhizosphere microorganisms’ growth, metabolism, and structure. As an essential
source of active soil nitrogen, MBN plays a vital role in regulating soil nitrogen supply [47].
In addition, MBP is the most active component of soil organic phosphorus, which governs
the mineralization and fixation of soil phosphorus. Thus, MBP is an essential source of
soil phosphorus, reflecting functional capacity and turnover intensity [48,49]. Our results
showed that CM varieties alter the rhizosphere MBN and MBP contents, at least during the
study period, affecting the capacity of soil microorganisms to metabolize carbon, nitrogen,
and phosphorus.

The rhizosphere MBC/MBN ratio can reflect the rhizosphere microbial community
structure. The MBC/MBN ratio is about 5:1 for bacteria, 6:1 for actinomycetes, and 10:1
for fungi [50–54]. Based on our results, the MBC/MBN ratio for NT poplars in our study
site was about 4.6 ± 0.3, indicating that rhizosphere bacteria may play a dominant role
in determining rhizosphere MBC and MBN contents. However, the MBC/MBN ratio
for CM varieties was about 9.2 ± 1.7, suggesting that rhizosphere microbial fungi in CM
varieties participate widely in rhizosphere soil microenvironment regulation. Xu et al. [30]
systematically analyzed MBC, MBN, and MBP in the global terrestrial ecosystem. They
reported mean values of MBC/MBN, MBC/MBP, and MBN/MBP ratios of 7.6, 42.4, and
5.6. In the present study, the rhizosphere MBC/MBP and rhizosphere MBN/MBP ratios
for NT poplars were 63.2 ± 3.1 and 13.6 ± 0.9, respectively, higher than those reported for
the global terrestrial ecosystem. This discrepancy may be because of the low nitrogen and
phosphorus content in the experimental field, resulting in lower rhizosphere MBN and
rhizosphere MBP contents and lower rhizosphere MBC/MBP and rhizosphere MBN/MBP
ratios. Compared with NT poplars, CM varieties showed higher rhizosphere MBC/MBN,
rhizosphere MBC/MBP, and rhizosphere MBN/MBP ratios; thus, Cry1Ah1 transforma-
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tion may directly affect the growth of rhizosphere microorganisms or inhibit rhizosphere
microbial activity, thereby affecting the metabolism of MBC, MBN, and MBP.

4.2. Effects of Cry1Ah1 Expression on Native Rhizosphere Communities

Bt protein confers strong insecticide resistance as a dominant trait of GM crops; it has
been widely used in transgenic breeding to achieve insecticide-resistant plants. Xu et al. [2]
showed that field-planted CM poplars had strong insecticide resistance. With increas-
ing GM crops worldwide, GM crop cultivations’ environmental and ecological impact
has raised concerns globally. Some studies have shown that GM crops seriously affect
biodiversity and threaten the environment [55]. Whether GM crops affect rhizosphere
microbial composition, structure, and function has become a widely studied question in
oncology and food safety [56]. The plant rhizosphere is a dynamic microenvironment in
which many factors, such as plant species, soil type, and root location [57–59], affect the
composition and structure of microbial communities around plant roots [60]. Therefore, to
avoid the interference of these factors in examining rhizosphere microbial communities
in the present study, we selected poplar trees planted in a single location and collected
samples simultaneously. Such a design can effectively avoid the influence of other factors
on the results, focusing only on the effects of poplar type (NT or CM) on the rhizosphere
microbial community.

Many studies have explored the relationship between soil biodiversity and the ecologi-
cal safety of transgenic plants. The high insect resistance of Bt-maize makes it an important
transgenic crop and it has been found not to affect soil microbial communities [61] or
rhizosphere communities [6]. Field-cultivated Bt transgenic cotton has no significant effect
on rhizosphere communities other than WT cotton [62]. In the present study, the com-
munity diversity and rhizosphere bacterial abundances in NT and CM varieties showed
no significant difference. Similarly, Cry1Ac-sugarcane was found to have no impact on
rhizosphere microbial diversity or enzyme activity compared with NT sugarcane within
a single crop season [63]. Furthermore, NT and Bt-modified rice detected no persistent
or adverse effects on the rhizosphere bacterial community population [64]. In addition,
Li et al. [15] reported that Bt transgenic rice could change bacterial community composition
but not fungal abundance or community structure. Some communities contained a few
dominant taxa, whereas others contained many low-abundance taxa. According to the
alpha diversity, we found the observed species and PD whole tree differ between NT
and line A4-6, which suggested a difference in species richness and community diversity
between NT and line A4-6. Concerning the subsequent analysis of relative abundances of
rhizosphere bacteria in NT and CM varieties, we concluded that the difference in species
richness and community diversity might have originated from the rhizosphere bacteria
with low abundance. Weinhold et al. [65] performed a similarity percentage analysis to
identify major differences in abundance within groups and found that highly abundant
families contributed significantly to dissimilarities. Therefore, according to the alpha diver-
sity, Cry1Ah1 expression had no significant influence on the rhizosphere bacterial richness
and community diversity of rhizosphere bacteria. Based on identifying relative abundances
of rhizosphere bacteria in NT and CM varieties, we found no significant difference in the
abundances of major rhizosphere bacteria between NT and CM varieties, while the only
differences were found in the minor rhizosphere bacteria between NT and CM varieties.
We also concluded that the Cry1Ah1 expression does not affect the relative abundances
of major rhizosphere bacteria in native fields and Cry1Ah1 expression had no impact on
most rhizosphere fungal abundances. Moreover, the taxonomic diversity and structure of
rhizosphere fungal communities and the relative abundances of most rhizosphere fungi
were similar among NT and CM varieties. However, a small fraction of rhizosphere fungal
abundances in special CM varieties differed from those in NT poplars. Based on these
findings, we concluded that Cry1Ah1 expression has no effect on the rhizosphere microbial
community composition and large numbers of microbial abundances.
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5. Conclusions

This study revealed no significant effects of NT and CM cultivation on microbial
population and community structure; meanwhile, most rhizosphere bacteria shared similar
relative abundances between the NT and CM varieties, suggesting that Cry1Ah1 expression
has no effects on the major rhizosphere bacteria abundances. In conclusion, Cry1Ah1
expression has no change in microbial population and community structure and does not
impact most rhizosphere bacterial abundances.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/life12111830/s1. Figure S1: Poplar growth and experimental
design for poplar field trials. Diagram of the experimental design for poplar field trials. The NT
and CM varieties were arranged randomly. The CM varieties are A5-0, A4-6, Z1-3, A5-23, and
A3-4. Figure S2: Insecticidal activity of NT and CM varieties against Micromelalopha troglodyta.
The larval mortality of M. troglodyta on days 6 (A) and 12 (B) of feeding on NT and CM varieties.
Data were analyzed using one-way ANOVA and Tukey’s post hoc comparison. * p < 0.05 and
** p < 0.01, respectively. Figure S3: The distribution of rhizosphere microbe clean tags. The clean
tags’ distribution of rhizosphere bacteria (A) and rhizosphere fungi (B). Figure S4: Analysis of
the taxonomic distinctiveness of rhizosphere fungi based on alpha diversity. (A) Chao1 index.
(B) Observed species index. (C) Phylogenetic diversity whole-tree index. (D) Shannon index. Data
were analyzed using one-way ANOVA and Tukey’s post hoc comparison. Significant differences
(p < 0.05) are indicated with lowercase letters. Figure S5: PCA of rhizosphere fungal communities at
the level of ASVs. ASVs were defined at a 97% sequence similarity cut-off in mothur. The differences
and distances among NT, A5-0, A4-6, Z1-3, A5-23, and A3-4 can be visualized based on an analysis
of ASVs’ composition. Figure S6: Overall composition of rhizosphere fungal communities and
the relative abundances of rhizosphere bacteria between NT and CM varieties. Phylum-level (A),
class-level (B), order-level (C), family-level (D), and genus-level (E) taxonomic analysis of fungal
distribution in rhizosphere soil samples of the NT and CM varieties based on ITS1 amplicon data.
Table S1: Analysis of Cry1Ah1 expression level in NT and CM varieties. Table S2: The 16S rDNA tags
and ITS1 tags generated from the rhizosphere microbiome. Table S3: ASVs for bacterial and fungal
community sequencing. Table S4: The alpha diversity analysis of rhizosphere bacteria in NT and
CM varieties. Table S5: The relative abundances of rhizosphere fungi at the class level between NT
and CM varieties. Data were analyzed using the Kruskal–Wallis comparison. “p < 0.05” indicates a
significant difference between NT and CM varieties. Table S6: The relative abundances of rhizosphere
fungi at the order level between NT and CM varieties. Data were analyzed using the Kruskal–Wallis
comparison. “p < 0.05” indicates a significant difference between NT and CM varieties. Table S7: The
relative abundances of rhizosphere fungi between NT and CM varieties at the family level. Data were
analyzed using a Kruskal–Wallis comparison. “p < 0.05” indicates a significant difference between NT
and CM varieties. Table S8: The relative abundances of rhizosphere fungi at the genus level between
NT and CM varieties. Data were analyzed using a Kruskal–Wallis comparison. “p < 0.05” indicates a
significant difference between NT and CM varieties.
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