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Abstract: Plant abundance and distribution are regulated by subtle changes in ecological factors,
which are becoming more frequent under global climate change. Species with a higher tolerance to
such changes, especially during early lifecycle stages, are highly likely to endure climate change. This
study compared the germination adaptability of Halopeplis amplexicaulis and H. perfoliata, which differ
in life-form and grow in different environments. Optimal conditions, tolerances and the biochemical
responses of seeds to osmotic stresses were examined. Seeds of H. perfoliata germinated in a wider
range of temperature regimes and were more tolerant to osmotic stresses than H. amplexicaulis seeds.
Neither NaCl nor PEG treatment invoked the H2O2 content in germinating seeds of the tested
species. Consequently, unaltered, or even decreased activities of H2O2 detoxification enzymes and
non-enzymatic antioxidants were observed in germinating seeds in response to the aforementioned
stresses. High and comparable levels of recovery from isotonic treatments, alongside a lack of
substantial oxidative damage indicated that the osmotic stress, rather than the ionic toxicity, may be
responsible for the germination inhibition. Hence, rainy periods, linked to water availability, may
act as a key determinant for germination and H. perfoliata could be less affected by global warming
owing to better germinability under high temperatures compared with H. amplexicaulis. Such studies
involving biochemical analysis coupled with the germination ecology of congeneric species, which
differ in life-form and occurrence are scarce, therefore are important in understanding the impacts of
global changes on species abundance/distribution.

Keywords: germination ecophysiology; biochemical responses; seed stress tolerance; climate change;
Halopeplis

1. Introduction

Salt-affected habitats are complex environments in which subtle changes in ecological
factors determine plant occurrence, communities’ richness and distribution [1]. In this sense,
differences in levels of germination success linked to salt tolerance and biotic interactions
during seedling emergence and establishment are important in plant composition and
salt marsh zonation patterns [2]. Therefore, the knowledge of biological traits related to
reproductive behaviour is essential for the development of conservation strategies and the
management of threatened species [3] and ecosystems, such as salt marshes.

Water/osmotic stress caused by a decrease in osmotic potential under salinity and
drought inhibits various plant processes, especially seed germination that determines
plants dispersal and abundance [1,4]. In addition to osmotic effect, salinity stress leads
to an accumulation of ions, which can produce ionic stress [4]. In both cases, salinity
limits plant growth and development required for survival by reducing turgor pressure
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and photosynthesis [5]. These water/osmotic stresses activate diverse physiological and
biochemical response mechanisms in plants linked to seed traits, morphology and anatomy,
water relation, or antioxidative metabolism [6,7].

Evidences suggest that the exposure of seeds to osmotic stresses such as salinity
and drought can inflict enhanced production of potentially toxic reactive oxygen species
(ROS), which if not quenched efficiently through cellular antioxidants can induce oxidative
damage to important cellular components, such as membrane lipids, proteins and nucleic
acids [8–10]. This is particularly true for the seeds of halophytes which experience large
variations in soil moisture and salinity; therefore, the success of their seed germination
and seedling establishment depends on minimizing the damages resulting from enhanced
ROS under the aforementioned stresses [11,12]. The antioxidant machinery of the plant
cells is composed of many enzymatic and non-enzymatic components [11,12]. Superoxide
dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) are key antioxidant
enzymes, whereas ascorbic acid (AA) and glutathione (GSH) are common non-enzymatic
antioxidants [8,13,14]. Most information on ROS homeostasis in plants under environmen-
tal stresses is based on vegetative tissues and any knowledge about ROS production and
quenching in germinating seeds, particularly of halophytes, is generally scant [8,11,12].

This study examined germination behaviour, seed micromorphology and biochemical
responses of two species of the genus Halopeplis; viz., H. amplexicaulis and H. perfoliata.
Halopeplis is a characteristic genus of the leaf succulent eu-halophyte Amaranthaceae [15],
which includes only three species, H. perfoliata (Forssk.) Bunge, H. pygmaea (Pall.) Bunge
and H. amplexicaulis (Vahl) Ung.-Sternb. Halopeplis amplexicaulis is an annual found in salty
habitats, throughout the Mediterranean basin and other territories in Africa, including
southern Africa where the populations were presumably introduced years ago [16], but
are currently cited as a native plant [17]. It is the only European and Mediterranean
representative species of this genus. Whereas H. perfoliata is a chamephyte species which
inhabits coastal salt marshes of the Arabian Peninsula [18]. It is an example of a species
with a typical circum-Arabian distribution in the Nubo-Sindian zone of the Sahara-Sindian
phytochorion [19].

Some earlier studies have reported different ecological aspects of the seed germination
of the Halopeplis species individually [20–24]. However, a comparison of the osmotic stresses
and biochemical aspects of the seed germination of the Halopeplis species has not been
done. In this context, this study deals with the comparative seed germination strategies and
biochemical responses to osmotic stresses (NaCl and PEG) of two species of Halopeplis with
different life-forms and which grow in different environmental conditions. Furthermore,
studies involving biochemical analysis coupled with the germination ecology of congeneric
species differing in life-form and occurrence are limited but crucial to understand species
abundance/distribution in a changing climate. In this sense, our study attempted to
approach these aspects, which have so far not been sufficiently clarified, through the
following objectives:

(1) To study whether the different environmental conditions of the sample sites, especially
a more stressful maternal environment, direct the plasticity of seed responses to
temperature, salt and drought tolerance.

(2) To test whether ionic toxicity is a relevant aspect that affects germination in saline
conditions.

(3) To confirm the relation of life-form and germination responses.
(4) To evaluate ROS production and quenching responses of the germinating seeds of the

two species under osmotic stresses (NaCl and PEG).
(5) To unveil similarities in ROS production and quenching responses of germinating

seeds of the two species.
(6) To assess if species from a more stressful environment have a greater ability to survive

in a global warming scenario.

Additionally, seed features were characterized in order to determine a potential rela-
tionship between germination behaviours under different osmotic stresses.
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2. Materials and Methods

- Seeds of H. perfoliata and H. amplexicaulis were collected from natural populations at
the time of dispersal. After collection, seeds were cleaned and stored in paper bags in
a controlled environment (20 ◦C and 40–50% RH) until used in the germination tests.

- Seeds of H. amplexicaulis were gathered from El Hondo Natural Park (38◦09′57.4′′ N
0◦42′39.1′′ W), an inland-protected lagoon situated on the east coast of Spain in
Mediterranean xeric bioclimate (T. 18 ◦C; P: 286 mm) (Figure 1). The EC values
measured during the driest season were between 67.3 and 81.5 mmhos cm−1 which
corresponded to a salt concentration range of 0.693 M to 0.892 M.

- Seeds of H. perfoliata were collected from a salt marsh near the coast of Al khor, Qatar
(25◦45′18.1′′ N 51◦31′44.7′′ E) in tropical desertic bioclimate (T: 33 ◦C; P: 88 mm) (Figure 1).
Soil EC values of the study area ranged between 31.5 to 187.7 mmhos cm−1 [25].
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2.1. Seed Morphological Features

Seed shape was described by following the scheme of [26]. Dimensions, width and
length were measured using the image analysis software ImageJ (National Institutes of
Health, Bethesda, MD, USA) [27]. The weight of 100 seeds was determined using an Orion
Cahn C-33 microbalance. The scanning electron microscopy (SEM) aspects of the seed
coat were also examined. Seed surface was analysed with a SEM Hitachi S-4100 (Hitachi
Scientific Instruments, Mountain View, CA, USA), at the Central Service for Experimental
Research (SCSIE), Electronic Microscopy Section of the University of Valencia. Samples
were mounted on aluminium stubs with a carbon double-sided tape, were sputter coated
with a 100–200 Å thick layer of gold and palladium by an SC500, Bio-Rad sputter coater
(Bio-Rad, BioRad Laboratories Pty Ltd, New South Wales, Australia), and were examined
at an accelerating voltage of 5 kV. Seed micrographs at different magnifications were used
to determine the seed coats’ morphological features. The patterns observed were given
descriptive terms according to their appearance at different magnifications [28].

2.2. Germination Tests

Germination tests were carried out in plastic Petri dishes (50 mm diameter × 9 mm
depth), which were kept in temperature-controlled cabinets. The final germination percent-
age was calculated after 20 days.

Seed tolerance was tested at seven increasing NaCl concentrations, 0, 100, 200, 300,
400, 500 and 600 mM and six isotonic solutions of polyethylene glycol 6000 (PEG), at
four different alternating temperature regimes (20/10, 25/15, 30/20 and 35/25 ◦C), using
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daylight fluorescent illumination with a 12 h photoperiod (100 µmol·m−2·s−1). There were
four replications of 25 seeds each per treatment.

The tolerance index (TI) was calculated for each treatment as the observations under
stress divided by the means of the controls [29].

Seeds which did not germinate under osmotic treatments were transferred to distilled
water and maintained for 15 days to check the recovery capacity. Recovery germination
percentage was determined using the equations given in [30].

The first (FD) and the last (LD) germination days and the germination periods (GP),
as the number of days between first and final germination, were also calculated for all
treatments, including recovery tests. Germination rate (GR) was calculated using a modified
Timson’s index [31]: ∑G/t, where G is the percentage of seed germination at 2-day intervals
and t is the number of measurement periods.

2.3. Biochemistry Tests
2.3.1. Seed Water Uptake

Relative water uptake was determined by following the method of [32] with slight
modifications. Briefly, seeds (50 mg) were immersed in distilled water (control), −0.88 MPa
solution of NaCl (salt) and iso-osmotic solution PEG-6000 (drought). An increase in
weight of seeds was recorded as soon as radicle emergence commenced in control (i.e.,
20 h for H. perfoliata and 40 h for H. amplexicaulis). The relative increase in seed fresh
weight (Wr) due to imbibitional water uptake was calculated using the following formula:
Wr (%) = (Wf −Wi)/Wi × 100, where Wi is the initial weight of seeds and Wf is the weight
after imbibition in test solution [32].

2.3.2. Mitochondrial Activity

The mitochondrial respiratory activity of the germinating seeds of test species was
estimated by following the slightly modified method of [33]. Seeds of H. perfoliata and H.
amplexicaulis were soaked in the aforementioned test solutions for 20 and 40 h, respectively.
Afterwards, seeds were cut into two halves with the help of a sharp razor blade and
incubated in 1% (w/v) 2,3,5-triphenyl tetrazolium chloride (TTC) solution prepared in
50 mM phosphate buffer (pH 7.3) under dark conditions for 24 h at room temperature. Red-
colored triphenyl formazan, which is the indicator of mitochondrial respiratory activity, was
extracted in 100% ethanol and estimated by recording absorbance at 520 nm. Mitochondrial
activity was expressed as ∆A500 mg−1 FW.

2.3.3. Hydrogen Peroxide and Malondialdehyde

Hydrogen peroxide (H2O2) content of germinating seeds was measured by using the
KI reagent method of [34]. Whereas the extent of lipid peroxidation was measured by
quantifying the malondialdehyde (MDA) content according to the method of [35].

2.3.4. Enzymatic Antioxidants

Antioxidant enzymes of the seeds were extracted by following the method described
in [8]. The activity of superoxide dismutase (SOD; EC 1.15.1.1) was assayed according to
the method of [36]. Catalase (CAT; EC 1.11.1.6) activity was measured by following the
method of Aebi (1984). The activity of guaiacol peroxidase (GPX, EC 1.11.1.7) was assessed
according to [37]. Ascorbate peroxidase (APX, EC 1.11.1.11) activity was estimated by
following [38]. Glutathione reductase (GR, EC 1.6.4.2) activity was measured through the
method of [39]. Protein content of the extracts was estimated according to the [40] method.
Enzyme activities were expressed as units of enzyme activity per milligram protein.

2.3.5. Non-Enzymatic Antioxidants

The ascorbate (AsA) and dehydroascorbate (DHA) contents of the seeds were quanti-
fied according to the method of [41]. Whereas, reduced (GSH) and oxidized (GSSG) forms
of glutathione were estimated by following the method of [42].
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2.4. Statistical Analysis

All data were expressed as mean values ± SD (standard deviation) and were statisti-
cally analysed using the SPSS 16.0 software (SPSS, Chicago, IL, USA). A Student’s t-test
for independent samples was used to compare seed features (95% confidence interval).
Germination percentages were arcsine-transformed before the analysis to approximate the
normality assumption for analysis of variance [43]. A three-way ANOVA was applied to
determine the effects of species, stress treatments and temperature regimes on germination
percentages and velocity, in both stress and recovery tests. Graphical visualization boxplots
were depicted showing that the probability of values are included within a specific range,
and the median as the box separators (p < 0.005).

3. Results
3.1. Seed Morphological Features

Seeds were broadly ovate in H. amplexicaulis to narrowly ovate in H. perfoliata, with
a section in both species from compressed (1:2) to flattened (1:3). When seed traits were
analysed, significant differences were found in all the parameters measured. Seeds of H.
perfoliata are longer than those of H. amplexicaulis and values of length/weight ratio are
also higher in the case of H. perfoliata. Conversely, seeds of H. amplexicaulis are wider and
heavier than H. perfoliata seeds (Table 1).

Table 1. Seed traits of the two studied species and statistical significance (t-test).

Length (mm) Width (mm) L/W Weight (mg)

H. perfoliata 0.809 ± 0.062 0.585 ± 0.049 1.395 ± 0.170 0.127 ± 0.018

H. amplexicaulis 0.772 ± 0.044 0.610 ± 0.047 1.273 ± 0.116 0.134 ± 0.016

Sig. (t-test). 0.000 0.000 0.000 0.009

Regarding seed coat morphology under SEM examination, the surface was smooth,
except for the external side of the seed, where the outer epidermal periclinal walls of the
cells were convex, showing a differential sculpture over the radicular ridge. The outline of
cells was irregularly elongated, sometimes prismatic. Both species had papillae aligned
along the dorsal side in a more or less wide area over the seed’s outer edge, above the
radicle of the embryo (Figure 2). However, differences between species were appreciable in
the size of the papillae. Seeds of H. perfoliata were covered with papillae, more or less softly
rounded, smaller, wider than long (14–15 × 22–25 µm) and sometimes these papillae were
flattened. In contrast, H. amplexicaulis seeds had more elongated cylindrical projections,
were higher and thinner (35–39 × 13–17 µm) and better adjusted to a tuberculated pattern.

3.2. Germination Tests

Seeds of H. perfoliata showed a wider positive response in terms of temperature and
concentration range than H. amplexicaulis seeds. Overall, H. perfoliata seeds showed a higher
germination percentage over a wide range of temperatures, including the lowest tempera-
ture regimes. Whereas the less tolerant species, H. amplexicaulis, reached its optimum at a
25/15 ◦C (Figure 3).

Seeds of H. amplexicaulis germinated in up to −1.30 MPa under the optimal tempera-
ture (25/15 ◦C), but germination was not higher than 42%. However, H. perfoliata seeds
could germinate even in −1.70 MPa, with values higher than 55% at 20/10 ◦C (Figure 3;
Table 2).

Germination periods (number of days between first and final germination) were
shorter for H. perfoliata in all treatments, which ranged between 2 and 5 days in this species
compared to the range of 1 and 16 days in H. amplexicaulis. A noteworthy increase in the
number of days to the first germination was observed, especially in H. amplexicaulis, with
increases in osmotic strength at all temperatures considered (Table 2).
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Germination rate showed that, as a rule, the rate of germination decreased, in both
species, with an increase in salt concentration. This decrease was more pronounced in H.
amplexicaulis compared with H. perfoliata. The observed inhibitory effect of salt concentra-
tion on the germination rate was greater at the highest temperature regime, 35/25 ◦C, in
both species (Figure 4).
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After the salinity treatments, when un-germinated seeds were transferred to distilled
water, germination percentages increased with an increase the in pre-transfer salinity
concentration. This behaviour was especially evident in H. amplexicaulis, where an increase
in germination compared to the control was observed, practically, at all the temperatures
tested (Figures 3 and 5).

Nevertheless, when observing the recovery percentages of H. perfoliata, higher ger-
mination recovery values in salt compared with those obtained in the control were not
achieved. Only at the lower temperatures the germination recovery values were equal to
the control (Tables 3 and 4; Figures 3 and 5).
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Table 2. Germination percentage (G%), first (FD) and last day (LD) of germination and germination
period (GP) of the studied species in different temperature regimes and osmotic potentials (OP).
Germinations ≤ 5% have not been considered to calculate other parameters.

H. amplexicaulis H. perfoliata
T (◦C) OP G % FD LD GP G % FD LD GP
20/10 0 64.0 ± 19.6 3.5 ± 1.7 8.8 ± 0.5 5.3 ± 1.9 98.0 ± 19.6 1.0 ± 0.0 5.5 ± 1.0 4.5 ± 1.0

−0.43 52.5 ± 10.6 4.0 ± 2.0 12.5 ± 2.4 8.5 ± 2.4 97.1 ± 10.6 1.0 ± 0.0 3.3 ± 0.5 2.3 ± 0.5
−0.85 45.0 ± 13.2 7.0 ± 1.8 15.0 ± 2.0 8.0 ± 2.2 99.0 ± 13.2 1.0 ± 0.0 5.3 ± 0.5 4.3 ± 0.5
−1.28 11.0 ± 6.8 10.0 ± 2.7 14.8 ± 1.0 4.8 ± 3.3 95.0 ± 6.8 3.0 ± 0.0 6.5 ± 0.6 3.5 ± 0.6
−1.70 3.0 ± 3.8 - - - 57.0 ± 3.8 5.5 ± 1.0 8.5 ± 1.0 3.0 ± 1.2
−2.13 0.0 ± 0.0 - - - 0.0 ± 0.0 - - -
−2.55 0.0 ± 0.0 - - - 0.0 ± 0.0 - - -

25/15 0 88.0 ± 3.3 2.3 ± 1.0 9.5 ± 5.9 7.3 ± 6.0 92.0 ± 3.3 1.0 ± 0.0 5.0 ± 1.2 4.0 ± 1.2
−0.43 81.0 ± 11.9 3.8 ± 0.5 15.0 ± 6.9 11.3 ± 6.7 98.0 ± 11.9 1.0 ± 0.0 5.8 ± 0.5 4.8 ± 0.5
−0.86 77.0 ± 5.0 4.5 ± 1.0 10.5 ± 3.1 6.0 ± 3.2 97.0 ± 5.0 3.5 ± 1.0 7.8 ± 3.5 4.3 ± 2.5
−1.30 42.0 ± 12.4 3.8 ± 3.5 15.5 ± 1.7 11.8 ± 3.6 62.0 ± 12.4 5.5 ± 3.3 9.5 ± 4.0 4.0 ± 0.8
−1.73 6.0 ± 5.2 9.7 ± 3.8 15.3 ± 6.7 4.3 ± 6.7 21.0 ± 5.2 13.0 ± 5.8 16.0 ± 5.4 3.0 ± 4.8
−2.16 0.0 ± 0.0 - - - 1.0 ± 0.0
−2.59 0.0 ± 0.0 - - - 0.0 ± 0.0 - - -

30/20 0 82.5 ± 9.6 2.3 ± 0.5 19.0 ± 2.0 16.8 ± 1.9 100.0 ± 9.6 1.0 ± 0.0 5.0 ± 0.0 4.0 ± 0.0
−0.44 46.3 ± 15.5 4.0 ± 1.4 12.5 ± 4.7 8.5 ± 4.1 97.0 ± 15.5 1.0 ± 0.0 6.0 ± 0.0 5.0 ± 0.0
−0.88 0.0 ± 0.0 - - - 87.0 ± 0.0 2.3 ± 1.3 7.5 ± 1.7 5.3 ± 1.3
−1.32 0.0 ± 0.0 - - - 78.0 ± 0.0 5.8 ± 0.5 9.3 ± 1.0 3.5 ± 1.3
−1.76 1.3 ± 2.5 - - - 4.0 ± 2.5 - - -
−2.20 0.0 ± 0.0 - - - 1.0 ± 0.0 - - -
−2.64 0.0 ± 0.0 - - - 0.0 ± 0.0 - - -

35/25 0 32.5 ± 17.1 4.8 ± 3.2 18.0 ± 1.8 13.3 ± 1.7 97.0 ± 17.1 1.0 ± 0.0 5.5 ± 1.0 4.5 ± 1.0
−0.45 6.3 ± 6.3 17.7 ± 4.0 19.7 ± 0.6 1.5 ± 3.0 31.0 ± 6.3 6.0 ± 0.0 8.0 ± 0.0 2.0 ± 0.0
−0.89 5.0 ± 0.0 - - - 5.0 ± 0.0 - - -
−1.34 1.3 ± 2.5 - - - 0.0 ± 2.5 - - -
−1.79 0.0 ± 0.0 - - - 0.0 ± 0.0 - - -
−2.24 1.1 ± 2.2 - - - 0.0 ± 2.2 - - -
−2.68 1.3 ± 2.5 - - - 0.0 ± 2.5 - - -

Table 3. Recovery of germination tests. Germination percentage (G %), first (FD) and last day (LD) of
germination and germination period (GP) of the studied species in different temperature regimes
and different osmotic potential (OP) obtained through increasing salt concentrations. Germinations
values of ≤5% were not considered to calculate other parameters.

H. amplexicaulis H. perfoliata
T (◦C) OP G % FG LD GP G % FD LD GP
20/10 −0.43 38.4 ± 13.8 1.8 ± 1.0 9.8 ± 5.5 8.0 ± 6.4 0.0 ± 0.0 - - -

−0.85 87.1 ± 11.2 1.0 ± 0.0 6.3 ± 1.5 5.3 ± 1.5 0.0 ± 0.0 - - -
−1.28 88.2 ± 9.1 1.0 ± 0.0 4.0 ± 0.0 3.0 ± 0.0 25.0 ± 50.0 1.0 1.0 0.0
−1.70 93.8 ± 5.2 1.0 ± 0.0 4.8 ± 1.5 3.8 ± 1.5 89.1 ± 8.0 1.0 ± 0.0 1.0 ± 0.0 0.0
−2.13 95.8 ± 3.4 1.0 ± 0.0 3.8 ± 1.3 2.8 ± 1.3 98.0 ± 4.0 1.0 ± 0.0 2.3 ± 1.9 1.3 ± 1.9
−2.55 99.0 ± 2.0 2.5 ± 0.6 4.3 ± 1.9 1.8 ± 2.2 97.0 ± 2.0 1.0 ± 0.0 5.3 ± 2.9 4.3 ± 2.9

25/15 −0.43 81.3 ± 23.9 1.0 ± 0.0 2.3 ± 0.5 1.3 ± 0.5 0.0 ± 0.0 - - -
−0.85 96.4 ± 7.1 1.0 ± 0.0 2.0 ± 0.0 1.0 ± 0.0 33.3 ± 57.7 1.0 1.0 0.0
−1.28 100.0 ± 0.0 1.0 ± 0.0 2.5 ± 0.6 1.5 ± 0.6 94.4 ± 11.1 1.0 ± 0.0 2.5 ± 3.0 1.5 ± 3.0
−1.70 98.9 ± 2.2 1.0 ± 0.0 2.3 ± 0.5 1.3 ± 0.5 91.4 ± 7.8 1.0 ± 0.0 2.0 ± 2.0 1.0 ± 2.0
−2.13 98.0 ± 4.0 1.0 ± 0.0 2.3 ± 0.5 1.3 ± 0.5 91.0 ± 5.0 1.0 ± 0.0 1.0 ± 0.0 0.0
−2.55 100.0 ± 0.0 1.3 ± 0.5 5.0 ± 3.6 3.8 ± 3.9 90.0 ± 10.6 1.0 ± 0.0 4.0 ± 3.5 3.0 ± 3.5

30/20 −0.43 100.0 ± 0.0 1.0 ± 0.0 2.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 - - -
−0.85 100.0 ± 0.0 1.3 ± 0.5 6.3 ± 5.9 5.0 ± 5.4 10.7 ± 21.4 1.0 9.0 8.0
−1.28 97.5 ± 5.0 1.0 ± 0.0 2.8 ± 1.0 1.8 ± 1.0 34.4 ± 23.7 1.0 ± 0.0 1.0 ± 0.0 0.0
−1.70 100.0 ± 0.0 1.0 ± 0.0 4.3 ± 2.1 3.3 ± 2.1 75.9 ± 12.7 1.0 ± 0.0 7.0 ± 4.0 6.0 ± 4.0
−2.13 96.3 ± 7.5 1.0 ± 0.0 5.5 ± 1.7 4.5 ± 1.7 62.8 ± 24.1 1.0 ± 0.0 9.3 ± 0.5 8.3 ± 0.5
−2.55 95.0 ± 7.1 1.0 ± 0.0 1.8 ± 0.5 0.8 ± 0.5 46.0 ± 14.8 1.0 ± 0.0 5.5 ± 5.2 4.5 ± 5.2

35/25 −0.43 98.4 ± 3.1 1.0 ± 0.0 7.0 ± 6.9 6.0 ± 6.9 28.4 ± 21.0 1.0 ± 0.0 5.7 ± 0.6 4.7 ± 0.6
−0.85 98.7 ± 2.6 1.0 ± 0.0 3.8 ± 2.2 2.8 ± 2.2 3.3 ± 4.2 - - -
−1.28 93.6 ± 6.7 1.0 ± 0.0 11.8 ± 6.7 10.8 ± 6.7 5.0 ± 3.8 - - -
−1.70 86.3 ± 10.3 1.0 ± 0.0 14.3 ± 3.5 13.3 ± 3.5 0.0 ± 0.0 - - -
−2.13 81.3 ± 16.5 1.0 ± 0.0 10.3 ± 6.7 9.3 ± 6.7 1.0 ± 2.0 - - -
−2.55 70.1 ± 6.6 1.0 ± 0.0 2.5 ± 0.6 1.5 ± 0.6 1.0 ± 2.0 - - -
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Figure 5. Recovery test of germination after transfer from NaCl to water in different temperature
regimes. Bars with different alphabets are significantly different from each other (LSD; p < 0.05).

Table 4. Recovery germination rate, (mean ± SE) of Halopeplis amplexicaulis seeds under increasing
salt concentration at the different temperature regimes tested (p < 0.05). Germinations values of ≤5%
were not considered to calculate this parameter. Values with different letters are significantly different
from each other within rows (p < 0.05).

Osmotic Potential (MPa)
T (◦C) 0 −0.43 to −0.45 −0.85 to −0.89 −1.28 to −1.34 −1.70 to −1.79 −2.13 to −2.24 −2.55 to −2.68
20/10 50.6 ± 15.7 b 34.5 ± 11.5 b 76.4 ± 8.4 a 82.2 ± 9.4 a 91.0 ± 6.1 a 92.9 ± 3.3 a 96.1 ± 2.2 a

25/15 75.0 ± 6.1 b 75.9 ± 18.6 b 95.8 ± 6.8 a 100.0 ± 0.0 a 98.7 ± 2.0 a 97.9 ± 3.9 a 99.9 ± 0.2 a

30/20 52.0 ± 3.9 b 100.0 ± 0.0 a 100.0 ± 0.0 a 94.0 ± 8.7 a 99.5 ± 0.7 a 93.6 ± 9.6 a 91.8 ± 7.3 a

35/25 14.6 ± 5.4 c 97.1 ± 5.1 a 96.6 ± 3.8 a 90.6 ± 8.1 a 80.8 ± 13.7 ab 70.8 ± 11.1 b 64.1 ± 7.7 b

Regarding the germination period in the recovery tests, a remarkable decrease in
the time until the beginning of germination was noted in H. amplexicaulis. In most cases,
the first day of germination corresponded to the day after sowing, even at the higher
temperatures and at the higher salt concentrations. Moreover, a decrease in the germination
period during recovery was observed in H. amplexicaulis compared with the salt treatments
(Tables 2 and 3).

The rate of germination recovery indicated a different behaviour in the two com-
pared species. Halopeplis amplexicaulis reached high values, at all the concentrations and
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temperatures tested, exceeding, in almost all cases, the values of the control. Whereas
H. perfoliata seeds obtained high values only in the highest salt concentrations and at the
lowest temperatures tested (Tables 4 and 5).

Concerning germination results of both species in isotonic solutions of PEG, the same
behaviour pattern was observed as in the case of the NaCl treatments (Figure 6). In all the
concentrations and temperatures, germination percentages were higher in H. perfoliata than
in H. amplexicaulis.

Higher germination percentages were achieved in both species with NaCl than in
PEG, except for the highest tested temperatures in H. perfoliata, where the germination
percentage in PEG was higher than in NaCl.

The germination rate revealed that, as in the case of salt treatments, the rate of germi-
nation generally decreased, in both species, with an increase in PEG concentration. The
observed inhibitory effect on the germination rate was greater in H. amplexicaulis, especially
at the highest temperature regime (Figure 7). The preference for the temperature 25/15 ◦C
that was already observed in the salt tests was confirmed.
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Figure 6. Germination percentages under different concentrations of polyethylene glycol and different
temperature regimes. Bars with different alphabets are significantly different from each other (LSD;
p < 0.05).
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Table 5. Recovery germination rate, (mean ± SE) of Halopeplis perfoliata seeds under increasing salt
concentrations at the different temperature regimes tested (p < 0.05). Values with different letters are
significantly different from each other within rows (p < 0.05).

Osmotic Potential (MPa)
T (◦C) 0 −0.43 to −0.45 −0.85 to −0.89 −1.28 to −1.34 −1.70 to −1.79 −2.13 to −2.24 −2.55 to −2.68
20/10 90.5 ± 4.1 a 0.0 c 0.0 c 2.0 ± 4.0 c 38.0 ± 4.0 b 98.0 ± 4.0 a 95.0 ± 5.0 a

25/15 86.0 ± 8.2 a 0.0 c 1.3 ± 2.3 c 33.5 ± 17.1 b 70.5 ± 20.6 a 90.0 ± 4.0 a 89.0 ± 10.4 a

30/20 97.0 ± 2.0 a 0.0 c 2.0 ± 4.0 c 7.0 ± 5.0 c 70.5 ± 16.8 ab 57.5 ± 21.5 b 44.0 ± 16.7 b

35/25 92.0 ± 4.6 a 17.5 ± 14.7 b - - - - -
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Figure 7. Regression plots for the rate of seed germination (Timson index, maximum 100) for both
studied species under increasing PEG concentration and different temperature regimes.

Recovery data after the treatment with PEG were similar to those obtained in the
recovery tests after exposing seeds to increasing NaCl concentrations. In H. amplexicaulis,
germination percentages were equal to or above the control in almost all the tests. However,
although the results were better in H. perfoliata at the higher temperatures, in comparison
with the treatments with salt, in no case did these values surpass the value of the control
(Figure 8).

The rate for recovery data followed a more or less similar pattern to that observed in
the case of salt recovery. Except for the temperature of 35/25 ◦C, H. amplexicaulis reached
high values at all concentrations whereas H. perfoliata obtained better percentages at high PEG
concentrations under higher temperatures than in the treatment with NaCl (Tables 6 and 7).

The best results in terms of tolerance were obtained in H. perfoliata. The values of the
tolerance index (TI) exceed 80%, at osmotic potentials from−0.85 to−0.89 MPa, depending
on temperature regime and 60% at values from −1.28 to −1.34 MPa, almost in all the
temperatures tested (except 35/25 ◦C). Similar results were obtained in the treatment with
PEG, where TI values for H. perfoliata, at values from −0.85 to −0.89 MPa, did not drop
below 70% at any of the temperature regimes. On the other hand, the H. amplexicaulis
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only reached TI values higher than 70%, at the same osmotic potentials, in the case of salt
treatments and at optimum temperature (25/15 ◦C), but in none of the PEG concentrations
tested (Table 8).
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Figure 8. Recovery data after the treatment with PEG in different temperature regimes. Bars with
different alphabets are significantly different from each other (LSD; p < 0.05).

Table 6. Recovery germination rate (mean ± SE) of Halopeplis amplexicaulis seeds under increasing
PEG concentrations at the different temperature regimes tested. Germinations values of ≤5% were
not considered to calculate this parameter. Values with different letters are significantly different
from each other within rows (p < 0.05).

Osmotic Potential (MPa)
T (◦C) 0 −0.43 to −0.45 −0.85 to −0.89 −1.28 to −1.34 −1.70 to −1.79 −2.13 to −2.24 −2.55 to −2.68
20/10 50.6 ± 15.7 a 57.5 ± 10.6 a 58.0 ± 40.2 a 81.0 ± 6.6 a 73.5 ± 20.8 a 68.9 ± 14.8 a 79.5 ± 6.5 a

25/15 75.0 ± 6.1 a 91.2 ± 9.7 a 98.7 ± 1.6 a 98.9 ± 1.4 a 78.8 ± 25.1 a 78.0 ± 12.7 a 80.5 ± 8.0 a

30/20 52.0 ± 3.9 b 97.0 ± 5.4 a 97.4 ± 4.9 a 98.3 ± 2.8 a 98.3 ± 2.2 a 96.9 ± 3.7 a 93.0 ± 4.6 a

35/25 14.6 ± 5.4 b 75.5 ± 17.1 a 48.3 ± 25.0 ab 42.9 ± 23.3 ab 46.8 ± 9.9 ab 29.4 ± 26.1 b 17.9 ± 6.9 b
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Table 7. Recovery germination rate (mean ± SE) of Halopeplis perfoliata seeds under increasing
PEG concentrations at the different temperature regimes tested. Values with different letters are
significantly different from each other within rows (p < 0.05).

Osmotic Potential (MPa)
T (◦C) 0 −0.43 to −0.45 −0.85 to −0.89 −1.28 to −1.34 −1.70 to −1.79 −2.13 to −2.24 −2.55 to −2.68
20/10 90.5 ± 4.1 a 13.0 ± 1.2 d 6.0 ± 3.3 d 60.0 ± 12.3 b 71.0 ± 2.6 b 45.5 ± 1.0 c 38.5 ± 5.3 c

25/15 86.0 ± 8.2 a 2.7 ± 4.6 b 1.0 ± 2.0 b 5.0 ± 4.2 b 90.0 ± 5.9 a 91.5 ± 6.4 a 85.0 ± 7.4 a

30/20 97.0 ± 2.0 a 0.0 c 0.0 c 6.5 ± 1.9 c 56.0 ± 20.9 b 92.0 ± 7.3 a 88.5 ± 3.4 a

35/25 92.0 ± 4.6 a - - - 84.5 ± 16.8 a 82.5 ± 13.3 a -

Table 8. Tolerance Index (TI) at the different osmotic potential (OP) of the salt and PEG solutions. Ha:
H. amplexicaulis; Hp: H. perfoliata.

T OP (MPa) Ha NaCl Hp NaCl Ha PEG Hp PEG

20/10 ◦C −0.43 0.82 0.99 0.00 0.79

−0.85 0.70 1.01 0.00 0.70

−1.28 0.17 0.97 0.00 0.29

−1.70 0.05 0.58 0.00 0.00

−2.13 0.00 0.00 0.00 0.00

−2.55 0.00 0.00 0.00 0.00

25/15 ◦C −0.43 0.92 1.07 0.99 1.04

−0.86 0.88 1.05 0.57 1.03

−1.30 0.48 0.67 0.00 0.00

−1.73 0.07 0.23 0.00 0.00

−2.16 0.00 0.01 0.00 0.00

−2.59 0.00 0.00 0.00 0.00

30/20 ◦C −0.44 0.56 0.97 0.42 0.98

−0.88 0.00 0.87 0.02 0.92

−1.32 0.00 0.78 0.00 0.00

−1.76 0.02 0.04 0.00 0.35

−2.20 0.00 0.01 0.00 0.00

−2.64 0.00 0.00 0.00 0.00

35/25 ◦C −0.45 0.19 0.32 0.00 0.99

−0.89 0.15 0.05 0.00 0.77

−1.34 0.04 0.00 0.00 0.00

−1.79 0.00 0.00 0.00 0.00

−2.24 0.03 0.00 0.00 0.00

−2.68 0.04 0.00 0.00 0.00

The three-way ANOVA comparing the effects of all the treatments showed that ger-
mination percentage and rate were significantly affected by species, temperature, salt
concentration and their interactions (Table 9).
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Table 9. F-values from a three-way ANOVA testing the effect of species, salt treatments, temperature
and their interactions on germination percentage (on salt (S) and the recovery (R)) and germination
rate (GR). Differences between means were considered to be significant at p < 0.05.

G GR (S) R IT(R)

Variable F F F F

Species 213.8 437.5 183.1 694.6
Temperature 174.9 236.3 41.3 97.5
[NaCl] 475.8 601.1 23.3 79.3
Species ×
Temperature 38.7 65.3 17.5 28.1

Species × [NaCl] 34.7 80.8 47.8 210.9
Temperature ×
[NaCl] 24.7 34.4 11.5 31.0

Species ×
Temperature ×
[NaCl]

13.5 20.9 4.6 13.9

p = 0.000 in all cases.

3.3. Biochemistry Tests

Relative water uptake (Wr) of the seeds of two species decreased in the presence of
NaCl and isotonic PEG treatments when compared to the unstressed control (Figure 9).
Both NaCl and PEG treatments led to a comparable decline in Wr of the seeds of the test
species. The Wr values of H. perfoliata seeds were significantly (p < 0.001; Table 10) higher
than those of H. amplexicaulis (Figure 9). Mitochondrial activity of the H. perfoliata, but not
that of the H. amplexicaulis seeds, decreased under stress conditions and H. perfoliata seeds
displayed higher mitochondrial activity compared with H. amplexicaulis seeds (Figure 8).
The hydrogen peroxide (H2O2, a common ROS) content of the germinating seeds of both
species did not vary across different treatments; however, H. amplexicaulis seeds had a
higher H2O2 content than that of H. perfoliata (Figure 8). In general, the H2O2 content
negatively correlated to Wr (r = −0.842, p < 0.002) and mitochondrial activity (r = −0.737,
p < 0.006). The malondialdehyde content of H. amplexicaulis seeds peaked in PEG compared
with the control and NaCl treatments, whereas those of H. perfoliata seeds did not vary
across the different treatments (Figure 9).

Table 10. Two-way ANOVA indicating effects of species (Sp), treatments (Tr) and their interaction
on various biochemical parameters of the germinating seeds of two Halopeplis species. Numbers are
F-values and asterisks (*) are p values (Where, ns = p > 0.05, * = p < 0.05, and *** = p < 0.001).

Parameters Sp Tr Sp × Tr

Wr 307.12 *** 12.15 *** 0.19 ns

Mitochondrial activity 51.78 *** 14.99 *** 4.69 ns

H2O2 42.91 *** 1.30 ns 2.31 ns

MDA 76.51 *** 9.26 *** 7.04 ***
SOD 30.20 *** 7.38 * 9.53 ***
CAT 16.04 *** 6.54 * 8.55 ***
APX 14.74 *** 4.90 * 3.25 ns

AsA 3.38 ns 0.42 ns 1.57 ns

DHA 5.07 * 0.47 ns 0.73 ns

GSH 44.47 *** 8.80 *** 1.33 ns

GSSG 2.47 ns 2.26 ns 2.22 ns
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of significance, i.e., * = p < 0.05, ** = p < 0.01, *** = p < 0.001 and ns = p > 0.05. 

A two-way analysis of variance (ANOVA) indicated significant (p < 0.05) effects 
based on species (Sp), treatments (Tr) and their interaction with the antioxidant enzymes 
activities (Table 10). The activity of the SOD enzyme was higher in the presence of PEG 
compared with the control and NaCl in H. amplexicaulis seeds but was unaltered in H. 
perfoliata seeds across treatments (Figure 10). Overall, SOD activity had a positive correla-
tion (r = 0.649, p < 0.012) with the H2O2 content of the seeds of the two species. The activity 
of the CAT enzyme in H. amplexicaulis seeds was highest in NaCl compared with the con-
trol and PEG, whereas that of H. perfoliata seeds did not vary among treatments (Figure 
10). However, H. amplexicaulis seeds had significantly (p < 0.001) higher SOD and CAT 
levels in comparison with H. perfoliata seeds. In general, CAT activity had a negative cor-
relation (r = −0.641, p < 0.007) with the MDA content of the seeds of test species. In contrast, 
H. amplexicaulis seeds had comparatively low and constitutive levels of APX activity when 

Figure 9. Relative water uptake (Wr), mitochondrial activity, hydrogen peroxide (H2O2) and malondi-
aldehyde (MDA) contents of the germinating seeds of H. amplexicaulis and H. perfoliata under various
treatments. Bars are mean ± standard error. Bars with different alphabets are significantly different
from each other (LSD; p < 0.05). Superscripts over ANOVA F-values indicate level of significance, i.e.,
* = p < 0.05, ** = p < 0.01, *** = p < 0.001 and ns = p > 0.05.

A two-way analysis of variance (ANOVA) indicated significant (p < 0.05) effects based
on species (Sp), treatments (Tr) and their interaction with the antioxidant enzymes activities
(Table 10). The activity of the SOD enzyme was higher in the presence of PEG compared
with the control and NaCl in H. amplexicaulis seeds but was unaltered in H. perfoliata seeds
across treatments (Figure 10). Overall, SOD activity had a positive correlation (r = 0.649,
p < 0.012) with the H2O2 content of the seeds of the two species. The activity of the CAT
enzyme in H. amplexicaulis seeds was highest in NaCl compared with the control and PEG,
whereas that of H. perfoliata seeds did not vary among treatments (Figure 10). However, H.
amplexicaulis seeds had significantly (p < 0.001) higher SOD and CAT levels in comparison
with H. perfoliata seeds. In general, CAT activity had a negative correlation (r = −0.641,
p < 0.007) with the MDA content of the seeds of test species. In contrast, H. amplexicaulis
seeds had comparatively low and constitutive levels of APX activity when compared to H.
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perfoliata seeds, in which APX activity was lower under stress conditions than the control
(Figure 10).
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Figure 10. Activities of antioxidant enzymes in germinating seeds of H. amplexicaulis and H. perfoliata
under various treatments. Bars are mean ± standard error. Bars with different alphabets are
significantly different from each other (LSD; p < 0.05). Superscripts over ANOVA F-values indicate
level of significance, i.e., * = p < 0.05, ** = p < 0.01, and ns = p > 0.05.

The ascorbate (AsA and DHA) contents of H. perfoliata seeds under isotonic NaCl
and PEG were comparable to that in control whereas the AsA but not the DHA content of
H. amplexicaulis seeds decreased in NaCl compared with the control and PEG (Figure 11).
Seeds of H. amplexicaulis had comparatively higher and constitutive levels of GSH and
GSSG than H. perfoliata seeds (Figure 10). NaCl treatment caused a reduction in the GSH
content of H. perfoliata seeds compared with the control. In general, GSH activity had a
negative correlation (r = −0.693, p < 0.004) with the MDA content of the seeds of the test
species.
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Bars with different alphabets are significantly different from each other (LSD; p < 0.05). Superscripts
over ANOVA F-values indicate level of significance, i.e., * = p < 0.05, and ns = p > 0.05.

4. Discussion

Sensitivity to environmental fluctuations is an important physiological characteris-
tic that allows seeds to germinate in specific environmental conditions [44,45]. Indeed,
environmental regulation of germination is a multifaceted process that allows seeds to
only germinate when environmental stresses do not surpass their limits of tolerance [46].
Among the two compared species, H. perfoliata reached high germination percentages at a
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wide range of temperatures, including the lowest temperature regime. This is a different
result compared with other subtropical halophytes which prefer higher temperatures for
germination [47,48], and is also an unexpected response for a plant living in a desert area
with higher temperatures most of the year. This response could be a niche partitioning
adaptation of the test species to confine its germination to the brief period of water avail-
ability rather than the temperature regime that regulates germination of most co-occurring
species. The majority of rainfall in the natural habitat of H. perfoliata corresponds to the
period of lower temperatures (from December to January), causing less soil water deficit
and a less edaphic salt concentration, thus germinability under low temperatures will
broaden the germination window of test species. Indeed, germination at the highest tem-
peratures would be linked to osmotic stresses and therefore to a lower chance of success
for seedlings. In this sense, Ref. [49] reported an increased germination percentage and
rate at low temperature regimes in seeds of another halophyte, Suaeda fruticosa, under high
maternal salinity. Comparatively, H. amplexicaulis reached high germination percentage at
the intermediate temperature regimes (25/15 ◦C) that corresponds to the period of higher
precipitation (April, September and October) in the growing area.

In many cases, salt tolerance under laboratory conditions may not correlate with plant
responses under field conditions [50]. This fact could be explained in terms of the physio-
logical responses to salinity, which are complex and vary with factors such as temperature,
drought and soil texture. In the case of the two species of Halopeplis compared in this
study, a higher tolerance was observed under laboratory conditions in H. perfoliata. This
species reached higher germination percentages than those obtained in the tests carried
out for the same species by other authors [51]. Nevertheless, salinity affected seed germi-
nation of both species, as reported in other species of the same family [52,53]. Halopeplis
perfoliata reached a higher germination percentage in a shorter germination period, and it
took less number of days until the first germination, which could be an adaptation to the
environmental conditions of habitats with short and irregular rainfall periods that cause a
decrease in soil salt concentration and reduce soil temperature, both suitable conditions
for germination and seedling survival [51,54,55]. Moreover, a short germination period
ensures an adequate quantity of seedlings under favourable conditions [56]. Most of the
plants showing very fast germination grow in high-stress arid or saline habitats, and belong
to the family Amaranthaceae, which is characterized by a generally higher salt tolerance in
the germination phase [47]. The better germination percentage and speed in H. perfoliata
seeds could also be ascribed to a maternal effect. A number of authors have observed that a
maternal effect derived from the growth of plants in a saline environment can improve salt
tolerance in the germination period, through a transmission of information to subsequent
generations. This maternal effect has been observed in many halophytes [57,58], and their
positive effect in improving a tolerance to high temperature regimes have also been probed
in other species [49]. Conversely, some authors indicated better results in germination
success for plants from non-saline environments when compared with plants growing
in saline conditions [59]. Hence, effects of maternal environment on seed germination
responses may vary among species.

Germination inhibition in halophytes, derived from an increase in salt concentra-
tion, can be the result of ionic toxicity and/or osmotic stress [60–63] depending on the
species [64,65]. In this study, recovery data demonstrated that the inhibitory effect observed
in PEG treatment is greater than that observed in NaCl in both species. These findings
hint at the main role of osmotic stress in germination inhibition compared with specific ion
effects. These results agree with those obtained in other species [48,66–69]. In this study, rel-
ative water uptake (Wr) data also indicated a similar decline under isotonic NaCl and PEG
treatments compared with the control for both test species as reported for Suaeda fruticosa
and Limonium stocksii [8]. This also hints at osmotic constraint for germination inhibition in
test species under salt/osmotic solutions. However, Ref. [70] observed a greater inhibition
of germination in seeds of several halophytes when treated with mannitol and/or PEG,
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compared with those treated with different concentrations of NaCl. Contrarily, in other
species, such as Suaeda heterophylla [63] or Atriplex halimus [65] salinity caused ionic toxicity.

Reactive oxygen species (ROS) such as H2O2 are produced in germinating seeds during
the imbibitional reactivation of mitochondrial oxygen metabolism and their production may
enhance under environmental stresses such as salinity [8,12,71]. Such information about
halophyte seeds is generally scant. In addition, only a few studies coupled biochemical
analysis to explain the germination ecology responses of seeds. In this study, the H2O2
content of germinating seeds of two tested Halopeplis species in NaCl or PEG treatments
were comparable to that in the control treatment. Likewise, the H2O2 content of brown seeds
of Arthrocnemum macrostachyum and large seeds of A. indicum did not vary across salinity
during germination [72]. The nearly static levels of H2O2 in halophyte seeds, including our
test species, could be ascribed to unaltered mitochondrial activity, which also indicates that
mitochondrial function was not compromised under NaCl/PEG treatment in the tested
halophyte seeds. Unaltered or even decreased activities of H2O2 detoxification enzymes
(CAT and APX) and non-enzymatic antioxidants (ascorbate and glutathione) in germinating
seeds of both test species also hint at no excessive H2O2 production. Similarly, activities of
antioxidant enzymes were either comparable or decreased under salinity compared with
the control in germinating seeds of the halophyte Gypsophila oblanceolate [73]. Furthermore,
the unaltered MDA (oxidative membrane damage marker) content of H. perfoliata in both
NaCl and PEG compared with the control and that of H. amplexicaulis in NaCl compared
with the control also indicate a lack of oxidative damage under stress conditions. Likewise,
the MDA content of germinating seeds of halophytes A. macrostachyum [72] and Salsola
drummondii [19] also did not increase under saline conditions. An increase in the MDA
content of germinating H. amplexicaulis seeds in PEG solution, despite an unaltered H2O2
content, might be related to superoxide accumulation, which is indicated by the higher SOD
activity. However, this increase in the MDA content was probably not too damaging, as
most un-germinated seeds showed recovery of germination when transferred to the water.
Hence, high recovery coupled with a lack of substantial oxidative damage indicates that
germination inhibition under NaCl and isotonic PEG treatments in the two test halophytes
probably resulted from a lack of sufficient imbibition owing to osmotic constraint rather
than damages resulting from ionic toxicity.

Recovery tests showed a strong priming effect in H. amplexicaulis, while in H. perfoliata
this effect was not noteworthy. Accordingly, some authors have reported better germination
and an increased stress tolerance in seeds primed with NaCl or PEG, through a shortening
of time for seed emergence, an increase in germination percentage and rate, an increase of
chlorophyll content and root viability and the contribution in maintaining RWC under low
soil moisture [74,75]. In this regard, plants living in saline environments have two different
strategies (i.e., salt tolerance or salt avoidance), to survive in environments with high salt
concentrations [4,76,77]. Salt avoidance mechanisms include phenological adaptations,
such as short life cycles [78], and physiological adaptations, such as seed dormancy or
germination timing. The high percentage of recovery germination after the alleviation of
salinity corresponds to one of the salt-avoidance strategies of halophytes. This mechanism
supplies a viable seed bank with new individuals able to germinate once the salinity
decreases [79,80] and prevents seedling mortality in unfavourable periods [44]. Both
strategies were found in the two studied species. H. amplexicaulis could be categorized
as a salt-avoider species, compared with the salt-tolerant H. perfoliata, according to [81]
who proved the use of one or both of these strategies in species belonging to the family
Amaranthaceae. Moreover, the higher salt tolerance of H. perfoliata seems to be related to
the climate conditions of its habitat (high temperature and low rainfall), that do not allow
for a significant decrease in soil salinity concentration throughout the year.

Halophytes have different life-forms, from annuals to perennials, therefore one can
expect different germination responses to salinity and drought depending on their life
cycles. Accordingly, some authors demonstrated a greater salt tolerance in the germination
phase for annual plants than in perennials and explained it in terms of their pioneer
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character, differences in the habitat colonized and the ability to complete the life cycles
rapidly in an unpredictable environment [82]. In contrast, other authors identified annuals
as the most sensitive to salinity [1], with stress escaping strategies [83,84]. Our results
are in accordance with latter findings as they show a higher tolerance in the perennial
H. perfoliata than in the annual H. amplexicaulis. In many cases, annual plants could be
more demanding in terms of germination requirements, and their stress tolerance is lower
because the survival of future generations depends exclusively on the survival of the
seedlings after the germination of the seeds. According to the aforementioned results, it is
expected that H. perfoliata will be less affected by global warming than H. amplexicaulis.

Research findings concerning seed size related to germination percentage and speed
in stressful environments are not yet clear and conclusive enough [85]. However, generally
a better adaptation to adverse conditions would be expected for larger seeds [86–88]. In
this sense, Ref. [89] have evidenced a positive relationship between seed size and tolerance
to water stress. However, some authors have evidenced opposing results [57,90], and in
many cases, the absence of a relationship between seed size and germination response has
been found [91,92]. Germination velocity can be affected in large seeds by the necessity of
more water absorption and thus, a longer time for imbibition [85,93,94]. However, different
authors have demonstrated fast germination in plants living in high stress environments as
an adaptive mechanism that allows seeds to take advantage of short favourable periods and
ensure the survival of seedlings [54,95]. In the case of the two Halopeplis species studied,
there is no clear evidence of the relevance of this factor in germination response. According
to our study and those from diverse authors, germination response in drought-affected
habitats is more related to the environmental conditions of the growth area or genetic
heterogeneity than other factors, e.g., seed size [92,96–98].

5. Conclusions

Our results provide new precise data proving the high adaptability of the germinative
responses of Halopeplis species to local rainfall cycles. The data obtained indicates that the
rainy period, linked to water availability, may act as a limiting factor which determines
seed germination and conditioning in response to the temperature regime. Seed size does
not appear to be a key factor in controlling germination response. The perennial species H.
perfoliata, which comes from the hottest environment, could germinate in a wide range of
temperature regimes. Whereas annual species H. amplexicaulis showed higher control of
seed germination behaviour with a lower tolerance to osmotic stress. High and comparable
recovery from NaCl and isotonic PEG treatments, alongside a lack of substantial oxidative
damage, indicates that osmotic stress was responsible for the inhibitory effect observed in
germination in both tested species under salinity. Halopriming, resulting from the limited
hydration of ungerminated seeds in high salinity solutions, enhanced germination recovery
of the annual species H. amplexicaulis. However, in light of its lower osmotic tolerance and
a narrow temperature window, annual H. amplexicaulis could be more vulnerable to the
climate change scenario. Since information about the biochemical basis of germination
ecology responses under salt and thermal stresses of congeneric species with differing
life-forms and from contrasting habitats is scarce, this study provides essential insights
about the impacts of global changes on species abundance/distribution.
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