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Abstract: An electrocardiogram (ECG) consists of five types of different waveforms or characteristics
(P, QRS, and T) that represent electrical activity within the heart. Identification of time intervals
and morphological appearance of the waves are the major measuring instruments to detect cardiac
abnormality from ECG signals. The focus of this study is to classify five different types of heartbeats,
including premature ventricular contraction (PVC), left bundle branch block (LBBB), right bundle
branch block (RBBB), PACE, and atrial premature contraction (APC), to identify the exact condition
of the heart. Prior to the classification, extensive experiments on feature extraction were performed
to identify the specific events from ECG signals, such as P, QRS complex, and T waves. This study
proposed the fusion technique, dual event-related moving average (DERMA) with the fractional
Fourier-transform algorithm (FrlFT) to identify the abnormal and normal morphological events of
the ECG signals. The purpose of the DERMA fusion technique is to analyze certain areas of interest
in ECG peaks to identify the desired location, whereas FrlFT analyzes the ECG waveform using
a time-frequency plane. Furthermore, detected highest and lowest components of the ECG signal
such as peaks, the time interval between the peaks, and other necessary parameters were utilized to
develop an automatic model. In the last stage of the experiment, two supervised learning models,
namely support vector machine and K-nearest neighbor, were trained to classify the cardiac condition
from ECG signals. Moreover, two types of datasets were used in this experiment, specifically MIT-BIH
Arrhythmia with 48 subjects and the newly disclosed Shaoxing and Ningbo People’s Hospital (SPNH)
database, which contains over 10,000 patients. The performance of the experimental setup produced
overwhelming results, which show around 99.99% accuracy, 99.96% sensitivity, and 99.9% specificity.

Keywords: cardiovascular disease; ECG signal processing; features extraction; machine learning;
ECG heartbeat classification

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally, as reported
by the World Health Organization [1]. Sustainable development has been made in past
years for reducing the impact of heart morbidity. An electrocardiogram (ECG) signal is
the most widely utilized biosignal for CVDs detection on an early basis. The ECG is a
non-invasive measurement of the heart that is utilized to diagnose different cardiac illnesses
and anomalies [2,3]. Cardio specialists have been utilizing ECG waveforms for over seven
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decades to distinguish heart illnesses, for example, arrhythmia and myocardial areas of
dead tissue for more than 70 years [4].

Many cardiovascular diseases can be detected using the analysis of variation in ECG
waves. However, the presence of artefacts such as baseline wandering and powerline
interference in ECG signals can generate additional spikes in the waveform. Therefore,
it is mandatory to eliminate the noisy elements from ECG signals to classify heartbeats
accurately. The wavelet transforms technique is one of the most commonly used to remove
noise and artifacts from ECG signals [5–7]. There have been several algorithms previously
proposed to extract waveforms from the ECG cycle [8–11]. The authors in [12] proposed a
rapid ramp effective algorithm to determine the occurrence of the R-peaks from ECG signals.
This algorithm has higher-order complexity, and it is only applied to two records. Moreover,
Hilbert transform and empirical mode decomposition are combined to detect the R-peaks
from the ECG signal [13]. However, this approach is quite complex due to the consideration
of massive amounts of blocks for detecting R-peaks. R peak detection is the sole purpose of
both algorithms. In literature, some of the algorithms are proposed techniques to detect
the P- and T-waves with R-peak [14,15]. These techniques include several steps, such
as filtering the signals, creating interesting blocks for each peak individually and setting
the fixed threshold point. To extract the large values from ECG signals, this algorithm
specifically used the Butterworth filter to remove the baseline drift and square the output
of the filtered signal. The selection of the area of the window depends on the length of the
QRS complexes and repetition intervals. Each block’s width is computed based on the size
of the window and compared with the threshold. Eventually, peaks are detected from each
width of the window. The values of the prior and after of the detected R-peaks are selected
and samples of the R-peaks are adjusted to 0 for the identification of P- and T-waves. As
far as peak detection is concerned, this algorithm yields acceptable results. In this study,
we propose a novel dual event-related moving average-based fusion technique, which
allows extracting the specific events from the ECG signals, including P-, QRS complex, and
T-waves. However, these specific events of the ECG signal contain time intervals due to the
time frequency-based analyses that produce huge variations related to data from the specific
waves. Furthermore, this paper demonstrates that the proposed technique significantly
achieves better performance than the state-of-the-art methods. Other major aim of this
study is to classify five types of heartbeats (PVC, LBBB, RBBB, PACE, and APC) from ECG
signals to identify the exact condition of the heart. This aim includes two stages: to extract
the features and classification using the supervised model. MIT-BIH arrhythmia benchmark
dataset has been widely used for many similar experiments in the last decade [16]. Previous
research employed a variety of preprocessing approaches, feature extraction methods, and
classifiers, some of which are covered in this study. In [17], discrete-wavelet-transform
(DWT) was used to extract R-peak and RR interval, whereas multi-layer perceptron (MLP)
was utilized for classification. The accuracy was achieved at 99.9%, with 301 features in
classification. Similarly, in [18], db4 DWT was used to extract the R-peak location and RR
interval, support vector machine classifier was used to detect the abnormality from ECG
signals. In [19,20], various classifiers were utilized for the classification of ECG signals,
such as naïve Bayes, SVM, ANN, and support vector machines.

The novel proposed technique has the potential to be applied to identify the normal
and abnormal events of the ECG signals. This type of system involves implanted probe-less
ECG sensors on the patient’s body and transmitting the signals via Bluetooth connection
to the processing device, for instance, a cellphone device, handheld device, and wearable
wireless device. The obtained signal can be used to pre-process and extracts features for
the classification of five heartbeat classes, namely PVC, LBBB, RBBB, PACE, and APC. The
main highlights of the work are as follows:

1. We designed a fusion-based method DERMA with FrlFT to preprocess the ECG signal
efficiently and extract the features such as P-, QRS, and T-waves.

2. Our proposed method specifically identifies the abnormal morphological events that
are associated with PVC, LBBB, RBBB, PACE, and APC.
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3. We calculated the temporal values, which are associated with specific events such as
PR and RT waveform duration.

4. Furthermore, this study performed classification using supervised learning models,
such as KNN and SVM, by utilizing the MIT-BIH Arrhythmia dataset, whereas two
different datasets were utilized, namely AHA and SPNH, for testing purposes.

The organization of the paper is as follows, Section 2 discusses materials and methods,
and Section 3 describes the classification of heartbeats. Section 4 discusses the results of the
proposed model, and Section 4 provides the conclusion of this study.

2. Materials and Methods

To detect the accurate waveform from ECG signals, it is mandatory to preprocess the
ECG signals as discussed in the introduction. Figure 1 represents the block diagram of
the proposed methodology, which includes the following steps: (1) to eliminate the noise
from the ECG signal, (2) to detect the specific events from the ECG signals using DERMA
with the FrlFT fusion technique, and (3) to select the supervised model for the classification
of ECG signals for the determination of CVD. Each task of the proposed methodology is
briefly discussed in the following subsections.

Figure 1. Block diagram of novel DERMA technique.

2.1. Preprocessing of ECG Signals

In this section, the first and foremost step is to normalize ECG signals to obtain the
essential highest information. As we know, the presence of noise in ECG signals is non-
linear and dependent on time whereas, amplitudes measurement is present in each subject,
so it is necessary to calculate the statistical mean of the amplitude and then the difference
among the x(i) and µ by using the following equation:

x(i)− (µ) (1)

µ is the statistical mean of the amplitude; σ is the standard deviation of the sample. The
Z-score method is used to normalize all amplitude values from the ECG signals

z =
x(i)− (µ)

σ
(2)

Discrete Wavelet Transform: determine the detailed co-efficient of ECG signals x(i) DWT of
a function that is defined as follows [21]:

Wφ(So, k) =
1√
M

M−1

∑
k−0

x(t)φS0,k(t) (3)
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Additionally,

Wψ(S, k) =
1√
M

M−1

∑
k−0

x(t)ψS,k(t) (4)

It is stated that ≥ S0, where S0 represents starting scale, and φS,k(t) and ψS,k(t) are
defined as the scaling and wavelet function. The detailed coefficient for the inverse discrete
wavelet transform is presented below:

x(t) =
1√
M

s−1

∑
s0=0

Wφ(so, k)φs0,k(t) +
1√
M

s−1

∑
s=0

Wψ(so, k)ψs,k(t) (5)

Fractional Fourier Transform (FrlFT): The FrlFT is a generalized variant of the conven-
tional Fourier transform that includes a parameter α. FrlFT is mostly employed in quantum
physics to solve differential equations, but it may also be utilized to analyze optical-related
problems [22]. In recent trends, advanced applications have proposed Fourier transform to
preprocess the signal due to the useful characteristics in the time-frequency domain. The
representation of the FrlFT signal is illustrated below [23]:

FrlFtφ(t, u) = Fα(x(t)) = X]φ(u) =
∫ ∞

−∞
x(t)Kφ(t, u)dt (6)

where α and φ = απ/2 represent the order of FrlFT and angle of rotation, respectively. The
value of the integer is defined by n, while the FrlFT operator defined as F∞(.), and kernel
function of the FrlFT is computed by using the equation below:

kφ(t, u) =


√

1−jcotφ
2π exp

(
S t2+u2

2 cot]φ− Stucscφ
)

, φ 6= nπ

δ(t− u), f or φ = 2nπ

δ(t + u), f or φ = 2
(

n + 1
2

)
π

(7)

2.2. Signal Filtering

The nature of the ECG signals is non-stationary, which means that the frequency
response of the ECG signals varies according to the time. Therefore, the contamination
often varies according to the time-dependent variation. Thus, the conventional Fourier-
transform technique does not provide the localization of the specific events of the ECG
signal, whereas DWT extracts time-based features by removing noisy elements from ECG
signals [18]. In order to remove baseline wander and power line interference efficiently from
ECG signals, DWT uses two filters, namely low-pass and high-pass, for baseline wandering
and power line interference, respectively. After applying these two filters, the central
frequency component (CFC) is computed to identify the 0 to 1 wavelet ranges, according to
the similarity ratio between the original signal and the wavelet-based chosen component.
CFC is identified by using the Daubechies-4 (db4), which is around 0.7. Furthermore, the
pseudo frequency (Fp) of each scale is computed by using the following equation:

Fp =
FcFs

2p (8)

2.3. R-Peak Detection

The temporal localization might be lost by performing the Fourier transform on the
ECG data. Thus, the purpose of implementing FrlFT is to identify the time-frequency-based
features from the ECG signal [24]. FrlFT works as a rotational form when it rotates to the
higher value of α, FrlFT extracts the frequency domain, and when it rotates towards the
lower value of α, it extracts the time domain values of the ECG signals. To detect accurate
high-frequency component, such as R-peak, time localization is the most important and
necessary factor, which needs to be considered carefully [18]. In this study, we employed the
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hit and trial technique for the value of α, and we found that it is equal to 0.0 l; appropriately,
this process helps to enhance the R-peaks detection. The dual event-related moving
averages technique helps to calculate the ECG cycle by using the following equation:

MAevent(n) =
1

W1
∑

k=−l
x(n + k), (9)

MAcycle(n) =
1

W2
∑

k=−p
x(n + p), (10)

In this scenario, W1 and W2 represent the QRS complex and heartbeat durations,
respectively. The optimum value of β factor was selected using the hit and trial technique,
and it was used to multiply the mean (µ) of the enhanced signals. To generate the value of
the threshold output number added to the MAcycle. The value of the MAevent was compared
with the associated threshold value. It is stated that if the value of MAevent(n) was more
than nth threshold element, 1 is assigned to the new vector; otherwise, it considers 0.
The sequence of nonuniform heartbeat is constructed using this method. Moreover, that
heartbeat, which has a width equivalent to the W1, contains the block of the desired event.
The maximum value of the enhanced signal is considered as R-peak in the interesting
event block. The accurate detection of the R-peak using the proposed algorithm is shown
in Figure 2. Our proposed model also extracts negative polarity of the R-peak, which
is beneficial to detect different types of arrhythmias from ECG signals. Figures 3 and 4
represents the area of the interested block and two events results, respectively. To accurately
identify the P- and T-peaks in the ECG signal, our proposed algorithm DERMA employs a
simplified threshold value, which helps to minimize the computational complexity.

Figure 2. The positive and negative polarity of R−peak detection.
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Figure 3. Representation of QRS complex and area of interest.
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Figure 4. Representation of QRS complex and area of interest using two events.

After the elimination process, a total of around 30 samples remained, which are 0.083 s
before the eliminated part of the R peak, and 60 samples, which are around 0.166 s after
the eliminated part of R; the peak was initialized to 0. However, P and T−peaks occur
in the selected samples, and it was almost zero in all types of abnormal heartbeats. After
the elimination of the QRS interested block, the FrlFT technique was used for prominent
P and T-peaks for the time frequency-based feature extraction. In this scenario, W3 and
W4 represent the peaks and duration of the waves, respectively. Figure 5 represents the
extracted P and T-peaks. The following equation defines the DERMA for the calculation of
the desired block.

MApeak(n) =
1

W3
∑

k=−q
x(n + q), (11)

MAwave(n) =
1

W4
∑

k=−r
x(n + r), (12)

q =
W3 − 1

2
and r =

W4 − 1
2

(13)
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Figure 5. Graphical representation of P and T−peaks detection.

3. Classification

Machine learning was used in this section to classify the PVC, LBBB, RBBB, PACE, and
APC heartbeats from the ECG signals. In general, machine learning algorithms are trained
by using the labeled dataset, where various attributes from each dataset are extracted and
formed into a model to predict the outcome. This method is called supervised learning. This
method helps to automate the decision-making process by training and testing the different
data. However, it includes two major processes, which are feature extraction and classification.

3.1. Feature Extraction

This is the unique way to recognize the pattern of diseases from ECG signals using the
collection of different types of morphological changes in ECG signals, such as calculation
of different peaks, finding intervals, or duration of peaks. These types of features or
characteristics distinguish the normal and abnormal events in the ECG signals. Besides
this, coefficients of the auto-regressive model help to identify the different characteristics of
ECG signals [25]. The order of autoregressive model p, AR (p) is illustrated as:

x(n) =
p

∑
i=1

a(i)x(n− i) + e(n) (14)

In this scenario, a(i) is the ith coefficient of the AR model, e(n) is a white noise with a zero
mean, and the order of AR model is represented as p. The selection of optimal order is
determined by several parameters. The feature-extraction phase is most important because
this step determines the better type of input in the ECG signal for classification.

Feature Matrix

This is the unique vector that contains the feature-related information of the ECG
heartbeats. Two types of datasets are used in this experiment: MIT-BIH arrhythmia [16]
and SPNH [26]. Each row contains different types of single ECG heartbeat-related features
such as AR order, FrlFT, and interval duration of the peaks, such as QRS complex, P−wave,
T−wave, and other temporal values, such as last R-R interval and subsequent R-R interval.
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4. Supervised Machine Learning Algorithms

ECG signal classification is an important and difficult task. However, it provides detailed
information about the abnormality in ECG signals automatically, which provides great benefit
to society to reduce the impact of morbidity and mortality around the globe. This proposed
model used an SVM and KNN supervised learning algorithm for this experiment. The
following subsection briefly describes the machine learning algorithm implementation.

4.1. Support Vector Machine Classifier

SVM is under the category of supervised learning technique that mostly solves clas-
sification problems. This machine learning algorithm aims to provide the most powerful
statistically based learning theory classifier. SVM facilitates the classification of unobserv-
able patterns from the dataset [24]. It is a hyperplane that divides positive and negative
sets with maximal margin. The dataset consists based on pairs (a1, y1), (a2, y2), . . . (aN , yN),
where the hyperplane is demarcated as the following quadratic problem:

max
α≥0

(
l

∑
i=0

αi −
1
2

l

∑
i,j=1

αiαjyiyjK
(
Xi, Xj

))
(15)

subject to
l

∑
i=0

αiyi = 0 (16)

αi ≤ C, i = 1, 2, . . . ., l, (17)

In this equation Xi, Xj represent the input features, whereas yi, yj represent the class
labels, and αi ≥ 0 are Lagrangian multipliers, in which C is a constant variable, and K
represents the kernel function [27].

4.2. K-Nearest Neighbor

KNN has used an instance-based learning method for storing the instances data for
training the classifiers using similarity index measures. It is a versatile and robust classifier
that is frequently used for more complex classification experiments. KNN essentially
determines K instances in the training dataset by using the most popular distance measure
technique, Euclidean distance. KNN is one of the simplest and most competitive algorithms,
which achieves the highest performance in pattern recognition issues. KNN can give highly
competitive results due to its simplistic nature [28].

d
(
xi, xj

)
=

√
n

∑
r=1

(
ar(xi)− ar

(
xj
))2 (18)

Whereas the mathematical notation of KNN for Y is given as:

Y =
1
K ∑

xi∈Nk(x)
yi (19)

where ar and Y shows the value of rth variable of an instance x and local mean vector,
respectively; Nk(x) represent as the neighborhood of x element [29,30]. In the literature, the
KNN classifier is mostly found for classifying abnormalities in the heart, or it is also used to
detect heart diseases [20,31–33]. Moreover, this machine learning algorithm allows learning
the patterns of the dataset from the training feature vector set by using the comparison of
the similarity between the test and training feature vector set. Next, we compute the k-value
using similarity measures that are used to determine the specific class from the dataset.

4.3. Evaluation Methods

The current research utilized a 10-fold cross-validation technique for the evaluation
and validation of the model. This procedure is repeated until the k times final test result is
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computed. Moreover, the performance of the DERMA fusion technique is assessed by the
various common performance indicators, such as sensitivity (Se), specificity (Sp), accuracy
(Acc), positive predictivity (PPV), and error rate (er). Four parameters of the confusion
matrix are used to derive the performance indicator, namely correctly detected beats (true
positive = TP), undetected beats (false negatives = FN), correctly undetected beats (true
negatives = TN), and falsely detected beats (false positive = FP). These statistical indices
are expressed as follows:

Sensitivity measures the average values of positive subjects that are correctly identified
from the ventricular arrhythmia in the beat from ECG subjects. It is computed as:

Se =
1
N

N

∑
i=1

(TP)i
(TP + FN)i

(20)

Accuracy computes the rate of correctly classified ventricular arrhythmia classes out
of the total number of ventricular heartbeat subjects. Accuracy is computed as:

Acc =
1
N

N

∑
i=1

(TP + TN)i
(TP + FP + TN + FN)i

(21)

Positive Predictive Value represents the average value of the subjects with positive ven-
tricular arrhythmia in the heartbeat with truly or correctly classified ventricular arrhythmia.
It is defined as:

PPV =
1
N

N

∑
i=1

(TP)i
(TP + FP)i

(22)

Error Rate is used to calculate the rate of ventricular arrhythmia in the heartbeat using
the rate of incorrectly classified arrhythmias out of all the ventricular heartbeat details. It is
represented as:

Der =
1
N

N

∑
i=1

(FP + FN)i
(TP + TN + FN + ssFP)i

(23)

5. Results and Discussion

The performance evaluation is the most important phase to validate model perfor-
mance for ventricular heartbeat classification.

5.1. Simulation Results

In this section, we discuss the results of the two scenarios, including ECG feature
extraction and classification of cardiovascular disease.

5.1.1. Feature Extraction Results

DERMA with FrlFT-based fusion technique detects various types of morphological
points from ECG signals to efficiently diagnose the disease. The validation of the proposed
method was performed using the MIT-BIH Arrhythmia dataset. The main advantage of the
proposed algorithm is that it works independently for feature extraction, which means any
lead can be selected for the extraction of high-frequency components from ECG signals.
Table 1 shows the performance of both datasets, where a total of six types of features are
extracted. The performance results here measured the successful detection of the features
with true positive and true negatives, and the parameters in Table 1 identify the sensitivity
and accuracy, which are observed from the successful detection of the features. Moreover,
the detection error rate defines the error that DERMA fails to extract. DERMA fusion
resulted in 99.99% sensitivity and accuracy in QRS complex detection and SDSD. Moreover,
the extraction of P-wave showed 99.90% sensitivity and 99.99% accuracy. T-wave showed
99.92% sensitivity and 99.98% accuracy. The performance of detecting the previous RR
interval and subsequent RR interval is observed at 99.99% and 99.97% sensitivity and
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99.97% and 99.98% accuracy, respectively. Furthermore, average error detection is observed
at around 0.0015%, which is quite less.

Table 1. DERMA Fusion performance results of feature extraction using both datasets.

S. No Feature Sen % Acc % Der %

1 QRS complex 99.99 99.99 0.002
2 P-wave 99.90 99.99 0.001
3 T-wave 99.92 99.98 0.002
4 The previous R-R interval 99.99 99.98 0.001
5 The subsequent R-R interval 99.97 99.98 0.001

6 The standard deviation of successive
difference (SDSD) 99.99 99.99 0.002

Total/Average Performance 99.96 99.98 0.0015

5.1.2. Classification Results

In this study, we trained the classifier using the MIT-BIH Arrhythmia dataset and
tested the classifier using the SPNH dataset. Hence, it was observed that around 70% of the
feature vector matrix was utilized for the training and 30% utilized for the testing purpose.
A total of five types of heartbeat classes were selected to classify in this experiment, namely
PVC, LBBB, RBBB, PACE, and APC. Moreover, SPNH contains four types of groups in the
dataset, which include supraventricular tachycardia (GSVT), atrial fibrillation (AFIB), sinus
bradycardia (SB), and sinus rhythm (SR). As we know, the machine learning algorithm
performs better when we increase the quantity of data, and it was noticed that MIT-BIH
Arrhythmia has only 48 ECG subjects. Therefore, we used the SPNH dataset, which contains
12 lead ECG signals from 10,646 patients at 10 s long. The main advantage of using this
dataset is that it is already denoised, and the database contains 11 common rhythms and
67 different cardiovascular conditions. The parameter for the SVM classifier was set to
γ = 1

2σ2 and adjusted to 2.44 × 10−4. Hence, it was observed that the performance of the
MIT-BIH arrhythmia dataset shows a better performance than the SPNH dataset, which
is demonstrated in Table 2. Both datasets have different sampling frequency rates; due
to maintaining integrity and simplicity, this study fixed the resampling rate to 128 Hz
for both datasets. Therefore, each dataset has a similar type of noisy elements, such as
baseline wander and power line interference. Moreover, Table 3 shows the performance
comparison of the current study with state-of-the-art methods. According to the Table 3, it
was observed that authors in [34,35] achieved almost similar results; however, the limitation
of state-of-the-art methods is observed in that these studies only extracted QRS complex
from ECG signals, whereas this study extracts all necessary specific events from ECG
signals to identify the exact condition of the heart. Only the QRS complex could not
provide extensive knowledge about the abnormality in ECG signals. Hence, it is a quite
complicated task because we did not found any solid studies in this regard that utilized the
SPNH dataset and MIT-BIH Arrhythmia dataset together. Therefore, to fairly compare the
algorithm of this study, only the MIT-BIH Arrhythmia dataset was utilized because most
of the studies used this dataset in the past for their experiment. In this study, we provide
a unique solution to detect the exact condition of the heart by determining five classes of
heartbeats, namely PVC, LBBB, RBBB, PACE, and APC. The computational complexity of
the proposed model was identified by using three components, including DERMA with
FrlFT, and classification models. The computational complexity of our proposed model
was calculated around O (N log2 N), where N represents the number of features. According
to the perspective of the computational cost, we observed that our proposed DERMA with
fusion technique provided more stability while changes in datasets occurred. Hence, it
was also observed throughout the experiment that normalization plays a vital role in both
dataset cases.
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Table 2. Performance Results of the Classification Models.

Dataset SVM KNN

MIT-BIH Acc (%) Sen (%) PPV (%) Acc (%) Sen (%) PPV (%)

Normal 0.92 0.98 0.98 0.94 0.97 0.92
PVC 1.00 1.00 1.00 0.98 0.95 0.97

PACE 0.95 0.97 0.99 0.99 0.94 0.96
AFIB 0.98 0.99 0.96 0.98 0.93 0.98
APC 0.99 0.98 0.97 0.99 0.96 0.99

SPNH
GSVT 0.70 0.71 0.68 0.59 0.80 0.87
AFIB 0.83 0.82 0.87 0.85 0.88 0.89

SB 0.82 0.84 0.90 0.91 0.92 0.89
SR 0.78 0.79 0.75 0.74 0.79 0.78

Acc, accuracy; Sen, sensitivity; PPV, positive predictivity.

Table 3. Performance comparison using MIT-BIH Arrhythmia.

Studies Acc (%) Sen (%) Sp (%) PPV (%)

[34] 99.88 99.93 NA 99.95
[35] NA 99.99 NA 99.97
[36] NA 87 99 85
[37] 92.73 7.35 96.70 88.01
[38] 96.38 97.88 97.56 95.46
[39] NA 78.8 NA 90.8

Proposed 99.98 99.96 99.9 99.98

6. Conclusions

DERMA with FrlFT-based fusion technique is thus proposed to extract the features
from ECG signals. MIT-BIH Arrhythmia and SPNH datasets were used in this experiment.
However, both signals have different sampling frequencies, so in this study, we resampled
the ECG signal at 128 Hz to maintain the simplicity and integrity of the algorithm. To
preprocess ECG signals, we used the traditional wavelet decomposition method to denoise
signals, whereas the usage of the fusion model increased the performance of the detection
of morphological values of ECG signals to classify the five classes of heartbeat efficiently.
Six types of features are extracted, which identify the actual variation in ECG signals to
simplify the detection of abnormal events. Moreover, this study utilized two supervised
models for the classification, namely KNN and SVM, which performed overwhelmingly,
and we observed that the performance using the MIT-BIH Arrhythmia dataset was more
remarkable than the SPNH dataset. Both classifiers were trained and tested using the two
datasets, which are quite challenging tasks to integrate; the purpose of using two datasets
together was to enhance the size of the dataset to train the learning algorithm efficiently.
On the other hand, the reason for using the SPNH dataset was that it contains already
preprocessed dataset with unique features. It was observed that our preliminary results are
promising and further improved the identification of the different types of abnormalities
that can lead to mortality.
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