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Abstract: Camel milk (CM) constitutes an important dietary source in the hot and arid regions of
the world. CM is a colloidal mixture of nutritional components (proteins, carbohydrates, lipids,
vitamins, and minerals) and non-nutritional components (hormones, growth factors, cytokines,
immunoglobulins, and exosomes). Although the majority of previous research has been focused on
the nutritional components of CM; there has been immense interest in the non-nutritional components
in the recent past. Reckoning with these, in this review, we have provided a glimpse of the recent
trends in CM research endeavors and attempted to provide our perspective on the therapeutic efficacy
of the nutritional and non-nutritional components of CM. Interestingly, with concerted efforts from
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the research fraternities, convincing evidence for the better understanding of the claimed traditional
health benefits of CM can be foreseen with great enthusiasm and is indeed eagerly anticipated.

Keywords: bioactive peptides; camel milk; cancer; diabetes; molecular signaling; exosomes; human
diseases; therapeutics

1. Introduction

It is widely recognized that camel milk (CM) is a valuable nutritional source for people
living in the hot and arid regions of the world. CM is a complex biological fluid that
contains not only nutritional components, including macronutrients and micronutrients,
but also non-nutritional components, such as hormones, growth factors, immune system
products, and exosomes [1–3].

Evidence has shown that CM is used for therapeutic benefits against various dis-
eases and conditions [4–9]. To this end, CM has been reported to provide therapeutic
benefits against various pathophysiological conditions, including diabetes, hypertension,
cancer, inflammatory and allergic responses as discussed in subsequent sections [1,7,10–13].
Amongst all these beneficial properties, its therapeutic potential against diabetes has been
extensively explored. Reports have shown that CM consumption not only lowers the preva-
lence of diabetes, but also improves the detrimental effects of hyperglycemic condition,
as well as reducing the insulin therapy required by type-1 diabetic patients [5–7,11,14–18].
The antidiabetic potentials of CM were mainly accredited to the presence of insulin
and/or insulin-like peptides in CM. However, this belief has undergone a paradigm
shift as a consequence of independent studies that have explicitly highlighted the fact
that that these insulin/insulin-like peptides are completely hydrolyzed by gastrointestinal
enzymes [19–21] This has prompted the researcher to study the CM protein hydrolysates
and their bioactive peptides; indeed, lately, this area of research has garnered much atten-
tion all across the globe [5,22–24].

Moreover, CM also possesses intriguing anti-microbial potentials, including antibac-
terial properties against both gram-negative and gram-positive bacteria, antifungal and
anti-viral properties [9,13,25–29]. These beneficial anti-microbial effects were mainly at-
tributed to the presence of greater amounts of protective proteins, as detailed in subsequent
sections [9,25].

Furthermore, CM has been used for its therapeutic benefits against various other
diseases, including jaundice, asthma, psoriasis, Crohn’s disease, autism and dropsy in
various parts of the world [4,26,30,31].

It has to be acknowledged that in the past, several studies have focused on camel
milk components, such as proteins, carbohydrates, and fatty acids [22,24,32–34]. Yet, in
recent years, CM components that have not previously been well appreciated, such as
extracellular vesicles (EVs), have also been actively researched, supported by technological
advancements [1,35]. Reckoning with these aspects in mind, in this review, we discuss
recent trends in CM research endeavors and provide a perspective on the therapeutic
efficacy of the nutritional and non-nutritional components of CM.

2. Brief Overview of Camel Milk (CM) Components
2.1. Nutritional Components (Macronutrients and Micronutrients)

Over the years, much attention has been diverted toward the consumption of CM
as an alternative to milk from other sources, apparently due to its therapeutic benefits
and lower allergenicity issues. Indeed, the physicochemical composition of CM differs
considerably from that of milk from other domestic dairy animals. It has been argued
that the physicochemical composition of CM is dependent on various factors, including
geographical origin, breed, age, parity, season, ecology, feed and feeding approach, and also
on the analytical measurement procedures used to measure the components [36,37]. Milk
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is a composite mixture of various proteins, carbohydrates, lipids, minerals, vitamins, etc.,
and CM is known to contain low amounts of fats, proteins, and oligosaccharides and high
amounts of vitamins, minerals, and water [38,39]. Among macronutrients, according to
meta-analysis and literature data, the fat composition of CM varies but is reportedly lower
than that of milk from other domestic animals [37]. The fat component consists mainly
of triglycerides and, importantly, very low levels of cholesterol [40,41]. Interestingly, the
constituent of CM that is considered to have the greatest impact on its nutritional value and
confer beneficial properties are proteins. Nevertheless, it is not entirely clear whether the
beneficial effects of CM can be accredited to a particular component acting on one specific
target or whether they are the result of the harmonious actions of multiple components in
the system [7].

An overview of various active research endeavors related to CM proteins in food
science is depicted in Figure 1. Basically, the main protein constituents of CM are casein
proteins (CPs) and whey proteins (WPs). The proportion of CPs in CM is 50–80%, consisting
of αS1-casein, αS2-casein, β-casein, and κ-casein, with an abundance of β-casein [42]. The
abundance of β-casein in CM has been considered responsible for the distinctive and intrigu-
ing biological characteristics of CM, akin to those of human milk [25]. Furthermore, CPs of
CM possess higher molecular weight than CPs of bovine milk (BM) [22,33,42]. In addition,
the dimensions of casein micelles in CM are greater than those of casein micelles in BM [43].
WPs represent another important constituent, comprising approximately 30% of total CM
proteins [44,45]. The major WPs in CM are α-lactalbumin (α-LA), camel serum albumin
(CSA), lactoferrin (LF), and thermostable immunoglobulins (Igs) (IgG and IgM). In contrast
to BM, wherein β-lactoglobulin (β-LG) represents the major WP component, the main WP
component in CM is α-LA (50%), followed by CSA (35%) [22,25,46]. The levels of β-LG in
CM are either very low or absent altogether. As β-LG is the main protein in BM responsible
for eliciting allergic responses, the absence of β-LG in CM is likely responsible for its
renowned anti-allergic characteristics [40,46]. Additionally, CM contains many proteins
possessing immunomodulatory properties, including peptidoglycan recognition proteins
(PGRPs), Igs, lactoperoxidase (LP), CSA, LF, insulin, and insulin-like proteins [37,38,47].
Among Igs, CM WPs are further reported to contain IgG1 and IgG2, IgG variants that are
not present in BM. Apart from CPs and WPs, CM has some milk fat globule membrane
proteins, such as milk fat globule-EGF factor 8, adipophilin, lactadherin, fatty acid synthase,
and xanthine dehydrogenase. Furthermore, CM has been reported to possess high amounts
of N-acetyl-β-glucosaminidase (NAGase), LP, and lysozymes (LZ) [24,48], which confer
anti-bacterial, anti-fungal and anti-viral properties.

Among micronutrients, both water and fat-soluble vitamins, i.e., A, D, E, K, B complex,
and C, are present in CM [39,49,50]. CM is also rich in minerals, which are present in the
following order of abundance: K > Cl > Ca > P > Na > Mg, Cu, Fe, Zn, etc. [24,32,38,50,51].
It has been reported that the Fe content of CM is approximately 10-fold that in BM and
that the K and Cu contents are also higher [38,50]. These elements play important roles
in various biological processes, serving either as catalytic or structural components or
having specific functions, all indispensable for cellular function [38,50], thereby imparting
additional value to CM. In particular, the concentrations of heavy metals in CM are in the
harmless range [38,50].
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Figure 1. Representative image delineating various active research endeavors related to CM in food sciences (A). Representative image delineating 
the beneficial effects of CM and its constituents against various human diseases (B).

Figure 1. Representative image delineating various active research endeavors related to CM in food sciences (A). Representative image delineating the beneficial
effects of CM and its constituents against various human diseases (B).



Life 2022, 12, 990 5 of 22

It is argued that most of these bioactive components, including the beneficial pro-
tein components (LF, LZ, Igs, PGRP, glutathione peroxidase, and superoxide dismutase),
minerals, and vitamins, are present naturally in the raw CM; other components, such as
bioactive peptides, are produced from their intact protein counterparts following digestive
action by digestive enzymes or through the action of microbial enzymes during fermenta-
tion [24,52,53]. Accumulating evidence has shown that these bioactive molecules represent
the pharmacologically active constituents of CM and have attracted much attention in
the recent past [14,54–56]. On a global scale, alternative and complementary medicines
have garnered great attention in biomedical research. It is widely accepted that the use
of various bioactive molecules can improve pathological conditions and promote cellular
homeostasis, while causing minimal side effects [57–59]. Accordingly, the nutraceutical
and biomedical importance of CM has been the focus of many research endeavors globally,
with many reviews recently compiled taking these aspects into consideration [24,30,52,60].
Representative tables delineating the therapeutic potential of CM and its constituents,
especially its bioactive peptides against various diseases, have been collated, as seen in
Tables 1 and 2.

Through systematic efforts using in vitro and in vivo models, our laboratory and
others have accumulated evidence on the therapeutic potential of CM components against
various disease conditions [10,14,32,33,53,61–66]. Nevertheless, despite the plethora of
recent studies on the pharmacological potential of protein hydrolysates (PHs) and bioactive
peptides in CM, there are many stumbling blocks to leverage their full potential, seemingly
due to a lack of advanced technologies, defined molecular approaches, and clinically
useful formulations. Moreover, thorough animal and clinical studies are needed to fully
determine the efficacy of these bioactive molecules in a true sense. The bio-availabilities
of these molecules are another challenge, as these molecular entities have to be resistant
toward the gastro-intestinal (GI) digestive enzymes. Thereafter, they have to be absorbable
through the GI barrier in appropriate amounts so as to finally enter into the blood-stream
to reach their target in pharmacologically active form to exert their activities. Reckoning
with this in mind, there is a consensus that there is a need to develop strategies to utilize
these hydrolysates/bioactive peptides in a commercially efficient manner. In parallel, it is
also important to thoroughly assess their toxicity profile, stability, and allergenicity issues
as well [61,67]. Much effort has been expended on developing various pharmacologically
relevant formulations/nano-formulations aimed at revolutionizing the therapeutic regimen
of CM-derived PHs and bioactive peptides [61,67,68]. Indeed, these investigations will be a
challenge for the coming years; nevertheless, there are many hopes as well.



Life 2022, 12, 990 6 of 22

Table 1. Representative table delineating the therapeutic potential of Camel Milk and its constituents.

S.No Camel Milk Constituents Cell Line/Animal Model/Assay Used Mechanism Reference

Cancer

Nutritional Components

1 Camel Milk Human Hepatoma Cell Line (Hep-G2) and Human
Breast Cancer Cell Line (MCF-7) Induction of Apoptosis [69]

2 Camel Milk Murine Hepatoma Hepa 1c1c7 Cell Line
Modulation of the expression of cancer-related genes
(Cyp1a1), (Nqo1), and (Gsta1) at the transcriptional

and post-transcriptional levels
[70]

3 Camel Milk Human Colorectal Cancer Cell line (HCT-116) and
Breast Cancer Cell Line (MCF-7) Induction of Autophagic Cell Death [71]

4 Lyophilised Camel Milk Human Breast Cancer Cell Line (BT-474) Induction of Apoptosis [72]

5 Camel Milk Lactoferrin Human Colon Cancer Cell Line (HCT-116) Inhibition of Human colorectal cancer cell line (HCT-116)
proliferation and DNA damage inhibitory activities [2]

6
Camel Milk fermented with Camel Milk probiotic
strain Lactococcus lactis KX881782 (Lc.K782) and

control Lactobacillus acidophilus DSM9126 (La.DSM)

Human Colorectal Adenocarcinoma Cell Line
(Caco-2), Human Breast Cancer Cell Line (MCF-7), and

and Human Adenocarcinoma Cell Line (HELA)
Inhibition of proliferation [12]

7

Camel Milk fermented with Camel Milk probiotic
strains Lb. reuteri-KX881777, Lb. plantarum-KX881772,

Lb. plantarum-KX881779 and a control strain Lb.
plantarum DSM2468

Human Colorectal Adenocarcinoma Cell Line
(Caco-2), Human Breast Cancer Cell Line (MCF-7) and

Human Adenocarcinoma Cell Line (HELA)
Inhibition of proliferation [73]

8 Camel Milk, Casein and Whey Proteins Human Breast Cancer Cell Line (MCF-7) Inhibition of proliferation as evident through MTT
assay [74]

9 Camel Milk and Whey proteins Human Adenocarcinoma Cell Line (HELA) Inhibition of proliferation as evident through MTT
assay [75]

10 TR35-An active fraction from Xinjiang Bactrian
Camel Whey

In vitro Human Esophageal Carcinoma Cell Line
(Eca-109)

In vivo BALB/c nude mice
subcutaneously injected with 2 × 106 Eca-109 cells

Inhibition of Eca-109 cell proliferation and induction
of apoptosis [76]

11 Camel Milk Induced diethylnitrosamine and phenobarbitone
Hepatic Cancer Wistar Rat Model

Potent Inhibitory effect on hepatocarcinogenesis in
Wistar Rats was observed [77]

12 Camel Milk Whey Protein Induced Azoxymethane (AOM)/Dextran sodium
sulfate (DSS) Mouse Model

Inhibition of inflammatory colorectal cancer development
via down-regulation of pro-inflammatory cytokines [78]
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Table 1. Cont.

S.No Camel Milk Constituents Cell Line/Animal Model/Assay Used Mechanism Reference

13 Camel Milk Sponge implant angiogenesis Male Swiss Albino
Mice Model

Inhibition of inflammatory angiogenesis via
down-regulation of pro-angiogenic and

pro-inflammatory cytokines
[79]

Non-Nutritional Components

14 Camel Milk Exosomes Human Colorectal Cancer Cell Line(HCT-116) and
Human Breast Cancer Cell Line (MCF-7) Induction of Autophagy [1]

15 Camel Milk Exosomes Albino Rat Model
Mitigation of oxidative stress and immune-toxic

responses induced by the chemotherapeutic drug viz.
cyclophosphamide (CTX)

[3]

16 Camel Milk Exosomes HepaRG cells Potential apoptotic, anti-inflammatory, and
anti-angiogenesis effects against HepaRG cells [80]

Hypertension

1 Camel Milk Protein and Lipid fractions Colorimetry based analytical technique Inhibition of Angiotensin-1 converting enzyme (ACE) [33]

2 Bioactive Peptides from Camel Milk
Protein Hydrolysates Colorimetry based analytical technique Inhibition of Angiotensin-1 converting enzyme (ACE)

and anti-inflammatory responses [10]

3 Bioactive Peptides from Camel Milk
Casein Hydrolysates Colorimetry based analytical technique Inhibition of Angiotensin-1 converting enzyme (ACE)

and radical scavenging activities [81]

4
Camel Milk fermented with Camel Milk probiotic
strain Lactococcus lactis KX881782 (Lc.K782) and

control Lactobacillus acidophilus DSM9126 (La.DSM)
Colorimetry based analytical technique Inhibition of Angiotensin-1 converting enzyme (ACE) [12]

5

Camel Milk fermented with Camel Milk probiotic
strains Lb. reuteri-KX881777, Lb. plantarum-KX881772,

Lb. plantarum-KX881779 and a control strain Lb.
plantarum DSM2468

Colorimetry based analytical technique Inhibition of Angiotensin-1 converting enzyme (ACE) [73]

6 Fermented Skim Camel Milk Spontaneously Hypertensive Rats Attenuation of systolic and diastolic blood pressure,
Inhibition of Angiotensin-1 converting enzyme (ACE) [82]

Diabetes

1 Camel Milk and Protein Fractions Human Embryonic Kidney Cell Line (HEK-293) Allosteric effect on insulin receptor conformation and
activation; and modulation of downstream signalling [15]
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Table 1. Cont.

S.No Camel Milk Constituents Cell Line/Animal Model/Assay Used Mechanism Reference

2 Camel Milk Whey Protein and Camel Milk Whey
Protein Hydrolysates

Human Liver Cancer Cell Line (Hep-G2) and Human
Embryonic Kidney Cell Line (HEK-293)

Inhibition of Dipeptidyl peptidase-IV (DPP-IV),
Activation of insulin receptor and Positive Regulation

on Glucose Uptake
[14]

3 Camel Milk Protein Hydrolysates Colorimetry based analytical technique Inhibition of α-amylase [63]

4 Camel Milk Whey Protein Hydrolysates Colorimetry based analytical technique Inhibition of α-amylase and α-glucosidase [54]

5 Camel Whey Protein Hydrolysates Colorimetry based analytical technique Inhibition of Dipeptidyl peptidase-IV (DPP-IV)
and inflammation [62]

6 Camel Milk Protein Hydrolysates Colorimetry based analytical technique Inhibition of Dipeptidyl peptidase-IV (DPP-IV) [65]

7 Camel Milk Protein Hydrolysates Colorimetry based analytical technique Inhibition of Dipeptidyl peptidase-IV (DPP-IV) [64]

8 Camel Whey Protein Enriched Hydrolysates Colorimetry based analytical technique Inhibition of Dipeptidyl peptidase-IV (DPP-IV) [64]

9 Camel Milk Protein Hydrolysates Streptozotocin (STZ)-induced Diabetic Rats

Potent Hypoglycemic activity, as evident by reduction
in fasting Blood Glucose and Oral glucose tolerance

test (OGTT) levels; Preservation of β-cells was
also observed

[53]

10 Camel Milk Protein Lactoferrin HEK-293 and Hep-G2 cells Modulation of Insulin Receptor and
downstream signalling [6]

Anti-microbial

1 Camel Milk Casein Protein hydrolysates and
its fraction

Gram positive bacteria: Staphylococcus aureus, Bacillus
cereus and Listeria monocytogenes

Gram negative bacteria: Escherichia coli

Significant anti-microbial activity was observed
against all the microbial strain tested for all

the fractions
[27]

2 Camel Whey Proteins and hydrolysates Gram negative bacteria: Escherichia coli Dh1α
Improved anti-microbial activities of Camel Whey

Proteins were observed, particularly for limited
Proteolysed fractions

[28]

3
Lysozyme(LZ), lactoferrin(LF), lactoperoxidase(LP),

immunoglobulin G (IgG) and secretory
immunoglobulin A(Ig A) extracted from camel milk

Gram positive bacteria: Lactococcus lactis subsp. cremoris
Gram negative bacteria: Escherichia coli, Staphylococcus

aureus, Salmonella typhimurium
Virus: Rotavirus

Camel milk LF showed intriguing antibacterial activity.
The camel milk LP was bacteriostatic against the

Gram-positive strains and was bactericidal against
Gram-negative cultures. The immunoglobulins had

little effect against the bacteria but high titres of
antibodies against rotavirus were found in camel milk.

The LP system was ineffective against rotavirus

[29]
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Table 1. Cont.

S.No Camel Milk Constituents Cell Line/Animal Model/Assay Used Mechanism Reference

4 Camel Casein Proteins and hydrolysates

Gram positive bacteria: Listeria
innocua, Bacillus cereus, and Staphylococcus aureus

Gram-negative bacteria: Escherichia coli XL1 bleu and
Pseudomonas aeruginosa

Camel milk casein hydrolysates exhibited
anti-bacterial activity; Gram-positive strain growth

was not affected by intact camel casein fraction,
whereas the respective hydrolysates slightly inhibited

the growth of the bacteria

[83]

5 Camel and Cow Casein Proteins and hydrolysates Candida krusei, Candida parapsilosis
Camel milk protein hydrolysates were more potent in
inhibiting pathogenic Candida species compared with

cow milk protein hydrolysates
[84]

Table 2. Representative table highlighting some of the putative bioactive peptides from Camel Milk.

S.No Bioactive Peptide Mechanism Reference

Hypertension

1 AIPPKKNQD Inhibition of Angiotensin-1 converting enzyme (ACE) [85]

2 DLENLHLPLPL; LTDLENLHLPLPL;TDLENLHLPLP; TDLENLHLPLPL;
TLTDLENLHLPLPL Inhibition of Angiotensin-1 converting enzyme (ACE) [86]

3 LSLSQFKVLPVPQ; KVLPVPQQMVPYPQ;TDLENLHLPLPL Inhibition of Angiotensin-1 converting enzyme (ACE) [87]

4 AEWLHDWKL; SHSPLAGFR; LTMPQWW; CLSPLQMR and CLSPLQFR Inhibition of Angiotensin-1 converting enzyme (ACE) [10]

5 QSAPGNEAIPP Inhibition of Angiotensin-1 converting enzyme (ACE) [88]

6 MVPYPQR Inhibition of Angiotensin-1 converting enzyme (ACE) [89]

Diabetes

1 FLQY; FQLGASPY; ILDKEGIDY; ILELA; LLQLEAIR; LPVP; LQALHQGQIV; MPVQA; and SPVVPF Inhibition of Dipeptidyl peptidase-IV (DPP-IV) [90]

2 VPV, YPI and VPF Inhibition of Dipeptidyl peptidase-IV (DPP-IV) [64]

3 DNLMPQFM and WNWGWLLWQL Inhibition of Dipeptidyl peptidase-IV (DPP-IV) [63]

4 INNQFLPYPYWL and IPAVF Inhibition of Dipeptidyl peptidase-IV (DPP-IV) [65]



Life 2022, 12, 990 10 of 22

2.2. Pharmacological Properties of CM Bioactive Molecules against Various Pathological Conditions
2.2.1. Molecular Intricacies of Anti-Cancer Effects

Cancer is a very complex disease caused by genetic and/or epigenetic changes that
lead to uncontrolled cell growth. According to GLOBOCAN 2020 reports, cancer is the
second leading cause of death worldwide, with an estimated 19.3 million cases diagnosed
and 10.0 million deaths [91]. The report also predicts that the number of cases will nearly
double by 2040 [91]. During tumorigenesis and tumor progression, cancer cells undergo
several alterations, including gaining the ability to proliferate, independent of normal
growth-promoting or inhibitory signals, invading and migrating to surrounding or dis-
tant tissues/sites, promoting angiogenesis, escaping apoptosis, and avoiding replicative
senescence and immune responses. It has been posited that these characteristic features
are acquired from alterations in cellular signaling pathways that, in normal cells, regulate
controlled cell growth.

Traditionally, it was believed that the consumption of CM helped reduce the incidence
of cancers; however, molecular evidence for this health benefit is limited [70,71,74]. Various
in vitro studies have revealed the inhibitory effects of CM and its constituents against vari-
ous forms of cancer, apparently through induction of apoptotic pathways [2,12,69,72–76].
In parallel, animal experimental data have also demonstrated the inhibitory potential of
CM and its constituents against various forms of cancer [77–79]. Interestingly, CM has been
shown to interfere with the expression of cancer-related mediators at both gene and protein
levels [69]. Furthermore, apart from investigations into the traditional processes, reports
have linked autophagic responses with the ameliorative effects of CM against cancer [71].
Autophagy, a process through which the system maintains cellular homeostasis through
the removal of dysfunctional organelles and/or dysfunctional/misfolded proteins, has
also been studied in relation to particular complications [92]. To this end, Krishnankutty
et al. showed that CM exerts anti-proliferative effects on human colorectal cancer cells
by orchestration of autophagic responses [71]. An overview of the autophagy process,
together with the plausible targets of CM, is illustrated in Figure 2. Interestingly, using
the GFP-LC3 puncta assay, Krishnankutty et al. clearly showed an increment in LC3-II
formation following treatment with CM. Moreover, a dose-dependent decrease in p62
(sequestosome 1) was observed following treatment with CM. A dose-dependent decrease
in the expression of Atg5-12 proteins was observed in two cell lines studied following
treatment with CM. Collectively, the group convincingly demonstrated that CM exerted
cytotoxicity responses toward human colorectal cancer cells, seemingly through orchestra-
tion of autophagic responses, although the identity of the component of CM responsible
was not ascertained [71]. Further studies in this direction would be highly instrumental in
identifying the active “wonder” component(s) of CM that can selectively kill cancer cells.

Furthermore, as a matter of fact, widely used chemotherapeutic drugs have been
shown to manifest many negative side effects. Nevertheless, CM has been shown to mani-
fest many beneficial properties without any side effects. Interestingly, these studies suggest
that components of CM can modulate signaling cascades and, thus, may represent an
alternative to traditional chemotherapeutic drugs and/or act as adjuncts and complements
in the management of various disorders, including cancer.

2.2.2. Molecular Intricacies of CM’s Anti-Hypertensive Potential

Hypertension, a high blood pressure (BP) condition, leads to severe health compli-
cations and increases the risk of heart disease, stroke, and eventually death. Elevated BP
causes long-term detrimental effects on the heart and other organs. In recent years, due to
the increasing incidence of hypertensive heart disease, hypertension has emerged as a lead-
ing cause of cardiovascular-related morbidity and mortality worldwide [57,58,93]. Several
explanations for the mechanism governing hypertension have been proposed [94–96]. Ac-
cumulating studies have shown that CM and CM-derived proteins and peptides have anti-
hypertensive effects [12,22,33,73,82]; generally attributed to the inhibition of angiotensin-
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converting enzyme (ACE) [33,81,97]. To this end, we have recently performed comparative
profiling of the bio-macromolecular fractions of CM and BM and ascertained their anti-
hypertensive potentials following simulated gastrointestinal digestion [33], and our recent
report identified novel anti-hypertensive bioactive peptides from CM protein hydrolysates
(CMPHs) and delineated the underlying molecular mechanism of these peptides [10].
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The renin–angiotensin system (RAS) is a principal regulatory hormonal system that
plays important roles in hypertension [57,58,96,98]. The important effector RAS hormone
angiotensin II (Ang II), a vasoconstrictive peptide, has been implicated in regulating the
physiological effects of the regulation of BP and is associated with the pathophysiology
of hypertension [96,98,99]. Ang II has also been associated with inflammatory responses,
endothelial dysfunction, atherosclerosis, and congestive heart failure. Reports have indi-
cated various effects of Ang II, depending on the cell/tissue type under consideration and
the duration of exposure (acute versus chronic) [73,96,100]. Ang II is derived from Ang
I through the activity of ACE [101,102]. ACE, or kininase II, also plays a key role in the
kallikrein-kinin system by cleaving bradykinin to inactive peptides; which, in turn, also
have effects on hypertensive responses (Figure 3). Ang II receptors are categorized into two
types based on their structure: Ang II type 1 receptor (AT1R) and Ang II type 2 receptor
(AT2R), each with a distinctive downstream signaling cascade [101,102]. Signaling through
AT1R is envisaged to mediate vasoconstriction, aldosterone secretion, catecholamine release,
and cardiac remodeling [103]. However, signaling through AT2R has opposite effects to
those mediated by AT1R and has been shown to induce vasodilation [104] and attenuation
of cardiac remodeling [105,106].
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Figure 3. Representative image delineating the plausible anti-hypertensive effect of CM. At the
molecular level, the renin-angiotensin system (RAS) is at the center of the regulation of hypertension.
Angiotensin II (Ang II), an important effector RAS hormone, has been implicated in regulating the
physiological effects of the regulation of blood pressure and is associated with the pathophysiology of
hypertension. Basically, Ang II is derived from Ang I through the activity of Angiotensin Converting
Enzyme (ACE). ACE, or kininase II, also plays a key role in the kallikrein-kinin system by cleaving
bradykinin to inactive peptides; which, in turn, also affect hypertensive responses (A). Molecular
signaling through AT1R is envisaged to mediate aldosterone secretion, ADH secretion, and the arterial
vasoconstriction, which ultimately leads to hypertensive response (B). A detailed overview of the
molecular signaling mediated by Ang II-AT1R is delineated (C). Interestingly, CM and its constituents
have been reported to inhibit ACE.

Ang II has been shown to mediate downstream signaling through the action of G
protein- and non-G protein-related signaling mediators [96,98]. However, Ang II also medi-
ates its functions via various mitogen-activated protein kinases, receptor tyrosine kinases
and non-receptor tyrosine kinases [98]. In addition, Ang II-AT1R-mediated NAD(P)H
oxidase activation, which has been widely implicated in vascular inflammatory and fibrotic
responses, has been studied in detail. These signaling pathways regulate normal cellular
function and/or disease conditions. A detailed overview of the signal transduction path-
ways related to Ang II-mediated hypertensive responses is delineated in Figure 3. The
plausible target for CM and its constituents has also been highlighted (Figure 3).

Interestingly, the anti-hypertensive potential of CM proteins, PHs and/or bioactive
peptides is an important emerging area with promising prospects. It is important to un-
derstand how these CM bioactive molecules influence the cellular system at the molecular,
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cellular, and organelle levels. Further, it is anticipated that the underlying events do not
function in isolation but rather influence each other either directly or indirectly, and ulti-
mately affect the underlying responses. Thus, it is equally imperative to understand how
these CM bioactive molecules influence these dynamically intertwined responses.

2.2.3. Molecular Intricacies of CM’s Anti-Diabetic Potential

Diabetes mellitus (DM) is a group of metabolic disorders characterized by a chronic
hyperglycemic condition resulting from defects in insulin secretion, insulin action, or both.
The prevalence of diabetes is escalating rapidly, and the WHO has predicted that the
number of adults with diabetes will have almost doubled by 2030 [107,108]. Accumulating
evidence has highlighted the anti-diabetic potential of CM. To this end, a trial study by
Agrawal et al. have shown that consumption of CM led to zero prevalence of diabetes in
a community consuming CM regularly, compared to other communities [16]. Beside this,
Alkurd et al. have highlighted the effect of CM on glucose homeostasis in diabetic patients
through a systematic review and meta-analysis of randomized controlled trials [11,109].

Nevertheless, as of yet, the underlying molecular intricacies related to their beneficial
effects are poorly understood [7,14,53,63,109,110]. Although various studies have offered
plausible mechanistic insights, the issue still remains contentious [7,15,111,112]. It has been
proposed that the presence of high levels of insulin, or insulin-like molecular entities, in CM,
the protective effect of small-sized Igs in CM on pancreatic β-cells, and the absence of CM co-
agulation in the gastrointestinal tract, all contribute to CM’s anti-diabetic potential [34,113].
Nevertheless, these aspects have undergone a paradigm shift as a consequence of inde-
pendent studies that have explicitly highlighted that these insulin/insulin-like peptides
are completely hydrolyzed by the gastrointestinal enzymes [19–21] This has prompted the
researcher to study the CM protein hydrolysates and their bioactive peptides; indeed, lately
this area of research has garnered much attention all across the globe [5,22–24].

As a matter of fact, the pathophysiology related to diabetes is inherently complex, and
it has been argued that numerous complex changes lead to a pathological condition that
eventually affects the system in a multifaceted manner. To this end, efforts at our labora-
tory have been driven by the need to understand the molecular and cellular basis of the
anti-diabetic potential of CM [7,14,15,53,54,62]. Recently, we identified positive bioactive
peptides from CMWPH demonstrating dual action on ACE in vitro and on the insulin
receptor in cell lines [14]. Interestingly, CM peptides showed positive allosteric modulation
of the insulin receptor, and some inhibited ACE activity in vitro. Direct modulation of
insulin receptor activity and its downstream signaling pathways, such as ERK1/2 and Akt,
has been demonstrated [14,15]. This not only lends further support to the anti-diabetic
effects of CM but also unlocks promising avenues of investigation toward identifying the
CM bioactive agent and its potential application in the management of diabetes. Other
bioactive peptides from CMWPH with positive effects against α-amylase and α-glucosidase
have been reported by Baba et al., 2021 [24]. The inhibitory effects of CMWPH against
dipeptidyl peptidase IV (DPP-IV) and inflammation have also been highlighted [62]. Sim-
ilarly, Nongonierma et al. have delineated the efficacy of novel peptides from CMPH,
CMWPH, and CMWP-enriched hydrolysate against DPP-IV inhibition [64,65]. In fact,
human trials have also highlighted the anti-diabetic potential of CM [11,16–18,114–116].
Thus, we and others have highlighted the potential implication of CMW protein/peptides
in the anti-diabetic properties of CM. In the same line, one of our recent studies found that
besides these CMW protein/peptides, LF represents another potential candidate in CM.
The data of the study convincingly explains that it might be one of the prospective wonder
anti-diabetic agents responsible for the anti-diabetic potential of CM [6]. Collectively, all
these studies may constitute a substantial advancement toward the identification of the
most prospective anti-diabetic agent contained in CM.

In the recent past, research delineating the anti-diabetic properties of CM has revealed
that these CM components target many key intracellular signaling pathways, especially
those involved in insulin function and/or glucose homeostasis [6,14,15,53]. To this end,



Life 2022, 12, 990 14 of 22

there have been many perspectives put forward to explain the anti-diabetic effects and other
beneficial potentials of CM and its constituents [11,18,114,115,117–119]. In the same line,
our previous review, entitled “The molecular basis of the anti-diabetic properties of camel milk”
provides a better understanding of the anti-diabetic effects of CM proteins/peptides [7].
Taken together, all these studies provide a sound basis to better understand the putative
underlying mechanism for their anti-diabetic potential. A representative image delineating
the plausible anti-diabetic effect of CM and its constituents has been provided in the
Figure 4.
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Figure 4. Representative image delineating the plausible anti-diabetic effect of CM. Food breakdown
in the gastrointestinal tract (GI) leads to release of gut hormones, such as Glucagon-Like Peptide-
1 (GLP-1) and Glucose Dependent Insulinotropic Polypeptide (GIP), which seemingly stimulate
glucose-dependent insulin secretion by the pancreatic Beta cells. Insulin thereby promotes glucose
uptake by the insulin sensitive tissues. Mechanistically, insulin, upon binding to insulin receptors,
initiates a signaling cascade that eventually induces translocation of glucose receptors (GLUTs) to the
membrane whereby glucose can be up-taken. These gut hormones are cleaved by DPP-IV enzymes
which leads to attenuation of insulin secretion. Interestingly, CM and its constituents have been
reported to activate GLP1/GIP and inhibit Dipeptidyl peptidase-IV (DPP-IV), activate insulin receptor
and inhibit glucagon receptor. Additionally, it has been reported that CM embodies insulin-like
peptides that mimic insulin responses, another aspect adding to their anti-diabetic potential.
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2.2.4. Molecular Intricacies of CM’s Anti-Microbial Potential

Infectious diseases are one of the leading causes of mortality and morbidity world-
wide [120]. CM possesses intriguing anti-microbial potential. including antibacterial
properties against both gram-negative and gram-positive bacteria [9,13,25–29]. Studies
have shown CM’s inhibitory effects against various bacterial strains, including gram-
positive strains, such as Staphylococcus aureus, clostridium, Listeria monocytogenes, Bacillus
cereus, and gram-negative strains, including Escherichia coli, Klebsiella pneumoniae, Salmonella
typhimurium, and Helicobacter pylori etc. [27,52,83]. Besides these effects, CM possesses
antiviral properties against hepatitis C virus, cytomegalo virus, rotavirus, herpes simplex
virus-1 and human immunodeficiency virus [121]. Moreover, they have been reported to
possess antifungal properties (Candida albicans); although much less literature is available
in this regard [84,122]. It has been argued that these effects were mainly attributed to
the presence of greater amounts of LF, LZ, Igs, NAGase, PGRPs and LP etc. [9,25]. It
is reasonable to argue that, although limited reports are available on CM proteins and
their hydrolysates for their anti-microbial activities, the results are promising [26]. There
is general consensus that more extensive studies exploring the anti-microbial potentials
of CM protein hydrolysates and bioactive molecules against a wide range of pathogenic
microorganisms in vitro as well as in vivo are of vital and immediate importance.

2.3. Non-Nutritional Components (CM Exosomes)

While the nutritional components of CM have long been recognized and studied in
depth, research on the non-nutritional components of CM has recently accelerated [1,3].
Since antiquity, milk, especially CM, has been shown to possess various desirable phar-
macological properties [1,15,52,110]. As already mentioned, accumulating evidence has
shown that CM bioactive molecules possess various beneficial characteristics, includ-
ing anti-oxidant, anti-microbial, anti-radical, anti-cancer, anti-hypertension, anti-diabetic,
anti-inflammatory, anti-allergic, anti-autism, immunomodulatory effects, etc. [7,15,24,63].
Recent studies have highlighted that these properties can be attributed to the presence of
EVs, especially exosomes [1,3]. Milk exosomes have attracted much attention, primarily
due to their intrinsic beneficial properties but also because they can serve as nanodrug
delivery platforms for therapeutic agents and molecular entities. Further fabrication of exo-
somes with targeting moieties would allow targeted delivery of drugs/molecular entities
to the desired sites.

Exosomes are naturally occurring, nano-sized (20–100 nm) EVs that are released from
almost every cell type [123,124]. They are found throughout the body in the extracellu-
lar environment and biofluids, including cerebrospinal fluid, serum, saliva, urine, and
milk [123–127]. They are mechanistically and functionally diverse from their cellular coun-
terparts and are more heterogeneous, depending on their origin. They are lipid bilayer
assemblies containing membrane-bound and internal proteins and a wide range of nucleic
acid moieties [124]. It is thought that cellular communication by exosomes occurs through
their ability to shuttle cargoes of proteins, circulating DNA, noncoding RNAs, lipid moi-
eties, and metabolites into their surrounding milieu [124,128–130]. For example, it has
been shown that milk exosomes shuttle genetic material from parents to offspring, thereby
playing a role in the regulation of the infant’s development [129].

3. Pharmacological Properties of CM Exosomes

Evidence has shown that exosomes derived from human milk, BM, and CM exhibit
antitumor activities [35,131]; however, reports on their anti-diabetic and anti-hypertensive
potential are scarce.

3.1. Molecular Intricacies of Their Anti-Cancer Potential

There are many reports on the anti-cancer potential of milk-derived exosomes from
bovine sources, and research on CM exosomes is still in its infancy. To the best of our
knowledge, Badawy et al. were the first to evaluate the potential effects of CM and its
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exosomes against breast cancer; they evaluated their chemotherapeutic potential and
provided evidence for the underlying mechanism of action [1]. They suggested that the
anti-cancer effect of CM exosomes was mediated through the regulation of apoptosis and
suppression of angiogenesis, metastasis, and inflammatory responses and that these effects
were attributable to miRNA constituents of the exosomes [1]. CM exosomes have also
been reported to mitigate oxidative stress and immuno-toxic responses induced by the
chemotherapeutic drug cyclophosphamide in an albino rat model [3]. Recently, El-Magd
have envisaged the apoptotic, anti-inflammatory, and anti-angiogenesis properties of CM
exosomes from colostrum against HepaRG cells [80].

3.2. CM Exosomes as a Natural Biogenic Nano-Delivery Platform for Therapeutics

Milk-derived exosomes have garnered much interest, not only for their intrinsic
beneficial properties, but also for their ability to serve as biomimetic nanodrug delivery
platforms. The use of milk exosomes as a delivery vehicle for therapeutic drugs and/or
siRNA, and the development of exosome-based targeted delivery platforms, constitute an
emerging and exciting field.

Gupta et al. were the first to examine the potential of bovine exosomes as a biogenic
nano-delivery platform for chemotherapeutic drugs, such as paclitaxel, curcumin, antho-
cyanidins, celastrol, and siRNA [132–136]. Yassin et al. described a method for isolating CM
exosomes using differential ultracentrifugation and provided an in-depth characterization
of CM exosomes [66]. They showed that CM exosomes have a truncated 35-kDa protein of
the TSG101 marker (compared with the mammalian 43-kDa protein) and an average size of
approximately 30 nm. Additionally, using phospholipidomic analysis, PC was found to be
the most abundant phospholipid. A detailed analysis of EVs isolated from CM using liquid
chromatography with tandem mass spectrometry revealed a variety of protein signatures
associated with small EVs, including ADAM10, TSG101, CD3, CD63, CD81, HSP70, and
HSP90, which suggests that CM EVs are rich in exosomal proteins. While CM exosomes
offer exciting research potential, to leverage their full potential, further standardization
and optimization of isolation protocols and improved quality control are important aspects
that must not be overlooked. It is equally important to assess the individual components of
exosomes responsible for the underlying effects, in parallel with the assessment of their
potential toxicity issues.

4. Conclusions

CM is widely regarded to possess extraordinary medicinal properties, including anti-
cancer, anti-diabetes, anti-hypertension, anti-inflammatory, anti-allergic effects and so on.
This review is expected to stimulate interest in CM research and broaden interest in the
development of modern CM-based therapeutic interventions with the potential to revolu-
tionize CM-based therapeutic regimes against a myriad of diseases. Previously, most of the
beneficial properties of CM have been demonstrated for intact CM proteins. Nevertheless,
in recent time, research has mainly focused on generating bioactive hydrolysates from
CM proteins and exploring their potential beneficial effects. Given the ongoing research
drive to elucidate the therapeutic benefits of CM, functional and nutraceutical products
derived from CM may imminently be commercially available, which would definitely aid in
improving worldwide health status. Furthermore, in order to broaden our understanding
of the underlying molecular mechanism for the traditionally acclaimed health benefits
of CM; a more practical approach may involve systems and biology and bio-informatics
approaches to pinpoint signal hubs, molecular mediators and cross-roads that are common
to all of the molecular signaling pathways. Certainly, the use of sophisticated animal
models, multi-model co-culture systems, and novel adaptive experimental trial designs
will greatly enhance CM-based therapeutic research efforts. Indeed, all these studies could
provide a foundation for rationally designed, molecularly targeted, CM-derived bioactive
molecule-based therapeutic interventions.
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CM Camel milk
CP Casein protein
WP whey protein
α-LA α-Lactalbumin
CSA camel serum al-bumin
LF lactoferrin
ACE Angiotensin converting Enzyme
Ang II Angiotensin II
CMPH CM protein hydrolysates
RAS Renin Angiotensin system
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