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Abstract: Type 2 diabetes mellitus (T2DM) is one of the world’s leading causes of death and life-
threatening conditions. Therefore, we review the complex vicious circle of causes responsible for
T2DM and risk factors such as the western diet, obesity, genetic predisposition, environmental factors,
and SARS-CoV-2 infection. The prevalence and economic burden of T2DM on societal and healthcare
systems are dissected. Recent progress on the diagnosis and clinical management of T2DM, including
both non-pharmacological and latest pharmacological treatment regimens, are summarized. The
treatment of T2DM is becoming more complex as new medications are approved. This review is
focused on the non-insulin treatments of T2DM to reach optimal therapy beyond glycemic manage-
ment. We review experimental and clinical findings of SARS-CoV-2 risks that are attributable to
T2DM patients. Finally, we shed light on the recent single-cell-based technologies and multi-omics
approaches that have reached breakthroughs in the understanding of the pathomechanism of T2DM.
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1. Introduction

Diabetes Mellitus (DM) is classified into three categories: type 1 diabetes mellitus
(T1DM, juvenile diabetes), type 2 diabetes mellitus (T2DM, adult-onset diabetes), and
other special types such as gestational diabetes (GDM), endocrinopathies, drugs, and
chemical-induced forms, among which T2DM represents nearly 90% of cases (Table 1). The
main hallmark of DM is hyperglycemia ≥126 mg/dL (7.0 mmol/L) and a normal fasting
blood sugar of between 70 and 99 mg/dL (from 3.9 to 5.5 mmol/L) [1]. Here, we only
mention T1DM and GDM and review T2DM; the other forms are described in Table 1 and
reviewed elsewhere [2–7]. T1DM is characterized by a lack of insulin production with
pancreatic β-cell destruction through an idiopathic autoimmune mechanism. GDM is a
frequent pregnancy complication in which spontaneous hyperglycemia appears, even in
non-obese women, affecting approximately 10–14% of pregnancies worldwide [8]. GDM
can be controlled with a low carbohydrate diet and/or insulin administration during
pregnancy, and glucose metabolism should be regularly monitored after delivery because
it can develop into persistent T2DM and even cardiovascular disease (CVD) in the mother
and/or in the descendant [8]. Human placental lactogen is one of the most important
factors during the development of gestational diabetes, and it is characterized by low
insulin sensitivity or insulin resistance (IR) that leads to chronic hyperglycemia during

Life 2022, 12, 1205. https://doi.org/10.3390/life12081205 https://www.mdpi.com/journal/life

https://doi.org/10.3390/life12081205
https://doi.org/10.3390/life12081205
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/life
https://www.mdpi.com
https://orcid.org/0000-0002-6998-5632
https://doi.org/10.3390/life12081205
https://www.mdpi.com/journal/life
https://www.mdpi.com/article/10.3390/life12081205?type=check_update&version=2


Life 2022, 12, 1205 2 of 23

pregnancy. This hormone is capable of provoking alterations and modifications in the
insulin receptors [9]. T2DM also develops because of IR and/or faulty insulin secretion.
T2DM is now being diagnosed more often in children and adolescents with obesity due to
β-cell malfunction or unresponsiveness to insulin in the organs; in this vicious circle, the
insulin secretion is insufficient to compensate for IR [10,11]. IR is linked to environmental
factors, low physical activity, high-fat diet, obesity, aging in western society, and genetic
background [10,12–14]. Genetic predisposition has been described for the development of
T2DM via the dysfunction of several genes. Early genome-wide association studies (GWAS)
identified approximately 70 genes with mutations or with single-nucleotide polymorphisms
(SNPs), and recent multi-ancestry genetic studies found more than 500 risk loci associated
with a higher risk for the manifestation of T2DM; the full list of these loci has been reviewed
elsewhere [15–17]. T2DM represents the disturbance of the metabolomic homeostasis via
a low insulin:glucagon ratio, with decreased insulin and increased glucagon production
pushing the balance toward hyperglycemia. While insulin supports anabolic processes,
the deposition of glucose, the production of proteins, and reductions in free fatty acids,
glucagon supports catabolic processes such as the mobilization of glucose and the release
of free fatty acids from adipose tissue [18,19]. The conditions of elevated blood glucose and
free fatty acid level influences the composition of the microbiota in the gut and the release
of pro-inflammatory mediators, and the generation of reactive oxygen species leads to
mitochondrial dysfunction and endoplasmic reticulum stress at a sub-cellular level [20,21].

Table 1. Classification of main types of diabetes mellitus [2–5,7].

Main types of diabetes mellitus

1. Type 1 diabetes mellitus
2. Type 2 diabetes mellitus
3. Hybrid forms of diabetes
4. Slowly evolving immune-mediated diabetes of adults
5. Ketosis prone type 2 diabetes

Other specific types

1. Monogenic defects of β-cell function
2. Monogenic defects in insulin action
3. Diseases of the exocrine pancreas
4. Endocrine disorders
5. Drug- or chemical-induced
6. Infection-related diabetes
7. Uncommon specific forms of immune-mediated diabetes
8. Other genetic syndromes sometimes associated with diabetes

Unclassified diabetes

1. Hyperglycemia first detected during pregnancy
2. Diabetes mellitus in pregnancy
3. Gestational diabetes mellitus

Since hyperglycemia is the most frequent measure and pathologic trait of T2DM, our
current report addresses the “Hyperglycemia: From Pathophysiology to Therapeutics”
Special Issue in Life journal. Our aim is to overview different aspects of T2DM such as
prevalence, economic burden, and signs. Non-pharmacological and pharmacological thera-
peutic interventions such as glucose-lowering efforts are reviewed. Comorbidities of T2DM,
as well as the pathophysiology and prognosis of COVID-19 in T2DM, are also discussed.
Finally, the recent results of multi-omics technologies are summarized, identifying high-risk
factors for T2DM.
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2. Prevalence of T2DM

DM has become one of the most frequent global health problems (nearly 90% T2DM),
with an incidence of 422 million in 2018. The prevalence of DM is continuously increasing
and will reach 439 million subjects by 2030, and according to the International Diabetes
Federation (IDF), it is estimated to affect 592 million people worldwide in 2035 [22,23]. The
emergence of T2DM cases rose from 5.1% to 6.5% of the population in the USA from 1994
to 2002 [24], and T2DM further increased to 8.5% in the US population (91.2% of all diabetic
diseases were T2DM) according to a 2016–2017 survey [25]. The fastest economic and
technological developments in China contributed to western-type lifestyles and caused a
dramatic increase in the prevalence of T2DM, measured at 9.1% in 2016 [22]. In Switzerland
in 2012, the prevalence of T2DM was 6.3% (9.1% in men and 3.8% in women) and increased
age, obesity, and male gender showed positive correlations in a representative, cross-
sectional study with 6181 subjects [26]. The global incidence of T2DM is around 7.2%, and
it is expected to reach 9% by 2040 [27].

3. Economic Burden of T2DM

Statistics about the expense of diabetes on the economy are mainly available for overall
DM, but the economic burden of T2DM corresponds to 90% of DM in proportion with its
incidence. DM is the ninth major condition that reduces the life expectancy of men and
women by 13.2 and 13.9 years, respectively [28,29]. In 2015, five million deaths caused by
DM and its complications were reported, contributing to the loss of active workers and
consumers of the global economy [30]. The primary and secondary costs of diagnosed DM
were 132 billion USD in the USA in 2002 [24] and increased to 327 billion USD in 2017,
and the total costs associated with pre-diabetes (43.4 billion USD), GDM (1.6 billion USD),
and undiagnosed DM (31.7 billion USD) were estimated to comprise a 403.9 billion USD
economic burden on US society in 2017 [31].

The IDF estimates that the global cost of diabetes was 673 billion USD in 2015, which
is projected to rise to 802 billion USD in 2040. More recently, Bommer et al. estimated the
global cost burden of treating diabetes to be 1.31 trillion/year USD, an estimate considering
both direct costs and production losses due to morbidity or premature mortality [28].
According to the study of Einarson et al., the average healthcare cost for a T2DM patient
without CVD is 8310/year USD, while the cost for a T2DM patient with CVD is 15,105/year
USD [29]. The trend of global T2DM burden was found to be similar to that of total diabetes
(including type 1 and type 2 diabetes mellitus), while the global age-standardized rate of
mortality for T1DM has declined [30].

4. Signs and Symptoms of T2DM

Symptoms used to diagnose diabetes are as follows: (1) fasting blood glucose≥126 mg/dL,
both (2) the oral glucose tolerance test (OGTT) and (3) random plasma glucose are ≥200 mg/dL,
and (4) hemoglobin A1c (HbA1c, glycohemoglobin) ≥6.5% (Table 2) [7]. Further symp-
toms of diabetes include thirst, polydipsia, polyuria, fatigue, constant hunger, weight
loss, dry mouth, and blurred vision [32]. These measures do not discriminate between
T1DM or T2DM, and only one parameter is enough to define DM. T2DM is mainly di-
agnosed with pancreatic β-cell dysfunction and peripheral insulin resistance [7]. These
changes lead to decreased glucose uptake (hyperglycemia), diminished peripheral fat
uptake (dyslipidemia), compromised amino acid uptake, and higher glucagon produc-
tion [33]. However, patients with T2DM often show high concentrations of insulin and
C-peptide. Autoantibodies—particularly against islet cells, insulin, glutamic acid decar-
boxylase, and tyrosine phosphatase (islet cell antigen 512)—are not generally detected in
patients with T2DM [34]. A high leptin level in the sera is frequently associated with insulin
resistance and T2DM [35]. We recently reported an increased leptin level in apolipoprotein-
overexpressing (APOB-100) mice fed a high-fat diet [36]. The connection between high
serum leptin concentration and CVD has also been reported in T2DM [37]. Obesity, en-
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dothelial dysfunction and hypertension have also been reported in T2DM patients with
high leptin concentrations [38].

Table 2. The following criteria are used to establish a diagnosis of diabetes (Reference: [7]).

Fasting plasma glucose (8 h no food intake) level ≥126 mg/dL (7.0 mmol/L)

75 g OGTT 2 h value ≥ 200 mg/dL (11.1 mmol/L); OGTT: glucose load containing the equivalent
of 75 g anhydrous glucose dissolved in water.

Hemoglobin A1c ≥ 6.5%

Random plasma glucose ≥200 mg/dL (11.1 mmol/L), sometimes appears as a hyperglycemic crisis

Clinical symptoms of diabetes (e.g., thirst, polydipsia, polyuria, weight loss, and dry mouth)

5. Non-Pharmacological Treatments of T2DM: Exercise and Diet

It has long been known that sedentary lifestyle and increased calorie intake lead to obesity,
which is the major risk factor for developing T2DM [39]. In 2015, almost 2 billion people were
affected by obesity worldwide [40], and approximately 2.4 and 2.3 million deaths were caused
by high body mass index (BMI)-related diseases including T2DM in women and men,
respectively [41]. The Global Burden of Disease Study showed that obesity affected 38% of
women, 37% of men, 23% of girls, and 24% of boys in 2013 [42], and it is projected that obe-
sity will increase in 44 countries by 2025 [43]. Early randomized clinical trials that enrolled
patients with impaired glucose tolerance led to the conclusion that at least 30 minutes of
daily physical activity can reduce the incidence rate of T2DM by 46%–67% depending on
the condition of the subject and the type of exercise [44–46]. Therefore, preventative dietary
management and sporting for high-risk individuals are suggested, and patients with T2DM
are first treated with diet modification and suggestions for regular physical exercise [47].
Regular daily physical activity is strongly advised for the prevention of T2DM in high-risk
individuals with sedentary lifestyle and obesity [48]. A dose–response relationship between
regular exercise and its beneficial metabolic effects is well-accepted [39]. A prospective
follow-up study of 32,002 men for 18 years showed that at least 150 min/week weight
training or aerobic exercise reduced the risk of T2DM by 34% or 52%, respectively [49].
Umpierre et al. showed that at least 150 minutes of structured exercise per week can
reduce the HbA1c level with greater benefits than shorter training [50]. In our study,
regular physical exercise (45 minutes of running five times a week) reduced body weight,
serum triglyceride levels, and the expression of pro-inflammatory mediator TNF-α in mice
fed a high-fat diet as part of an apolipoprotein B-100-overexpressing murine model of
obesity [36]. The contribution of higher concentrations of pro-inflammatory cytokines,
such as TNF-α, IL-1β, and IL-6, for the development of T2DM and the protective effect
of regular exercise was reviewed by Karstoft et al. [51]. Clinical trials have shown that
lifestyle changes including physical exercise with diet modification are more effective than
pharmaceuticals in preventing T2DM [48]. Dietary recommendations favoring the intake of
whole grains, legumes, vegetables, and fruits at the expense of highly refined carbohydrates,
sugar-sweetened beverages, refined grains, and red meat may ameliorate T2DM or patient
conditions [52,53]. The Mediterranean diet (a low-carbohydrate/high-protein diet) and
vegan/vegetarian diets are reported to improve metabolic conditions in T2DM [54]. The
protective effect of the Mediterranean diet was shown by Keys based on a follow-up study
of 11,579 men for 15 years. Diets with high intakes of saturated fatty acids were associated
with CVD, but monounsaturated fatty acids (olive oil) were protective against CVD [55].
The consumption of the Mediterranean menu consisting of fruits (antioxidants), vegeta-
bles, red wine (polyphenols), fish, and olive oil (monounsaturated fatty acids) may have
anti-inflammatory protective effects against T2DM [56]. A low-carbohydrate diet (<130
g/day) lowers glycemia, HbA1c, and the need for medication [47,57]. A 2-year trial with
322 obese subjects showed that both Mediterranean and low-carbohydrate diets were more
effective for weight loss and decreases in C-reactive protein levels compared to a low-fat
diet [58]. In a 74-week clinical trial, Bernard et al. showed that a vegan diet reduced the
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HbA1c level and low-density lipoprotein (LDL)-cholesterol more efficiently than a low-fat
diet [59]. Taken together, physical exercise, weight management, daily calorie intake, and
the composition of food and beverages should be tailored to each patient’s condition while
considering several parameters such as the age of the patient, comorbidities, geographical
area (climate), and the suggested pharmaceutical intervention [60].

6. Pharmacological Treatment of T2DM

In most cases, initial drug therapy starts with monotherapy based on clinical laboratory
parameters such as HbA1c. The five-year VERIFY study in T2DM demonstrated the long-
term clinical benefits of early combination treatment with vildagliptin and metformin in
comparison to monotherapy [61]. The oral hypoglycemic medications approved by U.S.
Food and Drug Administration (FDA) indications are summarized in Table 3. Sulfonylureas
(SU) were the first drugs to stimulate insulin secretion, and they have been used since
1954 [62]. Later, non-sulfonylurea secretagogues, i.e., meglitinides, were introduced, e.g.,
Repaglinide in 1997 [63]. Both SU and meglitinides stimulate insulin secretion by inhibiting
ATP-dependent K+ channels of pancreatic beta cells [63]. However, meglitinides are not
the golden standard in T2DM therapy because its effects last less long than those of SU and
can cause hypoglycemia in diabetic patients with chronic kidney disease (CKD) [64].

Table 3. Oral hypoglycemic medications approved by FDA indications [65,66].

Pharmacological Group Drug Biochemical Key Factor for
Mechanism of Action Mechanism of Action

Sulfonylureas (SU)
glipizide
glyburide

gliclazide glimepiride
K-ATP channels of beta cells

Close ATP-dependent potassium
channels that depolarize the beta cells,
opening calcium channels and causing

insulin release

Meglitinides repaglinide nateglinide K-ATP channels of beta cells Same as SU

Biguanides metformin Increase hepatic AMP-activated
protein kinase activity

Reduce hepatic gluconeogenesis and
lipogenesis, stimulate fatty acid

oxidation, and increase
insulin-mediated uptake of glucose

in muscles

Thiazolidinediones (TZD) rosiglitazone pioglitazone
Activate peroxisome

proliferator-activated receptor
gamma (PPAR-γ)

Increase insulin sensitivity and
stimulate fatty acid oxidation

α-Glucosidase inhibitors
acarbose
miglitol

voglibose

Inhibit alpha-glucosidase enzymes
in the intestinal brush border cells Inhibit polysaccharide reabsorption

GLP-1 Receptor Agonists

exenatide BID
liraglutide
lixisenatide
exenatide

albiglutide,
dulaglutide
semaglutide

oral semaglutide (Rybelsus)

Stimulate GLP-1 receptors Lead to the increase in
insulin secretion

DPP-4 inhibitors
sitagliptin

vildagliptin saxagliptin
linagliptin alogliptin

Inhibit the enzyme dipeptidyl
peptidase 4 (DPP-4)

Decrease glucagon release, thus
increasing glucose-dependent

insulin release

SGLT2 inhibitors dapagliflozin canagliflozin
empagliflozin tofogliflozin

Inhibit sodium–glucose
cotransporter 2 (SGLT-2) in the

proximal tubules of
renal glomerulus

Inhibition of glucose reabsorption,
resulting in glycosuria

Cycloset bromocriptine Dopamine (D2) receptor agonist
Resets the hypothalamic circadian

rhythm and improves
insulin resistance
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Nowadays, metformin is among the preferred initial pharmacologic agents for T2DM
according to the EASD (European Association for the Study of Diabetes) and ADA (Ameri-
can Diabetes Association) considering comorbidities and lifestyle modifications [67]. The
advantages of metformin are its efficacy, weight neutrality, low cost, low-risk of hypo-
glycemia, and good safety profile with particular cardioprotection [68]. The prescription of
metformin should be considered as a monotherapy or in combination with other glucose-
lowering drugs for the therapy of T2DM [67]. In cases of renal insufficiency and an eGFR
(estimated glomerular filtration rate) of >30 mL/min/1.73 m2, early combination therapy
can be considered in some patients at treatment initiation to extend the time to treat-
ment failure. In a high-fat diet rat model, metformin combined with a single low dose of
streptozotocin-induced diabetes mellitus showed a renoprotective effect following per os
administration. Moreover, lipid parameters such as triglyceride (TG), total cholesterol (TC),
and LDL-c levels were significantly decreased following metformin treatment, whereas
high-density lipoprotein (HDL)-cholesterol was increased. The authors speculate that the
underlying mechanism of this renoprotective effect may be associated with glycemic control,
lipid metabolism, and anti-oxidative and anti-inflammatory functions [69]. Al Za’abi et al.
found that metformin can be a useful drug in attenuating the progression of adenine-
induced CKD in both diabetic and non-diabetic rats [70]. Increasing numbers of studies are
investigating whether metformin exerts its hypoglycemic effect through the modulation of
microbiome in the diabetic rat gut [71]. However, its underlying mechanism remains largely
unclear, though it has been shown that DM leads to a higher Firmicutes/Bacteroidetes ratio
in the gut microbiome that can be reverted by metformin [71,72].

Among patients with T2DM who have established CVD or indicators of high risk,
established kidney disease, or heart failure, glucagon-like peptide-1 receptor agonists
(GLP-1 RAs) or a sodium–glucose cotransporter-2 inhibitor (SGLT2i) with demonstrated
CVD benefits are recommended (Figure 1) [73].

There is increasing evidence to support the role of sodium–glucose cotransporter
2 inhibitor therapy in patients with CKD with or without T2DM. Individualized treat-
ment with SGLT2i represents a promising therapeutic option for patients with diabetic
and nondiabetic CKD to slow down disease progression [74]. SGLT2 inhibitors have a
cardioprotective effect in the cardiovascular system. These have been recommended to treat
heart failure with reduced ejection fraction (HFrEF), improving left ventricular ejection
fraction and decreasing left ventricular end-diastolic diameter and pro-B-type natriuretic
peptide level [75].

Figure 1. Summary of glucose-lowering medication in T2DM: monotherapy and combination of drugs.
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Adapted from the 2022 ADA Professional Practice Committee (PPC) based on the work of Davis
and Busa et al. [75–77]. This strategy suggests a selection of therapy rather than sequential add-on,
which may require the adjustment of ongoing therapies. Treatment should be individualized to
comorbidities (such as heart failure, atherosclerotic cardiovascular disease, chronic kidney disease,
and cardiovascular disease), patient-centered treatment factors, and management needs. DPP-4i,
dipeptidyl peptidase 4 inhibitor; GLP-1 agonist, glucagon-like peptide 1 receptor agonist; SGLT2i,
sodium–glucose cotransporter 2 inhibitor; SU, sulfonylurea; TZD, thiazolidinedione. * A treatment
with DPP-4 inhibitors should be stopped when GLP-1 receptor agonists are used [78].

The first GLP-1 RA was approved by the FDA in 2005: exenatide BID injected twice
daily. Later, other GLP-1 Ras, such as liraglutide and lixisenatide (injected once a day), and
long-lasting drugs injected once weekly, such as exenatide, albiglutide, dulaglutide, and
semaglutide, were developed [79]. The GLP-1 hormone is cleaved by DPP-4 (dipeptidyl
peptidase-4) within minutes, so GLP-1 RAs were used for their resistance to DPP-4 in
order to prolong their half-life and beneficial effects [76]. The majority of GLP-1 RAs are
injectable glucose-lowering agents, with a low-risk of hypoglycemia via the stimulation
of GLP-1 receptors leading to an increase in insulin secretion [77]. The first oral GLP-
1 RA was Rybelsus® (oral semaglutide), which was approved by the FDA in 2019 [80].
The effect of GLP-1 RAs is glucose-dependent, and they act as multi-target drugs on the
(1) stimulation of pancreatic β-cell insulin production, (2) suppression of pancreatic α-
cell glucagon secretion, and (3) suppression of hepatic glucagon synthesis with (4) the
suppression of gastric emptying time, (5) increased satiety, and (6) increased insulin uptake
at the peripheral tissues [81]. GLP-1 receptor agonists, except for lixisenatide, prevent
the development and progression of coronary atherosclerosis, vasospasm of epicardial
coronary arteries, and structural/functional changes in coronary microvasculature [82].

DPP-4 inhibitors (DPP-4i) also act via the incretin (intestinal secretion of insulin)
effect through facilitating the glucose-dependent insulin secretion of pancreatic β-cells via
prolonging the stability of the glucagon-like peptide-1 (GLP-1) and glucose-dependent
insulinotropic polypeptide (GIP) [83]. DPP-4i are oral drugs administered once a day,
though vildagliptin is administered twice a day [83]. The first DPP-4i was sitagliptin,
which was approved by the FDA in 2006; others developed later include saxagliptin,
vildagliptin, alogliptin, and linagliptin [84]. Our group showed that the DPP-4 inhibitor
sitagliptin has a pleiotropic secondary cardioprotective effect and protects against ischemia-
reperfusion injury through the modulation of NOS system and transient receptor potential
(TRP) channels [85]. In agreement with Murase et al., the inhibition of DPP-4 enzyme
improved survival after myocardial infarction in T2DM by modifying autophagy in the
non-infarcted region of the heart [86]. Based on the above-mentioned studies, it is clear that
DPP4 inhibitors have other beneficial effects that are not of a metabolic nature such as a
cardioprotective effects, especially via decreasing systolic blood pressure independently of
glucose-lowering effects. This is valuable because the prevalence of hypertension in T2DM
patients is estimated to be twice higher than that of healthy individuals [87].

SGLT2i are oral antidiabetics that act via blocking glucose reabsorption in the proximal
tubule of the nephron, leading to glucosuria irrespective of the insulin level [88]. The first
SGLT2i, dapagliflozin, was approved by the European Medicines Agency (EMA) in 2013,
and the others are canagliflozin, empagliflozin, tofogliflozin, and ipragliflozin (approved
in Japan and Russia) [89]. It has been significantly verified by clinical studies that SGLT2i
reduce the risk of a series of cardiovascular or renal complications such as atheroscle-
rotic CVD, myocardial infarction, and CKD [90]. T2DM-induced sterile inflammation,
endothelial dysfunction, and oxidative stress lead to vascular injury. SGLT2i, especially
empagliflozin, revise glucotoxicity via glucosuria and significantly improve cardiovas-
cular mortality in T2DM [91]. The same research team showed that there is an inverse
correlation between endothelial function and serum HbA1c. Moreover, phagocytic leuko-
cytes and C-reactive protein (CRP) were positively correlated with HbA1c. The viability
of hyperglycemic endothelial cells was pleiotropically improved by SGLT2i [92]. Apart
from their main pharmacological effect in DM, it has been found that SGLT2i may have
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novel therapeutic applications for diabetes, cardiovascular diseases, nephropathies, liver
diseases, neural disorders, and cancer based on their antioxidant properties and unique
perspective [93].

The early introduction of insulin should be considered if there is evidence of on-
going catabolism (weight loss), if symptoms of hyperglycemia are present, or when
HbA1c or blood glucose levels are very high (HbA1c > 10% (86 mmol/mol) and blood
glucose ≥16.7 mmol/L (300 mg/dL)) [94,95]. As T2DM progresses, most patients require
treatment with basal insulin in combination with another agent to achieve recommended
glycemic targets [96]. The ADA’s Standards of Medical Care in Diabetes recommend either
starting an initial total daily dose of 10 units insulin or using a weight-based total daily
dose from 0.1 to 0.2 units/kg. As a rule, the basal insulin dose may be increased by 2
units for every 20 mg/dL that the patient’s average fasting blood glucose level is over
the recommended fasting blood-glucose level (<130 mg/dL per ADA guidelines) [73].
Despite the availability of the series of conventional therapies, in many cases, patients do
not respond well to the given drug and undesirable side effects can even occur. Therefore,
almost 1200 plants, the sources of natural products known as ethnomedicinal agents with
reported anti-diabetic properties, are at the forefront of intensive research [97]. Among
other molecules, many flavonoids possess anti-inflammatory effects in parallel with their
ability to improve glucose metabolism [98]. Flavonoids, such as genistein, kaempferol,
pectolinarin, and quercetin, have a profound anti-inflammatory effects with the stimulation
of glycogen synthase [98,99]. In an animal model of T2DM, rutin decreased serum glucose
concentration and inhibited protein-tyrosine-phosphatase 1B, a negative regulator of the
insulin pathway [100]. A recent review summarized the wide repertoire and mechanisms
of action of antidiabetic flavonoids [101]. Terpenoids are also reported as anti-diabetic
compounds with benefits in the treatment of T2DM by normalizing blood glucose levels
and advantages in the management of the retinopathy, nephropathy, neuropathy, and im-
paired wound healing [102]. Abscisic acid, a terpenoid phytohormone and an endogenous
hormone in humans, can facilitate the release of insulin from β-pancreatic cells via the
induction of GLP-1 [103].

7. Clinical Complications of T2DM

Severe T2DM may cause damage to complex organs such as the kidneys, eyes, and
heart including vascular vessels [14]. Early-onset T2DM is associated with a greater life-
time risk of diabetes-associated complications than T1DM or late-onset T2DM [27,104].
Loss of hearing and problems with fertility are frequent complications with early-onset
T2DM [27]. Diabetes mellitus (DM) is a chronic metabolic disorder associated with persis-
tent hyperglycemia (>7 mmol/L (126 mg/dL in blood) [105]. Several factors can contribute
to it: impaired insulin secretion, resistance to peripheral actions of insulin, or both. The
progression of metabolic stress of hyperglycemia with the activation of Toll-like recep-
tors, induction of endoplasmic reticulum stress, and activation of inflammasome may fuel
chronic inflammation, thus augmenting pancreatic β-cell dysfunction and finally worsening
patient conditions in T2DM [106]. Chronic and untreated hyperglycemia in synergy with
other metabolic diseases in patients with diabetes mellitus can lead to the development of
disabling and life-threatening health complications, most prominent of which are microvas-
cular (retinopathy, nephropathy, and neuropathy) and macrovascular complications, as
well as a 2-to-4-fold increased risk of cardiovascular disease. It has long been known that
hyperglycemia-mediated pathways such as the polyol pathway, hexosamine biosynthetic
pathway, advanced glycation end products (AGEs), and protein kinase C may harm cardiac
endothelial cells [107]. While the intentions of DM treatment are to normalize the hyper-
glycemia and reduce the amount of HbA1c to a normal level, therapies of other metabolic
disorders that are mainly associated with diabetes, such as dyslipidemia, hypertension,
hypercoagulability, obesity, and insulin resistance, have also been major focuses of therapy
and patient management [107].
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Complications of diabetes are broadly divided into microvascular and macrovascular
types. Microvascular complications include neuropathy, nephropathy, and retinopathy,
while macrovascular complications consist of CVD, stroke, and peripheral artery disease
(PAD) [11]. Diabetic foot syndrome has been defined as the presence of foot ulcer associated
with neuropathy, PAD, and infection, and it is a major cause of lower limb amputation [108].
Finally, there are other complications of diabetes that cannot be included in the two afore-
mentioned categories such as dental disease, reduced resistance to infections, and birth
complications among women with GDM. CVD is one of the deadliest complications of
T2DM, and patients with T2DM have two times the risk to develop CVD than those without
T2DM [48,109]. A recent review summarized the risk of CVD in T2DM, shedding light on
the idea that both BNP and pro-BNP may serve as predictive biomarkers of heart failure
and CV mortality [110]. The higher risk for death of T2DM patients increases with the
presence of CVD (hypertension), younger age (age <25 years), severe renal failure, fatty
liver, hyperlipidemia, microalbuminuria, and worse glycemic control [11,111]. In a cross-
sectional study including 1156 patients, the one-year mortality was found to be higher in
T2DM patients with severe hypoglycemia than those without [112].

Obesity is one of the main modifiable risk factor leading to T2DM [113]. Additionally,
obesity has frequently interconnected with high-grade systemic inflammation, thus promot-
ing devastating immune activation in T2DM [114]. Factors released by the adipose tissue
such as pro-inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6),
and IL-1b), non-esterified fatty acids, glycerol, and hormones may underly insulin resis-
tance [115]. The disbalance of the immune system, the endothelial activation of monocytes,
and macrophages in the adipose tissue may also release TNF-α and IL-6, thus exacerbating
inflammation [116,117]. A meta-analysis of 20 clinical trials with 1065 T2DM patients
versus 1103 healthy controls showed a correlation with monocyte activation and CVD risk
in T2DM [116]. Obesity management with special diet, exercises resulting in at least 15%
weight loss, and longer sleep may have great disease-modifying effect on T2DM [118,119].
The triglyceride–glucose (TyG) index is a potentially useful marker for predicting T2DM
and has been reported to be associated with CVD risk. A higher TyG index value is associ-
ated with the presence of retinopathy and nephropathy in individuals with diabetes and
could be used for monitoring metabolic status in clinical settings [120]. The mechanism
of action of TyG in T2DM pathology is not evident, but it has been suggested that high
blood glucose levels raise the level of reactive oxygen species (ROS) that mediate beta cell
injury [121]. Higher TyG index values have shown clear associations between BMI and the
development of T2DM [121,122].

Almost 10% of deaths caused by T2DM are referable as diabetic kidney disease (DKD)
with renal failure [123]. Albuminuria and reduced eGFR are risk factors for end-stage
kidney disease and CVD, as well as death [124]. One of the first clinical signs of such
microvascular damage in diabetes is microalbuminuria [125]. Biomarkers predicting the
progression of nephropathy in T2DM patients are plasma asymmetric dimethylarginine,
serum interleukin-18 and urinary ceruloplasmin, immunoglobulin G, and transferrin [126].

The development of cancer was shown to have a positive correlation with T2DM
in the case of colorectal, lung, esophagus, thyroid, bladder, hepatocellular, gallbladder,
breast, endometrial, pancreatic and liver cancers [127–129]. Possible causes linking T2DM
to increased cancer prevalence are diverse factors such as aberrant endocrine status, obe-
sity, chronic inflammation, hyperglycemia with increased insulin level, and additional
sedentary lifestyle factors [130]. Metformin was shown to reduce the risk of cancer de-
velopment in T2DM via several indirect mechanisms: (1) reducing circulatory androgens,
(2) inducing hepatic adenosine monophosphate kinase phosphorylation, (3) lowering blood
glucose and gluconeogenesis, (4) reducing insulin level, and (5) exerting anti-inflammatory
effects [130,131]. Metformin was also reported as an adjuvant that could increase the
complete pathological response rate of HER2-positive breast cancer patients bearing the
rs11212617 single-nucleotide polymorphism (SNP) located near the ataxia telangiectasia
mutated (ATM) gene [132]. The association of T2DM and breast cancer was shown by the
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hypoxia-independent stabilization of HIF-1α via the insulin–PI3K–AKT, MAPK/ERK, IL-1,
and NF-κB pathways. Subsequent HIF-1α-mediated events and the induction of glucose
transporter GLUT1, glycogen synthase kinase, E-cadherin, and matrix metalloproteinases
lead to epithelial–mesenchymal transition, the “entrance-hall” of cancer [133]. The risks
and factors involved in cancer development in T2DM patients have been recently reviewed
elsewhere [127,134].

8. Pathophysiology of T2DM and COVID-19

Hyperglycemia initiates a pathobiochemical cascade that results in increased mortality
in SARS-CoV-2-infected diabetic patients [135,136]. The underlying molecular mechanisms
are responsible for the worsening of both metabolic and hemodynamic conditions. A
chronic glucose level leads to the hyperglycosylation of the ACE2 receptor and increased
viral cell proliferation [137]. It has long been known that ACE2 is responsible for the
conversion of angiotensin I into angiotensin II during the physiological state, and it has
been identified as the receptor for SARS-CoV-2 viral entry into cells. ACE2, which directly
interacts with the spike glycoprotein [138], is expressed in many cell types and is also
present in epithelium of the lung at a high density. It has been shown that ACE2 is highly
expressed in patients with hypertension, diabetes and coronary heart disease, thus leading
to higher viral entry during SARS-CoV-2 infection. It is also well-known that T2DM is asso-
ciated with both macrovascular and microvascular complications that lead to multiorgan
failure, which worsens the outcome of COVID-19 in diabetic patients and increases mor-
tality rates. The dysregulation of glucose metabolism and insulin resistance contribute to
vasculopathy in both large and small vessels through various mechanisms [139]. Diabetes,
mainly T2DM, is featured by chronic systemic inflammation and insulin resistance, which
can result in endothelial dysfunction, oxidative damage, changes in the mitochondrial
expression of superoxides, the increased formation of AGEs, and the activation of the
receptors for advanced glycation end products (RAGE). The AGE–RAGE axis increases
the progression of atherosclerotic legion formation in the arteries and thus accelerates
vascular-damage-related conditions called diabetic vasculopathies [140]. However, the
direct relationship between T2DM and COVID-19 remains complex; it is well-known that
chronic hyperglycemia induces a dysregulated immune response in innate and adaptive
immunity, including abnormal cytokine responses, the inhibition of leukocyte recruitment,
the attenuation of macrophage and other leukocyte activity in eliminating pathogens, and
defects in pathogen recognition and neutrophil functions [141]. Several other immune
mechanisms, such as the decreased production of interleukins in response to an infection,
reduced chemotaxis and phagocytic activity, and the immobilization of polymorphonuclear
leukocytes, are affected in obesity. IFN-gamma released after virus infection downregu-
lates the insulin-receptor expression of skeletal muscle, and viral infection enhances the
progression of T2DM in obesity, thus worsening hyperglycemia [142]. Patients with T2DM
tend to develop more severe forms of SARS-CoV-2 infection and have significant increases
in acute phase proteins and inflammatory markers compared to non-diabetics. This may
also enhance tissue tropism and viral penetration into the cells, leading to increased vir-
ulence, pathogenicity, and susceptibility to severe infections [143]. In patients suffering
from COVID-19, DM was found to be the third most common comorbidity, with a 33.8%
prevalence, after hypertension and obesity [144]. Several mechanisms have been suggested
as an underlying additional explanation for the more severe course of COVID-19 in patients
with diabetes. Behind the impaired immune system, hyperglycemia and hyperinsulinemia
diabetes are also associated with a hypercoagulable state. The metabolic disturbances
associated with oxidative stress and impaired immunity may accelerate the occurrence of
thrombotic and ischemic events.

Patients with diabetes generally have an increased risk of thrombosis, which, in the
case of COVID-19, can add to a high risk of death. Endothelial cell dysfunction plays a key
role in the initiation and precipitation of thrombosis. The initiation of this process when the
nitric oxide synthesis is decreased in endothelial cells via several mechanisms including the
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activation of NF-κB and protein kinase C (PKC) leads to the impairment of vasodilation,
the expression of adhesion molecules, and the worsening of vascular inflammation. This
results in increased platelet activation and a prothrombotic/hypofibrinolytic environment
that facilitates thromboembolic events [145]. It is still unclear whether the dysregulation
of glucose metabolism, the severe COVID-19 effects, or the SARS-CoV-2 infection itself
is responsible for the worsening of carbohydrate metabolism in diabetic patients. The
associations between glycemic control and short- to long-term outcomes were examined in
a multi-center prospective cohort study including 574 COVID-19 patients; a one year follow
up showed that the glycemic control was significantly associated with short-term outcomes
in COVID-19 patients with T2DM and decreased the risk of respiratory sequelae [146].
In a German study of about 8.8 million people, 35,865 were infected by COVID-19, and
15.8 per 1000 person-years versus 12.3 per 1000 person-years of these patients developed
T2DM versus other upper respiratory infections, respectively [147]. The results of that
study suggest that SARS-CoV-2 infection may also increase the risk of developing T2DM.
Future studies will answer the questions of whether SARS-CoV-2 really can induce T1DM,
T2DM, or even a new type of diabetes. Long-term follow up studies are needed to evaluate
whether the virus has a diabetogenic impact on patients with a higher risk for DM or it can
stimulate a new type of DM [147].

9. Prognosis of T2DM Patients with COVID-19

The novel coronavirus, SARS-CoV-2, infected more than 500 million and caused
the coronavirus disease 2019 (COVID-19) with the death of more than 6 million people
worldwide by July 2022 (online COVID-19 Data Repository at Johns Hopkins University).
Metabolic diseases such as DM are associated with an increased risk of a severe COVID-19
illness and death because of their associated hypercoagulation state and uncontrolled
inflammation [148], although it seems that T1DM patients have higher risk than T2DM
patients. Epidemiological studies have shown that hospitalization with diabetes and SARS-
CoV-2 infection represents as a comorbidity with poor outcome during hospital stay [149].
A recent study reported that 15% of T2DM patients died from COVID-19, with the poor
prognoses for those of elder age and elevated glucose and serum amyloid A levels [150].
In a Swedish study of 385,021 T2DM patients, an elevated glycemic hemoglobin level
was shown as a bad prognostic factor and the risks for hospitalization, admission to
intensive care, and fatal outcome of T2DM patients with COVID-19 were twice those of a
control group [151]. On the contrary, the control of the glycemic index was significantly
associated with less mortality and hospital stay in an analysis of 574 T2DM patients with
COVID-19 in China [146]. Upon SARS-CoV-2 infection, T2DM patients had adjusted odds
ratios (ORs): 3.36 for hospitalization, 3.42 for disease severity, and 2.02 for death [152,153].
In a national cohort study of 19,256 subjects in England conducted between March and
July 2020, 18.3% of hospitalized COVID-19 patients also had T2DM [136]. In a Spanish
study, 30.05% versus 19.57% was the ratio of deceased versus surviving diabetes patients,
respectively [154]. Taken together, the risks of SARS-CoV-2 infection in patients with
T2DM are well-documented and urge the prioritization for vaccination [148,155]. In an
Italian study of 277 T2DM subjects (83.4% received an mRNA-based vaccine of mRNA-
BNT162b2 or mRNA-1273 and 16.6% received a viral vector-based vaccine of ChAdOx1-S),
the neutralizing antibody level and the number of SARS-CoV-2-reactive T-cells (CD4+/TNF-
α+, CD4+/IL-2+, CD4+/IFN-γ+) were higher in patients with good glycemic control
(HbA1c < 7%) at 52 days after the second vaccine [156]. In a retrospective clinical study
of 1356 T2DM patients hospitalized with COVID-19, it was shown that the metformin-
treated group showed less mortality and shorter stays in hospital, probably due to the
anti-inflammatory effect of metformin [157]. However, T2DM therapy should be designed
in accordance with local guidelines while taking personal parameters and comorbidities
into account; therefore, current therapeutic regimens for the management of T2DM are not
discussed here. Recent review articles about the management of COVID-19 in patients with
T2DM have been published elsewhere [158–160].
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Angiotensin-converting enzyme 2 (ACE2) is one of the best-characterized proteolytic
enzymes and a functional receptor on cell surfaces through which SARS-CoV-2 enters
the cells. ACE2 is abundantly found in the lung alveolar epithelial cells, lung vascular
endothelial cells, heart, kidneys, and pancreas [161]. However, controversial results have
been found regarding the expression profile of the ACE2 protease enzyme and receptor.
Some studies have suggested that it is more preferably expressed in the exocrine duct
cells than in the islets, whereas other studies have shown that ACE2 is expressed in beta-
cells; moreover, ACE2 was detected in the microvasculature of both the exocrine and
endocrine pancreas. These discrepancies were clarified by Stellenbock et al., who examined
the expression of ACE2 in pancreatic autopsy tissues from eleven patients that died of
COVID-19. They found that the pancreata were infiltrated with CD45-positive immune
cells and that mainly beta cells were infected by SARS-CoV-2 virus. They speculated that
other receptors/entry-points may be involved in facilitating the uptake of SARS-CoV-2 into
beta-cells because the ACE2 positivity of beta cells was only detected in some the human
subjects [162].

Among other risk factors for COVID-19-related death, DM has been shown one of
the main predictors of the SARS-CoV-2 infection-associated mortality rate. Therefore, we
reviewed the most relevant pathobiochemical aspects, summarized the known molecular
background of SARS-CoV-2-induced pathomechanical abnormalities, and dissected the
current prognosis of COVID-19 patients in T2DM.

10. The Potential Role of Multi-Omics and Single Cell-Based Technologies in the
Current Research of T2DM

In the last decade, the “multi-omics” approaches reached a breakthrough in un-
derstanding the pathomechanism and clinical complications of T2DM. Different next-
generation sequencing (NGS) and mass-spectrometry-based genomics and metagenomic
approaches have emerged and are used to identify possible disease-associated diagnostic
or therapeutic targets from affected tissues and blood based on specific gene expression
changes including those of diabetes (Table 4) [163–167]. The NGS analysis of 16S rRNA
genes showed that comorbidity of T2DM with HIV led to a lower microbiome diversity,
which was negatively impacted by smoking and normalized by metformin treatment [168].
In the study of Tong et al., the sequencing of 16S rRNA by NGS revealed that metformin
treatment increased the proliferation of Blautia spp. in the gut in correlation with the nor-
malization of hyperglycemia and hyperlipidemia [169]. An analysis of 40 single-nucleotide
polymorphisms (SNPs) in 40 genes of 503 T2DM patients vs. 580 healthy controls on a
Sequenom platform identified SNPs in the CAT, FTO and UCP1 genes associated with
the retinopathy and nephropathy complications of T2DM [170]. Although early GWAS
studies identified approximately 75 genetic loci associated with the development of T2DM,
recent multi-ancestry genetic studies found more than 500 risk loci, and the heritability of
T2DM via these genes has been shown in only 10–15% of cases, so it is more likely that
lifestyle and environmental factors have a significant additional effect that contributes to
the manifestation of T2DM [15–17,171].

Many epigenetic studies, including the investigation of DNA methylation patterns
and accessible chromatin profiles in different tissues, have also contributed to our current
knowledge of T2DM [172,173]. One of the most extensive epigenome-wide association
studies (EWAS) revealed the CpGs methylation pattern of 52 genes in the blood of European
T2DM subjects with the Illumina 450 K methylation array and identified five genes with al-
tered CpG methylation patterns—ABCG1, LOXL2, TXNIP, SLC1A5 and SREBF1—that were
significantly associated with the disease [174]. Using “Assay for Transposase-Accessible
Chromatin with high throughput sequencing” (ATAC-seq method), Ackermann et al. de-
termined the human pancreatic alpha or beta cell-specific open chromatin landscape and
found that alpha or beta cell-specific ATAC-seq peaks overlapped with known binding
motifs for various transcription factors, including alpha cell-specific ISL1 and MAFB or
beta cell-specific SMAD2, as well as previously identified T2DM-risk-associated SNPs [175].
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Greenwald and colleagues combined a high-throughput chromosome conformation cap-
ture technique (Hi-C) assay-based high-resolution map of islet chromatin loops with the
ATAC-seq and publicly available chromatin immunoprecipitation sequencing (ChIP-seq)
data-defined enhancers. They identified thousands of pancreatic islet-specific enhancer–
target gene pairs. The T2DM-risk-linked SNPs were significantly enriched at the active
enhancers of the protein transport and secretion pathway-associated genes. In the case of
the IGF2BP2 gene, the identified T2DM-specific SNP could attenuate both islet enhancer
activity and IGF2BP2 expression, and the islet-specific conditional deficiency of Igf2bp2
gene led to impaired glucose-induced insulin secretion in mice [176].

Recently, several research groups started to study the development and progression of
T2DM in human patients by applying state-of-the-art single-cell RNA-sequencing (scRNA-
seq) and single-sell ATAC-sequencing (scATAC-seq) methods focusing on the pathological
changes in pancreatic islets. Lawlor and colleagues investigated the cellular heterogeneity
in nondiabetic and T2DM human islet samples, and they were able to detect T2DM-
specific gene expression signatures in alpha, beta, and delta cells using scRNA-seq that
remained invisible in paired whole-islet analyses [177]. Additionally, scRNA-seq and
complex computational tools revealed an altered regulatory network in the pancreas of
T2DM patients with disease-related transcriptomic changes, showing increased PageRank
centrality in 162 genes. After analyzing five centralities driving the regulatory changes in
diabetes, they found six markers with increased levels (OTUD7B, PPRC1, ARRB2, C17orf96,
NME2, and E2F1) and four markers with decreased centrality (FBXW7, CXCL8, FHL1,
and CELF4) [178]. By applying scATAC-seq and deep learning approaches, Rai et al.
found that T2DM-associated SNPs were significantly enriched in beta cell-specific and
common islet-specific open chromatin but not in alpha or delta cell-specific open chromatin
signatures [179]. Marques et al. performed a meta-analysis of the scRNA-seq data of
human α- and β-cells of T2DM patients and identified disease-associated genes responsible
for energy metabolism, immune homeostasis, autophagy, and especially nuclear factor
erythroid 2-related factor 2 (NFE2L2) in β-cell maturation and dysfunction [180].

The manifestation of T2DM in Asian Indians is more frequent, even in the case of
normal BMI, a situation known as the “thin fat” phenotype in which the peripheral fat is
thin but the visceral fat accumulates [181]. Microarray data of T2DM-derived peripheral
fat of Asian Indians were sued to highlight the top 20 differentially expressed genes (DEGs)
and pathways associated with adiposopathy in T2DM [182]. Using the whole transcriptome
RNAseq, the same group further investigated the peripheral subcutaneous adipose tissue
of Asian Indians and found altered lipid, glucose, and protein metabolisms; adipogenesis
defects; and inflammation associated with T2DM [183]. Using the AGENA MassARRAYi-
PLEX™ platform, Irgam et al. recently identified seven significant SNPs (s2241766-G
(ADIPOQ), rs6494730-T (FEM1B), rs1799817-A, rs2059806-T (INSR), rs11745088-C (FST),
rs9939609-A, and rs9940128-A (FTO)) associated with T2DM in a southern Asian Indian
population of 500 cases [184].

Besides genomics studies, multiplex proteomic investigations have revealed markers
associated with disease severity or complications in T2DM. Using the Milliplex Luminex
assay, Barchetta et al. showed that blood levels of osteopontin and osteoprotegerin were
significantly higher in 83 T2DM patients versus 71 healthy controls and that these proteins
were positively correlated with higher systolic blood pressure [185]. Using the same multi-
plex Luminex technology, Colombo et al. showed that the elevated serum concentrations of
kidney injury molecule 1 (KIM-1) and β2-microglobulin (B2M) were correlated with renal
failure and a decreased glomerular filtration rate in T2DM [186]. The study of Heinzel also
based on the Luminex quantitation of plasma biomarkers identified KIM-1 among 12 pro-
teins of 17 measured markers that predicted declines in the glomerular filtration rate [187].
Although T2DM is not autoimmune-mediated, using single-cell imaging mass cytometry,
Wu et al. showed increased percentages of HLA-DR+ macrophages and HLA-DR+ CD8+
T-cells in the islets of the pancreata of T2DM patients, thus suggesting their role in local
inflammation [188]. Novel experimental models can also be used to understand better the
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pathomechanisms of different diabetic syndromes. Our group was to first to optimize a
special three-dimensional organoid, the Real Architecture For 3D Tissue (RAFT™) culture
system, for the ex vivo maintenance of functional murine pancreatic islets [189].

A lipidomics study of 250 T2DM patients and 639 non-cases showed that the plasma
lipid profiles of elevated TAGs (triacylglycerols), DAGs (diacylglycerols), and PEs (phos-
phatidylethanolamines) with a high risk of T2DM and lipid constituents such as LPs
(lysophospholipids), PC–PLs (phosphatidylcholine–plasmalogens), SMs (sphingomyelins),
and CEs (cholesterol esters) were associated with lower risks of T2DM [190]. In a Finnish
lipidomics study analyzing 277 plasma lipids with ultra-performance liquid chromatogra-
phy coupled to time-of-flight mass spectrometry of 955 subjects with a 5-year follow-up
also found increases in TAGs and DAGs and decreases in PC–PLs associated with risk of
T2DM [191]. Taken together, the disbalance of fatty acids (FAs) may not only be considered
as a consequence of altered metabolism; rather, FAs may be involved in the translocation
of glucose transporters and influence insulin receptor binding as causative agents in the
development of T2DM [192].

Table 4. Recent multi-omics approaches that revealed T2DM-associated factors.

Omics/Field Measures Results Assay References

Genomics 16S rRNA on
microbiome analysis

Smoking and/or HIV lowers
microbiome diversity in T2DM NGS [168]

Genomics 16S rRNA on
microbiome analysis

Metformin helps to normalize
microbiome with the support of

Blautia spp.
NGS [169]

Genomics Analysis of SNPs
SNPs in the CAT, FTO and UCP1

genes associated with retinopathy and
nephropathy

Sequenom platform [170]

Genomics Genome sequencing Heritability of T2DM is approximately
10–15% GWAS [15–17,171]

Epigenomics CpGs methylation
pattern

CpG methylation of ABCG1, LOXL2,
TXNIP, SLC1A5 and SREBF1 is

associated with T2DM

EWAS, Illumina 450K
methylation array [174]

Epigenomics
Alpha or beta

cell-specific open
chromatin landscape

Alpha cell-specific ATAC-seq peaks:
ISL1 and MAFB; beta cell-specific:

SMAD2
ATAC-seq [175]

Epigenomics
Genomics

Open chromatin
regions/SNPs

Thousands of pancreatic islet-specific
enhancer–target gene pairs

Hi-C, ATAC-seq,
ChIP-seq [176]

Transcriptomics Gene expression
T2DM-specific gene expression

signatures in alpha, beta and
delta cells

scRNA-seq [177]

Transcriptomics Gene expression,
regulatory networks

Increased OTUD7B, PPRC1, ARRB2,
C17orf96, NME2, and E2F1 or four
markers with decreased PageRank
centrality (FBXW7, CXCL8, FHL1,

and CELF4)

scRNA-seq [178]

Epigenomics
Genomics

scRNA-seq and deep
learning approaches

T2DM-associated SNPs were
significantly enriched in beta

cell-specific and common islet-specific
open chromatin

scRNA-seq and deep
learning approaches [179]

Transcriptomics Gene expression,
pathway analysis

T2DM-associated genes responsible
for energy metabolism, immune

homeostasis, and autophagy

Meta-analysis of
scRNA-seq data [180]
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Table 4. Cont.

Omics/Field Measures Results Assay References

Transcriptomics Whole transcriptome
analysis

Top DEGs in peripheral fat of Asian
Indians associated with T2DM:

HOXB3, RSPO3, HOXA5, GREM1,
ORMDL1, C7, TRIM23, CLDN11,

ABCA10, ETV5, TRIM2, TP53INP1,
ST6GAL1, THBS2, ERAP1, OGT,
RARRES1, CTDSPL and TBCC

Affymetrix GeneChip
PrimeView Human

Gene Expression Array
[182]

Transcriptomics Whole transcriptome
analysis

Altered lipid, glucose, and protein
metabolism; adipogenesis defect; and

inflammation in peripheral fat of
Asian Indians associated with T2DM

Bulk RNAseq [183]

Genomics Analysis of SNPs

s2241766-G (ADIPOQ), rs6494730-T
(FEM1B), rs1799817-A, rs2059806-T

(INSR), rs11745088-C (FST),
rs9939609-A, and rs9940128-A (FTO)

were associated with T2DM in
southern Asian Indians

AGENA
MassARRAYiPLEX™

platform
[184]

Proteomics Protein concentrations Osteopontin and osteoprotegerin are
elevated in T2DM

Milliplex Luminex
assay [185]

Proteomics Protein concentrations High KIM-1 and β2-B2M are
associated with renal failure

Luminex Multiplex
ELISA Luminex assay [186]

Proteomics Protein concentration High KIM-1 is associated with
low GFR

Multiplex Luminex
Panel [187]

Proteomics Immune cell infiltration
High HLA-DR+ macrophages and

HLA-DR+ CD8+ T-cells in the islets of
pancreata of T2DM patients

Single-cell imaging
mass cytometry [188]

Lipidomics Lipid composition

High TAGs, DAGs, PEs: high risk
for T2DM

High LPs, PC–PLs, SMs, CEs: low risk
for T2DM

Mass spectrometry
(MS) [190]

Lipidomics Lipid composition High TAGs, DAGs and Low PC–PLs:
high risk for T2DM

Ultra-performance
liquid chromatography

and MS
[191]

Taken together, the above-discussed studies illustrate the relevance of multi-omics and
single cell-based technologies in the study of T2DM pathomechanisms. However, many
questions remain unanswered, including (i) which islet-specific enhancers/open chromatin
regions are associated with the different therapeutic responsiveness levels, (ii) how non-
pharmacological and pharmacological treatments can modulate the cellular heterogeneity
in the pancreas, and (iii) which gene expression and epigenetic signatures or plasma
biomarkers may be helpful to predict the therapeutic responsiveness in T2DM patients.
The limitations of genome-based or transcriptome-based investigations, such as lack of
functional tests, a lack of functional evaluation of metabolic traits, and protein circuits in cell-
to-cell communication, should be considered. Proteomics and lipidomics approaches also
share limitations with the aforementioned technologies, with questions of assay sensitivity,
sample preparation, and throughput, among others. No single omics technology can
identify and quantify the T2DM-related factors responsible for both disease heredity,
manifestation, and severity or serve as a therapeutic target or prognostic/diagnostic marker.
Rather, the combination of the presented technologies may accelerate the understanding of
the molecular pathomechanism of T2DM and finally ameliorate patient health. Overall,
individuals’ responsible lifestyle choices, lower calorie intakes, regular physical exercises,
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and SARS-CoV-2 vaccination may reduce the risk of the development or increased severity
of existing T2DM.
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