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Abstract: Worldwide, COVID-19 is a highly contagious epidemic that has affected various fields.
Using Artificial Intelligence (AI) and particular feature selection approaches, this study evaluates
the aspects affecting the health of students throughout the COVID-19 lockdown time. The research
presented in this paper plays a vital role in indicating the factor affecting the health of students
during the lockdown in the COVID-19 pandemic. The research presented in this article investigates
COVID-19’s impact on student health using feature selections. The Filter feature selection technique
is used in the presented work to statistically analyze all the features in the dataset, and for better
accuracy. ReliefF (TuRF) filter feature selection is tuned and utilized in such a way that it helps
to identify the factors affecting students’ health from a benchmark dataset of students studying
during COVID-19. Random Forest (RF), Gradient Boosted Decision Trees (GBDT), Support Vector
Machine (SVM), and 2- layer Neural Network (NN), helps in identifying the most critical indicators
for rapid intervention. Results of the approach presented in the paper identified that the students
who maintained their weight and kept themselves busy in health activities in the pandemic, such
student’s remained healthy through this pandemic and study from home in a positive manner. The
results suggest that the 2- layer NN machine-learning algorithm showed better accuracy (90%) to
predict the factors affecting on health issues of students during COVID-19 lockdown time.

Keywords: mental stress; COVID-19; feature selection; artificial intelligence; human health; pandemic;
lock down

1. Introduction

The COVID-19 was triggered by Sars-Cov-2 coronavirus, which was initially iden-
tified in Wuhan, China in December 2019 [1,2]. This disease spread in the whole world
rapidly and has significantly affected many aspects of life including mental health, social
life, supply chain, energy consumption, education, etc., [3,4]. Lockdown measures were
taken by governments all over the world to impede the disperse of the disease. People
all over the world were restricted to quarantine and keep social distancing to determine
the number of people who have become infected [5]. Studies have shown that the lock-
down during this COVID-19 had different physiological effects including anxiety, stress,
confusion [6], and anger [7]. Similar effects were observed in the education domain and
various educational stakeholders were affected by lockdown in COVID-19. According to a
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report of UNSECO [8], about 1.6 billion students faced school closure issues. Face-to-face
education was replaced by e-learning. This transformed the lives of the students reducing
them to their homes. Students’ mental and physical health is affected by the COVID-19
lockout situation. Different studies are taking part to figure out the reasons causing the
disturbance in the students’ mental health. During COVID-19, a variety of statistical tools
were used to investigate the elements that influence the students’ mental health. The results
of different existing studies reported that lockdown causes depression, anxiety, mental
stress and health issues in quarantined populations during COVID-19 [9]. Furthermore,
social distancing and different lockdown measures during COVID-19 negatively affect
the health of student [10]. The efficient execution of education depends on the health of
students. As the students are the main pillar of society and the nation’s leadership and
control will rely on them in the future. Therefore, it is necessary to put maximum possible
effort to maintain the health of students [11].

Artificial intelligence (AI) plays a vital role in predicting coronavirus effects in the
future by analyzing the covid data [12]. Different Al-based supervised and unsupervised
algorithms are being employed in studies for COVID-19 predictions and analysis [13]. As
the education sector is the base of every country’s development, so AI techniques help
the educational stakeholders and government officials of countries all over the world to
plan strategies and techniques to maintain the health of students. The focus of this study is
to employ the AI-based technique for the identification of factors affecting the students’
mental health in the pandemic of COVID-19. The following are the primary contributions
of the proposed work:

• Identifying the factors affecting the health of students in the lockdown phase of
COVID-19;

• To assist the educational stakeholders in taking proactive measures for maintaining
the student’s health for the duration of COVID-19;

• Proposing AI-based identification of features affecting the student’s health during the
lockdown period of COVID-19;

• Explore AI approaches namely RF, GBDT, SVM, and NN along with Turf feature
selection for selecting the optimal feature set affecting the health of students.

In this study, COVID-19 related student data will be evaluated in order to determine
factors affecting students’ health during COVID-19 lockdown. The paper is structured in
the subsequent pattern: a summary of related literature is provided in Section 2; the sug-
gested AI-based strategy is described in detail in Section 3; Section 4 presents the analysis
evaluation of the proposed technique; and the research and future work is summarized in
Section 5.

2. Related Work

Different studies are conducted to illustrate the effects of lockdown during COVID-19.
In this section, an overview of existing approaches is presented, focusing on the students’
mental health during the lockdown period in COVID-19. Different studies in different
countries are conducted all over the world to analyze the health of students during the
lockdown in this pandemic situation. Some of the studies are selected from the related
work on the mental and physical health of the students, available on Google Scholar. Table 1
shows the reference of the papers, country in which the study was conducted, also presents
the different variations in sizes of datasets collected for analyzing the factors affecting the
health of students in a pandemic situation. Furthermore, Table 1 analyzes that whether
the existing studies are utilizing AI techniques or not. In the end, Table 1 also presents
what is the conclusion of the recent studies regarding the factors affecting the mental health
of students.
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Table 1. Analysis of studies on student’s health during COVID-19 in different countries.

Reference Country Level of Students Size of Dataset Machine Learning
Effect on Mental and

Physical Health
in COVID-19

[6] Malaysia Postgraduate - No Loneliness, anxiety, stress,
and depression.

[14] Asian students
in Poland Medical students 85 No Feeling of isolation to

students who live abroad.

[15] Bangladesh College Students 400 No

In COVID-19, perceptions
of e-Learning failure and
fear about academic year

failure were connected with
psychological distress.

[16] Bulgaria
Graduate and

undergraduate
students

134 Yes
Availability of separate

rooms for students affects
their education.

[17] China
Non-graduating
undergraduate

students
1172 YES

XGBOOST

School closure, Social
distancing or Isolation, and

Online learning are the
reason for anxiety.

[18] China Secondary vocational
students 5783 No

Good family functioning
can positively affect the

mental health of students.

[19] Philippines College Students 952 No
Socioeconomic gaps and

the digital divide affect the
mental health of students.

[20] India Undergraduate and
post-graduate 516 Yes

Uncertainty regarding
examination affects the

mental health of students.

[21] Jordan Medical Student 1404 No Students focus on strategies
to prevent covid.

[22] Pakistan Higher Educational
Institutions 494 No Unaffordability of digital

devices and the internet.

[23] USA (United States
of America) University Students 195 No

Fear of own health and
dear one’s health affects the
mental health of students.

[24] UAE (United
Arab Emirates)

Medical and
non-medical students 1485 No

Fear of the unknown might
affect the mental health of
students so that students

must be aware of
the COVID-19.

[25] Saudi Arabia University students 400 Yes

Females and
fourth-semester students

face anxiety during
COVID-19.

[26] New Zealand

Mater level
Graduate-level

Teaching degree
(Mathematics

education learning)

3 No

Teachers help in the
transition of a new way of

learning that
affects students.

[27] Greece Undergraduate
forestry students 181 No

Students must be counseled
properly to control negative

emotions during
the lockdown.

[7] Iran Public school
students 20,697 No

Behavioral and socializing
changes during COVID-19

affects mental health.

The paper presents 16 most relevant literature on student’s health in COVID-19.
Recent studies are evaluated on 5 different parameters: the country through which dataset
is taken, study level of student’s understudy, number of students in the dataset, utilization
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of machine learning technique for identification of factors affecting student’s health, and,
lastly, the factor identified by the existing studies that may affect the health of students all
through lockdown phase of COVID-19. Different the different levels and sizes of students
with varying datasets sizes. The studies focus on graduate, undergraduate, college, public
schools, and medical and forestry students of different countries. The recent literature
indicates that there is so much gap in studies regarding machine learning utilization for
analyzing the mental health of students. Different factors come across while analyzing the
existing literature on the students’ mental health. Mainly, the following factors were found
to be very crucial in association with the students’ mental health in the COVID-19 pandemic.

• Loneliness [6];
• The feeling of isolation [13];
• Fear of academic year loss;
• Availability of space for studies;
• Family functioning;
• Females have more mental health issues than male students during COVID-19;
• Fear of own health;
• Fear of dear one’s health;
• Poverty;
• Student Counseling.

Different factors are found in the literature that has an association with the mental
health of students. These factors will help the educational admiration to take measures
for maintaining the health of students during COVID-19. Different remote techniques
and activities should be planned by educational stakeholders to minimize the anxiety of
students during the lockdown period of the pandemic. However, as the health of students
is an important concern so there is a need for deep insight into the data of students during
such pandemic situations. However, the need for AI algorithms is still there for a better
insight into data and its analysis. Main shortcomings in recent studies regarding the health
of students in COVID-19 are still required to address, some of the shortcomings found in the
literature that may help the educational stakeholders to build educational strategies. Firstly,
there is a need to the utilization of feature selection techniques to identify the features
affection health of students during the lockdown in COVID-19. To our knowledge, there
has never been a study that conducted a comprehensive literature analysis and identified
factors affecting the health of kids during COVID-19’s lockdown period based on feature
selection, whereas [28] has presented and utilized AI, but did not consider feature selection.
In the coming sections of this article, we will discuss our novel proposed approach for the
analysis of factors affecting the health of students in COVID-19.

3. Methods and Materials

In this section proposed approach for identifying the factors affecting the health of
students is presented. As it is very important to figure out that what are factors affecting
the health of Figure 1 presents the main flow of the proposed approach main steps of the
proposed approach is as follows:

• Dataset Selection;
• Dataset Cleaning;
• Feature Selection;
• Machine learning algorithm.

Each of the steps is explained further in detail in the coming subsections.
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3.1. Student Dataset in COVID-19

A benchmark dataset of 1182 students in COVID-19 [29] is utilized to analyze the
factors affecting the health of students in the lockdown period of COVID-19. The dataset is
freely available and, hence, utilized easily for research purpose. Table 2 describes the main
properties of the student dataset.

Table 2. Student COVID-19 dataset description.

Number of Students 1182

Number of features 19

Features

Id of the student, home location of students, Student_age, Time
consumed _online Class, Rating of Online Class experience,

Instruction medium for an online class, Time consumed_ self-study,
Time consumed_ fitness, sleeping_ time, Time consumed_ social

media, preferred social media platform, Time consumed_ TV, meals
_per day, changes _weight, Health issue_ lockdown, Stressbusters,

Utilization _time, what you miss the most

Target feature Health issue during lockdown

Number of classes 2

3.2. Data Preprocessing

Python programming language platform is utilized for coding the proposed approach,
and its various libraries like NumPy, pandas for better insight of data [30]. Different steps
are taken to preprocess the imbalanced dataset, firstly by scaling and data cleaning by
deleting ids, dropping duplicating rows, and filling all NA values. Moreover, categorical
features are mapped to numbers. Furthermore, to convert the text features like (stress
buster, what you miss most), pretrained bert is utilized for generating word vectors. Then
words are mapped to a single feature by following the normalization formula as:

x =
sum(vector)

max(vector)− min(vector)
. (1)



Life 2022, 12, 1367 6 of 13

Figures 2 and 3 represents variable count after and before sampling, whereas SMOTE
(Synthetic minority oversampling technique) addresses imbalance class issues very effec-
tively in various domains of research [31]. SMOTE oversampling technique is applied to
resample student’s datasets for COVID-19. Based on feature space similarity, the SMOTE
approach combines extra minority samples [32]. Let k = nearest neighbor for xi using
Euclidean distance.

Random Selection of k nearest neighbor
Feature vector difference between k and xi
Adding M in xi
Equation (2) presents the formula for calculating SMOTE
This is example 2 of an equation:

xnew = xi

(
xk

i − xi

)
× δ. (2)

xk
i = A nearest neighbors of xi, and δ is an arbitrary value belongs to (0, 1).
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3.3. Feature Selection

Feature selection is a process to obtain an optimal set of features, to obtain better
classification accuracy. There are different types of feature selection algorithm filter and
wrapper feature selection. Filter feature selection is high in speed [33] and consumes less
time, and is the main reason for selecting filter feature selection in our proposed approach.
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Filter feature selection is further divided into two types, univariant and multivariant filter
feature selection methods. The univariant filter feature ignores the features dependencies
and that leads to a poor selection of feature set [34], whereas multivariant feature selection
takes consideration of feature dependencies while selecting the feature set [35]. Turf is the
tuned form of Relief multivariant filter feature selection. When selecting relief features,
feature dependencies are taken utilizing the full feature vector, which may ignore the noisy
features, so that Turf feature selection step by step low-quality features, hence, generating
optimal feature set [36]. The Turf algorithm is presented in Algorithm 1.

Algorithm 1. TuRF algorithm [36].

a = features in dataset

Let p = iterations
For i:= 1 to p do
Estimation of feature weights through ReliefF
Features sorting through weight
+
+ remove p/a of outstanding features with smallest weights
end for
return final ReliefF weight estimations for outstanding features

3.4. Machine Learning Algorithms

After the selection of features, classification is performed. SVM (Support Vector
Machine) is a classifier for binary classification of data. The hyperplane is used to solve the
learning problem in SVM. A robust method with different kernel values is considered one of
the best classifiers for classification [37]. RF (Random Forest) utilized various trees to predict.
It is being utilized by different research areas of research with remarkable results. RF
produces high classification accuracy with an even dataset with a large number of features.
It handles unbalanced data by accessing important features. Whereas GBDT (Gradient
Boosting Decision Tree) is selected due to its property of selecting fewer parameters as
compared to the other classification algorithms. In existing research, in machine learning,
GBDT shows tremendous results. It is based on the CART algorithm. GBDT merges
the concept of regression and boosting tree and intends the use of residual gradient to
optimize the assimilation process of regression tree [38]. ANN (Artificial Neural Network)
is a popular classification technique utilized in different areas of research like agriculture,
medical, security, education, business, art, etc. It is very easy to use and can manage
complex data [39]. Moreover, the performance of the proposed approach presented in this
paper is evaluated through accuracy, precision, recall, and f-measure, whereas accuracy is
defined as the predicted observations over a total number of observations [40–42]. Precision
is the fraction of the recovered instances that belong to the target class, whereas F-measure
is the harmonic mean of precision and recall. Equations (3)–(6) presents the formula of
evaluation parameters, whereas TP, FN, and FP stand for true positive, false negative, and
false-positive respectively.

Accuracy =
TP + FN

TP + FN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F − Measure =
2(Precision × Recall)

Precision + Recall
(6)

whereas Table 3 presents the Parameters of classification algorithm utilized in proposed work.
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Table 3. Parameters of classification algorithm utilized in proposed work.

SR Name Parameters

1 GBDT n_estimators = 19, learning_rate = 0.3, max_depth = 7, random_state = 0

2 SVM SVC(C = 5, break_ties = False, cache_size = 200, class_weight = Balanced,
degree = 3, gamma = 11, kernel = ‘rbf’)

3 Random Forest
bootstrap = True, criterion = ‘gini’, max_depth = 15, max_features = ‘auto’,

min_samples_leaf = 1, min_samples_split = 2,
n_estimators = 20

4 NN-2 Layers Momentum0.9, learning rate = 0.003, layers = 2, drop_out = 0.1,
optimizer = adam, Loss Binary Class

4. Results

Results of the proposed approach for the identification of factors affecting the health of
students in COVID-19 will be discussed in detail in this section. Figure 4 explains the proposed
method in detail with results. The results show that the dataset of a feature vector of 16 features
is balanced through applying SMOTE technique. The health of students is taken as a target
feature, and the Turf feature selection technique is utilized to detect the factors influencing the
health of students. Different classification algorithms are applied to the selected feature datasets
of student’s health during COVID-19. The performance of the suggested method was assessed
using accuracy, precision, recall, and f-measure assessment metrics.
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The result s shows that the student who utilized their time during lockdown period in
COVID-19 in different activities remain healthy. Utilization of time appears as the main
factor affecting the health of students. The academic organization may keep that factor
in front and must plan activities, guide, and motivate students to participate in some
indoor actives in such a way that maintains their health. Emotional attachment of students
with family members also affects the health of students, as the fear of any family loss due
to COVID-19 affects the health of students. Moreover, change in the weight of students
during COVID-19 also affects the health of students. Figure 5 presents the results of four
classifiers, GBDT, RF, SVM, and NN, on students COVID-19 dataset, whereas the accuracy
describes the number of healthy students correctly classified by proposed work over a
total number of students. Results show that a Neural network (NN) outperforms other
existing classification algorithms in terms of accuracy. However, GBDT also performs well
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on students COVID-19 dataset and showed around 87% of accuracy. Equation (7) presents
the accuracy formula for the student COVID-19 dataset.

Accuracy =
Number o f studentscorrecly classi f ied

Total number o f students
(7)
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Figure 5. Comparison of accuracy of proposed COVID-19 approach.

Figure 6 presents the performance evaluation of the proposed work in terms of preci-
sion, whereas precision calculates the number of healthy students in the COVID-19 student
dataset correctly classified by proposed work divided by the total number of healthy
students in the COVID-19 dataset, classified by the proposed approach. Results show
that neural network performs better than other classification algorithms. Equation (8)
presents the formula of precision for calculation precision of proposed approach on student
COVID-19 dataset.

Precision =
Number o f healthy students identi f ied by propsed approach

Total number o f health and unhealthy students classi f ied by proposed approach
(8)
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The results in Figure 7 show the performance evaluation of the proposed work in terms
of recall. The recall is the calculation of a total number of healthy students in the COVID-19
student dataset classified by the proposed approach divided by the total number of healthy
students in the COVID-19 student dataset. The results show that the GBDT classifier
outperforms other classifiers in recall performance evaluation measures. Furthermore, RF
and NN also show better performance. Equation (9) presents the formula for calculating
the recall for evaluating proposed approach on students COVID-19 students.
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This is example 2 of an equation:

Recall =
Number o f healthy studentsclass f ied by the proposed approach

Total number o f healthy students
(9)

Figure 8 presents a comparison of the performance of four classifiers in terms F-
measure performance evaluation measure, whereas the f-measure of the proposed approach
considers precision and recall both, presented already in Equation (6). Results show that
GBDT and NN give better performance on the proposed work on the COVID-19 student
dataset in terms of F-measure.
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5. Conclusions

COVID-19 affects every field of life, the educational sector all over the world faces
different issues. During the lockdown, students face a lot of issues, whereas health issue
becomes the main issue. Results presented in the proposed approach identifies the main
factors affecting the health of students during the lockdown. Results show that the health
of students affects the factors that how they utilized their time during the lockdown in
COVID-19, whereas weight and family concerns also appear as factors affecting the health
of students during a lockdown of COVID-19. Henceforth, there is a need to take proactive
measures to discover the approaches to sustain the health of students, either by guiding
them in health time utilization activities or by counseling them about family matters. These
well-timed taken measures may reduce the health issues in students caused by pandemic
situation in COVID-19. Moreover, reported results in this paper ‘show that neural network
outperforms and shows 90% accuracy on the proposed approach as compared to GBDT, RF,
and SVM.
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