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Marija Marković 1 , Zlatko Giba 2 and Angelina Subotić 1
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Abstract: Soil salinity is one of the most common abiotic stressors that affects plant growth and
development. The aim of this work was to investigate the influence of sodium nitroprusside (SNP), a
donor of nitric oxide (NO), on the physiological response of common centaury (Centaurium erythraea)
shoots grown under stress conditions caused by sodium chloride (NaCl) in vitro. Centaury shoots
were first grown on nutrient medium containing different SNP concentrations (50, 100 and 250 µM)
during the pretreatment phase. After three weeks, the shoots were transferred to nutrient media
supplemented with NaCl (150 mM) and/or SNP (50, 100 or 250 µM) for one week. The results
showed that salinity decreased photosynthetic pigments, total phenolic content and DPPH (1,1-
diphenyl-2-picrylhydrazyl radical) concentration. The activities of antioxidant enzymes, namely
superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX), were also reduced under salt
stress. However, MDA concentration was decreased, while H2O2 and proline content did not
drastically change under the stress conditions caused by NaCl. Exogenous application of SNP
altered the biochemical parameters of centaury shoots grown under salt stress. In this case, increased
photosynthetic pigment content, total phenolics and proline content were noted, with reduced MDA,
but not H2O2, concentration was observed. In addition, the exogenous application of SNP increased
the degree of DPPH reduction as well as SOD, CAT and POX activities.

Keywords: common centaury; salinity stress; oxidative stress; antioxidative protection; sodium nitroprusside

1. Introduction

Environmental conditions are rarely ideal and plants are constantly exposed to various
types of stress during their life cycle. Stress can be defined as a factor that decreases the
rate of physiological processes that negatively affects growth, development and plant
productivity [1]. In the context of energy consumption, stress can be observed as a state
in which reduced energy production is directed towards stress-defense processes rather
than growth and development [2]. In natural conditions, plants are mainly exposed
to a combination of different stress-inducing factors that interact with each other and
modify their individual effects accordingly. Salt stress is one of the major abiotic factors
limiting crop productivity. According to Shrivastava and Kumar [3], more than 50% of
lands are affected by salinity, while salinized areas have a tendency to increase by 10%
every year. Since almost all food originates from soil, it is more than clear what problem
salinization presents to the food supply [4]. In addition to natural salinization, which is
the accumulation of dissolved salts in the soil to the levels that interfere with agricultural
production and environment, there is also secondary salinization that occurs as a result of
anthropogenic influences [5].
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Salt stress disrupts plant homeostasis in two ways. First, high concentrations of salt
in the soil prevent water uptake by the roots, while the accumulation of salts in plants,
primarily Na+ and Cl− ions, further leads to toxic effects [6]. During the initial phase
of defense against salt stress, water deficit and osmotic stress causes a decrease in cell
division rate in leaves, root and shoot meristems [7]. Osmotic stress also leads to stomatal
closure and reduction in photosynthesis efficiency [8]. The next phase of the plant’s
defense against salt stress occurs due to accumulation of toxic ions, leading to damage of
cell membranes’ structure and function, inhibition of enzyme activity and finally, plant
productivity [9]. Secondary oxidative stress follows immediately after primary stressors,
osmotic stress and ion toxicity. Oxidative stress is a complex chemical and physiological
phenomenon that occurs as a result of intensive production and accumulation of reactive
oxygen species (ROS) which, due to high reactivity, damage proteins, lipids and nucleic
acids [10]. By damaging the lipids, the integrity and functions of membranes deteriorate.
These fragmentation products can further damage proteins and nucleic acids, thereby
interfering with the normal functioning of receptors, enzymes and membrane channels,
resulting in cell death [11]. Accordingly, lipid oxidation, also known as lipid peroxidation,
is one of the markers of oxidative stress.

Since prolonged exposure to stress leads to cell death, plants have developed nu-
merous mechanisms that enable growth in different stress conditions. Tolerance to salt
stress is a complex phenomenon involving numerous regulatory processes such as stomatal
opening, changes in hormonal balance, activation of antioxidant defense systems, osmotic
adjustment, maintenance of water balance, export of toxic ions or their compartmental-
ization in vacuoles [12]. Antioxidant defense mechanisms are divided into two groups,
non-enzymatic and enzymatic. Both groups of antioxidants are involved in protecting
cellular components from oxidation as well as conversion of ROS into less reactive forms.
In addition to ascorbic acid, glutathione, tocopherols, polyamines and phenols, proline and
glycine betaine are the most important non-enzymatic components [9]. Proline is one of
the essential amino acids, with great importance in protein synthesis. The accumulation of
proline in plant cell results after different disturbances to the external environment [13]. In
addition, proline is known to regulate the expression of genes important for mitochondrial
stability, cell division and cell death [9,14,15]. Several different enzymes such as super-
oxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione peroxidase (GPX),
glutathione reductase (GR), glutathione S-transferases (GST), ascorbate peroxidase (APX),
monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR),
act as part of the plant antioxidant defense system [16]. In addition, SOD is considered
one of the major enzymatic systems that scavenges stress-generated free radicals in plants
while other enzymes such as CAT and POX, work in close synchrony with SOD to prevent
the formation of more harmful ROS through the Haber–Weiss reaction.

Nitric oxide (NO) is a paramagnetic molecule with an unpaired π∗ electron, which
can easily diffuse through membranes [17]. Initially, NO was considered an air pollutant
that inhibits plant growth and denatures DNA, damages lipids, and decreases intensity of
photosynthesis and respiration [18]. Today, however, it is known that NO is an important
molecule in redox signaling, participates in the control of numerous physiological processes
and plays an important role in establishing resistance to pathogens and regulating the
plant’s response to abiotic stress [19–21]. Sodium nitroprusside (SNP), a common NO donor,
plays diverse roles in plant growth and development. Numerous studies have confirmed
the protective role of SNP during salt stress conditions in tomato [22], cucumber [23],
orange [24], cotton [25], alfalfa [26], apple [27], wheat [28] and lentil [29] plants.

Centaury (Centaurium erythraea Rafn) is medicinal plant that is widely used in tra-
ditional medicine as an antidiabetic, antipyretic, antiflatulent and detoxifying agent [30].
Various bioactive compounds isolated from the aerial part of centaury have shown different
therapeutic properties [30–36]. Among the species belonging to the Centaurium genus, cen-
taury is the plant species to which the greatest attention has been paid during recent years.
The first and most important reason is the relatively easy manipulation of this plant species,
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which makes it an excellent model system for studying genetic transformation, secondary
metabolites and salt stress physiology [37–40]. Moreover, centaury has recently shown to
possess great developmental plasticity and the ability to induce somatic embryogenesis
in root and leaf cultures [41]. A previous report described the salinity-stress response
of centaury shoots and roots grown in vitro [38]. In this work, we investigated whether
exogenous application of SNP can alleviate the effects of stress caused by NaCl in centaury
shoots grown in vitro.

2. Materials and Methods
2.1. Plant Material, Culture Conditions and Experimental Design

Mother stock cultures of centaury plants were used as the primary plant material. The
centaury shoots were cultured in vitro, on half-strength MS medium ( 1

2 MS, [42]) solidified
with 0.7% agar and supplemented with 3% sucrose as well as 100 mg L−1 myo-inositol. The
medium was adjusted to pH 5.8 with NaOH/HCl and autoclaved at 121 ◦C for 25 min. All
in vitro cultures were grown at 25 ± 2 ◦C and a 16/8 h light/dark photoperiod (“Tesla”
white fluorescent lamps, 65 W, 4500 K; light flux of 47 µmol s−1 m−2). During the three-
week long pretreatment, the centaury shoots were first placed on four types of 1

2 MS nutrient
media containing different SNP concentrations (0, 50, 100 or 250 µM). After pretreatment,
the centaury shoots were transferred to fresh 1

2 MS nutrient media supplemented with NaCl
(0 or 150 mM) and/or SNP (0, 50, 100 or 250 µM) and cultured for one week (Figure 1). All
experiments were repeated three times.
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Figure 1. Schematic of experimental design including different SNP pretreatments and NaCl and/or
SNP treatments.

2.2. Quantification of Photosynthetic Pigments

Isolation of total chlorophyll (Chl) and carotenoids was accomplished from the leaves
collected from the bottom part of the centaury rosette after four weeks of cultivation. Total
Chl and carotenoid content were extracted using 96% ethanol as proposed by Lichten-
thaler [43] and previously described in detail by Trifunović-Momčilov et al. [39]. The
absorbance of the photosynthetic pigments was measured using a UV–visible spectropho-
tometer (Agilent 8453, Life Sciences, Santa Clara, CA, USA).
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2.3. Estimation of Oxidative Stress Biomarkers

The level of lipid peroxidation was measured as malondialdehyde (MDA) concentra-
tion by the procedure described by Heath and Packer [44], while H2O2 concentration was
determined as described by Velikova et al. [45]. In both assays, 0.1% trichloroacetic acid was
used and detailed protocols were previously described by Trifunović-Momčilov et al. [38].
The spectrophotometric determination of MDA and H2O2 were measured using an ELISA
Micro Plate Reader (LKB 5060–006, Winooski, VT, USA).

2.4. Estimation of Nonenzymatic Antioxidants

Free proline content was determined by the ninhydrin reaction which consists of
the reaction of proline and ninhydrin reagent (2,2-dihydroxyindane-1,3-dione) resulting
in a yellow reaction product [46]. Proline extraction and measurement was performed
according to a modified method by Carillo and Gibon [47] and described in detail by
Trifunović-Momčilov et al. [38].

Total polyphenol content was determined using the Folin–Ciocalteu test (FC test)
based on reaction of polyphenols from plant tissues and Folin–Ciocalteu reagents forming
a blue-colored complex that can be spectrophotometrically quantified. This method was
previously described by Singleton et al. [48]. The plant material (200 mg) was homogenized
in liquid nitrogen and extracted with 96% ethanol. The homogenate was incubated for
60 min at room temperature and then centrifuged for 15 min. The supernatant was further
mixed with the FC reagent solution, which was previously prepared by adding distilled
water to the FC reagents in a volume ratio of 2:1. The reaction mixture was quickly vortexed
and 20% Na2CO3 was added. After 90 min at room temperature in darkness, the absorbance
was measured at 765 nm. In this assay, gallic acid was used as a phenol standard.

The antioxidant activity in the centaury shoots was determined after evaluation of
stable DPPH radical concentrations. The samples were prepared using the same method as
the FC test. In the reaction with antioxidants, the DPPH radical is converted to a non-radical
form through reduction by hydrogen ions. After homogenization and centrifugation of
the supernatant, methanol and DPPH reagent solution were added. The reaction mixture
was incubated at room temperature in the dark. After 60 min, the degree of reduction
of the DPPH radical was estimated through an absorbance measurement at 520 nm. The
scavenging capacity of the DPPH radical was calculated using the following equation:
(%) = [1 − (A1 − A0)] × 100 where A1 is the absorbance of the sample and A0 is the
absorbance of the blank reaction.

For the spectrophotometric determination of all nonenzymatic antioxidants, an ELISA
Micro Plate Reader (LKB 5060–006, Winooski, VT, USA) was used.

2.5. Estimation of Enzymatic Antioxidants

Centaury shoots were homogenized in potassium phosphate extraction buffer con-
taining insoluble polyvinylpolypyrrolidone, dithiothreitol and phenyl methyl sulfonyl
fluoride. The homogenate was centrifuged at 4 ◦C for 5 min and the protein content was
determined from the supernatant according to Bradford [49] using bovine serum albumin
as the standard. The quantification of SOD, CAT and POX was also performed.

SOD activity was determined spectrophotometrically using a modified method from
Beyer and Fridowich [50]. The reaction mixture contained potassium phosphate buffer,
ethylenediaminetetraacetic acid, methionine, nitroblue tetrazolium chloride (NBT) and
riboflavin. The reaction mixtures were added to the samples, which were then illuminated
for 1–2 min and the absorbance was measured at 540 nm. One unit of SOD activity is the
amount of sample required for 50% inhibition of NBT photoreduction and is presented as
the specific activity (U/mg). SOD activity was spectrophotometrically detected using an
ELISA Micro Plate Reader (LKB 5060–006, Winooski, VT, USA).

CAT activity was determined spectrophotometrically using the method from Aebi [51].
This method is based on monitoring the kinetics of the consumption of H2O2, which can
be detected by measuring the absorbance (at 240 nm) of the reaction mixture consisting
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potassium phosphate buffer, H2O2 and enzyme extract. One unit of CAT activity is defined
as the amount of enzyme required to degrade 1 µM of H2O2 in 1 min and is indicated as
µM min−1 mg protein−1 (U/mg protein).

POX activity was determined spectrophotometrically using the method from Kukavica
and Veljović-Jovanović [52]. The reaction mixture contained potassium phosphate buffer
and pyrogallol as the enzyme substrate. The POX-catalyzed oxidation of pyrogallol to
purpurogallin in the presence of H2O2 was monitored by absorbance determination at
430 nm. Enzyme activity is indicated as µM min−1 mg protein−1 (U/mg protein). The
absorbances of the CAT and POX reactions were measured with a UV–visible spectropho-
tometer (Agilent 8453, Life Sciences, USA).

2.6. Statistical Analysis

The effect of different SNP pretreatments/treatments on the biochemical parameters
of centaury shoots, after four weeks of culture, were evaluated using standard two-factor
analysis of variance (ANOVA). All analysed parameters were measured using three biolog-
ical samples per treatment. In addition, the absorbances of all supernatants were measured
in triplicate for each sample. The results are presented as mean ± SE. The comparisons
between the mean values were made using a Fisher LSD (the least significant difference)
post-hoc test, calculated at a confidence level of p ≤ 0.05.

3. Results
3.1. The Effect of SNP on Photosynthetic Pigments Content during Salt Stress in
C. erythreae Shoots

The centaury shoots successfully survived four weeks on 1
2 MS media supplemented

with different combinations of SNP (0, 50, 100 or 250 µM) and/or NaCl (150 mM). Control
centaury shoots grown on NaCl-free medium developed the usual rosette morphology
and dark green oval leaves (Figure 2). Pretreatments with 50 and 100 µM SNP altered the
color of the leaves to light green. Pretreatment with 250 µM SNP caused leaf tip curling
and desiccation as well as yellowing of the leaves and chlorosis of the entire shoot. After
this pretreatment, and especially in combination with SNP, and NaCl, the highest number
of yellow leaves was observed. Unlike other pretreatments/treatments, only after the
pretreatment with 250 µM SNP, most centaury shoots did not spontaneously develop roots.

Leaf chlorosis is one of the most common symptoms of stress caused by NaCl due to
decreased photosynthetic pigments and is also an important indicator of the physiological
state of the plants. Therefore, the content of photosynthetic pigments was determined in
two control groups of shoots that were grown on 1

2 MS NaCl-free medium throughout the
whole experimental period, then in medium supplemented with 150 mM NaCl, as well as
in shoots grown on different SNP pretreatments and NaCl and/or SNP treatments. In the
second control group of centaury shoots not exposed to SNP during the pretreatment, NaCl
decreased total Chl content ~21% in comparison to the first control group grown on 1

2 MS
NaCl-free medium (Figure 3a). In addition, pretreatment with 50 µM SNP significantly
decreased the total Chl in shoots grown on NaCl-free medium in comparison to the control
group of shoots grown on the same medium. Conversely, the combination of 50 µM
SNP pretreatment and then treatments with NaCl and 50 µM SNP, increased total Chl
content ~20% in comparison to the control group of shoots grown on NaCl-supplemented
medium, as well as in comparison to the control shoots from the appropriate treatment.
Pretreatment with 50 µM SNP in combination with treatment including NaCl and 50 µM
SNP together, also reduced total Chl content to the lowest level in this experimental group.
The application of 100 µM SNP in the pretreatment, did not lead to significant changes in
total Chl content in comparison to the control group centaury shoots grown on medium
with NaCl. The 250 µM SNP pretreatment did not show any positive effects, and decreased
total Chl content in comparison to the control group of shoots grown on medium with
NaCl. It was interesting to note that the lowest total Chl content was detected in centaury
shoots exposed to treatments including both NaCl and SNP after the appropriate SNP
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pretreatments. It was also found that increased SNP concentrations in the pretreatment
were negatively correlated with decreased total Chl content after the corresponding SNP
and NaCl treatments.

The effect of the different SNP pretreatments and NaCl and/or SNP treatments on
total carotenoid content is shown in Figure 3b. In the control groups of century shoots, NaCl
decreased the total carotenoid content 27% in comparison to the control group of shoots
grown on NaCl-free medium. Pretreatment with 50 µM SNP halved the total carotenoid
content in shoots grown on NaCl-free medium in comparison to the control group of shoots
grown on the same medium. Conversely, pretreatments with 150 and 250 µM SNP did
not significantly change the total carotenoid content in comparison to the control group
of shoots grown on NaCl-free medium. In shoots grown on medium supplemented with
NaCl, pretreatments with 100 and 250 µM SNP increased the total carotenoid content
31 and 52%, respectively, in comparison to control group of shoots grown on the same
medium. In addition, in comparison to the control group, the application of 100 and 250 µM
SNP as pretreatments in combination with the same SNP concentrations in the treatments,
influenced a significant increase in total carotenoid content. Furthermore, pretreatments
with 100 and 250 µM SNP, followed by treatments with the same SNP concentrations and
NaCl together, resulted in a significant increase in total carotenoid content in comparison
to the control group of shoots grown on medium supplemented with NaCl.
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3.2. The Effect of SNP on Oxidative Stress Biomarkers during Salt Stress in C. erythreae Shoots

The effect of different SNP pretreatments and NaCl and/or SNP treatments on
level of lipid peroxidation in centaury shoots was determined by monitoring the MDA
concentration (Figure 4a). In the control group cultured on medium supplemented
with NaCl, a decrease in MDA concentration (15%) was observed in comparison to the
control group grown on NaCl-free medium. All SNP pretreatments significantly reduced
MDA concentrations in the centaury shoots grown on NaCl-supplemented medium,
especially the 50 and 250 µM SNP pretreatments, where the MDA concentrations were
reduced to 56 and 52%, respectively, in comparison to the control group grown on NaCl.
Treatments with 50 and 250 µM SNP decreased MDA concentration, while 100 µM
SNP did not significantly change the MDA concentration in comparison to both control
groups. A significant increase in lipid peroxidation was observed after treatments with a
combination of 50 or 100 µM SNP with 150 mM NaCl. In addition, the highest degree of
lipid peroxidation, compared to all treatments tested, was detected after the treatment
using 250 µM SNP and 150 mM NaCl.
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Since lipid peroxidation is one of the consequences of oxidative stress, H2O2 con-
centration was also determined as a marker of the degree of plant cell oxidative damage
(Figure 4b). The two control groups had approximately the same H2O2 concentrations.
Pretreatments with 50, 100 or 250 SNP concentrations increased H2O2 in shoots grown on
NaCl-free medium by about 233, 75 and 71%, respectively, in comparison to the control
centaury shoots grown on NaCl-free medium and by about 173, 131 and 177%, respec-
tively, in comparison to control shoots grown on NaCl medium. Treatment with 50 µM
SNP did not significantly change the H2O2 concentration in comparison to both control
groups. Conversely, treatments with 100 and 250 µM SNP significantly increased H2O2
concentration in comparison to both control groups. The same pattern was also observed
in all SNP treatments in combination with NaCl.

3.3. The Effect of SNP on Nonenzymatic Antioxidants during Salt Stress in C. erythreae Shoots

The centaury control shoots grown under unstressed and NaCl-stressed conditions
in vitro has similar free proline contents (Figure 5). After pretreatment with 50, 100 or
250 µM SNP, increased proline content (38, 50 and 52%, respectively) was observed in
shoots grown on 1

2 MS nutrient medium in comparison to the control group of shoots
grown on the same medium. Only pretreatment with 50 µM SNP resulted in a significant
increase in proline content (32%) after NaCl treatment in comparison to the control group
of centaury shoots grown on medium supplemented with NaCl. Increased SNP concen-
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trations, using the same concentration in pretreatments and in following treatments, was
positively correlated with increased proline content in comparison to both control groups.
However, treatments with all SNP concentrations showed lower levels of proline content
in comparison to the corresponding treatments control. On the other hand, pretreatments
with 50 and 100 µM SNP followed by treatments with the same SNP concentrations and
NaCl together, decreased proline content to the control values of stressed shoots, while the
lowest proline content, lower than in both control groups, was detected in centaury shoots
grown on treatment with 250 µM SNP and NaCl together.
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The amount of total phenolic compounds in centaury shoots exposed to different SNP
pretreatments and/or treatments was determined (Figure 6a). In the control centaury shoots
grown on NaCl-free medium, similar total phenolic content was detected, in comparison to
shoots grown on NaCl-supplemented medium. Pretreatments with 50 and 100 µM SNP
in NaCl-free medium did not significantly change the amount of total phenolic content
in comparison to the corresponding control group, while pretreatment with 250 µM SNP
increased the amount of total polyphenols by about 23%. Conversely, all applied SNP
pretreatments (50, 100 and 250 µM) caused significant increase in the total phenolic content
(29, 69 and 82%, respectively) in shoots grown on medium supplemented with NaCl in
comparison to control shoots grown on the same medium. In addition, the application
of all SNP concentrations in the pretreatments and treatments, increased the total phenol
content in comparison to control shoots grown on NaCl, but these levels still did not exceed
the values recorded in control shoots grown on NaCl-free medium. The same pattern was
observed after all treatments that included the combinations of 50 or 100 µM SNP and NaCl.
The only exception was the combination of 250 µM SNP and NaCl, where an increase of
about 26% was observed in comparison to control shoots grown on 1

2 MS medium.
The influence of the different SNP pretreatments and NaCl and/or SNP treatments on

the antioxidant capacity of centaury shoots is presented on Figure 6b. In control conditions,
the addition of NaCl decreased the DPPH concentration by 28% in comparison to shoots
grown on 1

2 MS medium. In comparison to control shoots grown on NaCl-free medium,
pretreatments with 50 and 100 µM SNP did not significantly change DPPH concentrations
while pretreatment with 250 µM SNP significantly increased DPPH in shoots grown on
the same medium. Under the conditions of salt stress caused by NaCl, pretreatments
with all SNP concentrations (50, 100 and 250 µM) shown an increase in the degree of
DPPH reduction by 11, 17 and 31%, respectively, in comparison to the corresponding
control group. Treatments with 50 and 100 µM SNP did not significantly alter DPPH
concentrations and both values were similar to control shoots grown on 1

2 MS and NaCl-free
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medium, respectively. Only treatment with 250 µM SNP, significantly increased DPPH
concentration in comparison to both control groups, but still at the level of control shoots
within the same treatment. Using the combination treatments containing NaCl and 50 or
100 µM SNP, an increased DPPH was detected in comparison to control shoots grown on
NaCl, but DPPH concentration was not changed in comparison to the second group of
shoots grown on 1

2 MS medium. Among all treatments tested, the most significant degree
of DPPH reduction, in comparison to both control groups, was recorded in shoots grown
on media supplemented with NaCl and 250 µM SNP.
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3.4. The Effect of SNP on Enzymatic Antioxidants during Salt Stress in C. erythreae Shoots

In the control groups of shoots grown in the presence of NaCl, SOD activity was
decreased by about 18% in comparison to control shoots grown on NaCl-free medium
(Figure 7a). In shoots grown on 1

2 MS medium, the 50 and 100 µM SNP pretreatment
increased SOD activity by about 34 and 24%, respectively, while pretreatment with 250 µM
SNP did not significantly changed SOD activity in comparison to control shoots grown on
the same medium. In shoots grown on medium supplemented with NaCl and previously
pretreated with 50, 100 and 250 µM SNP, the same pattern was observed. SOD activity was
increased by 88 and 71% after the application of 50 and 100 µM SNP, respectively, while
after 250 µM SNP treatment, SOD activity was similar to control shoots. The application of
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the SNP treatments caused an increase in SOD activity in comparison to both control groups.
However, it was interesting to note that the increasing SNP concentrations were inversely
correlated with increasing SOD activity. The highest SOD activity among all the treatment
combinations was recorded in shoots grown on NaCl and 100 µM SNP. By increasing the
SNP concentration to 250 µM along with the NaCl treatment, the SOD activity decreased to
the control level of the corresponding treatment and the control shoots grown on 1

2 MS or
medium supplemented with NaCl.
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(p ≤ 0.05).
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Similar to the SOD activity, in control conditions, CAT activity was also decreased (by
about 55%) in shoots grown on NaCl medium (Figure 7b). Pretreatment with 50 µM SNP did
not significantly change CAT activity in comparison to both control groups. Treatment with
100 µM SNP, individually or together with NaCl, significantly increased CAT activity. In
the shoots grown on NaCl-free medium, a significant increase in CAT activity was recorded
only after 250 µM SNP pretreatment. At the same time, this is the highest recorded CAT
activity in the centaury shoots after all applied treatments, and represents an increase of
143% in comparison to control shoots grown on 1

2 MS medium.
Similar to SOD and CAT activities in the control groups, POX activity was also de-

creased (by approximately 17%) in shoots grown on NaCl medium (Figure 7c). No signifi-
cant changes in POX activity were observed in shoots pretreated with 50 or 100 µM SNP
and grown on both MS and NaCl-free media. Pretreatments with 50 or 100 µM SNP and
furtherr culture on media with the same SNP concentrations and NaCl together, increased
POX activity). A significant increase in POX activity was observed after pretreatment with
250 µM SNP and all further treatments. Thus, POX activity was tripled in centaury shoots
pretreated with 250 µM SNP and further grown on NaCl-free medium, in comparison to
control shoots grown on the same medium. The same pattern was also observed in shoots
grown on NaCl and control shoots grown on the same medium but not treated with SNP.
Similar POX activity changes were detected in shoots treated only with 250 µM SNP. In
comparison to all applied treatments, the highest POX activity was recorded in centaury
shoots grown on medium supplemented with 250 µM SNP and NaCl together.

4. Discussion

Although in nature, centaury inhabits mountain slopes, dry grasslands, scrublands and
saline soils, investigations of centaury’s response to stressful conditions in vitro are still at
the beginning stages. The role of the widely used NO donor, SNP, on plant tolerance to salt
stress conditions is usually demonstrated after foliar treatment or using nanoparticles [53].
In this work, the effect of exogenously applied SNP, alone or in combination with NaCl, on
several biochemical parameters of centaury shoots grown in vitro was investigated.

4.1. SNP and Photosynthetic Pigments during Salt Stress in C. erythreae

Due the importance of photosynthesis, as a key physiological process in plants, the
effect of different SNP pretreatments and NaCl and/or SNP treatments on the concentration
of photosynthetic pigments of centaury was determined. This work demonstrated that total
Chl content was significantly decreased in control shoots grown on NaCl in comparison to
the other control group of shoots grown on 1

2 MS medium (Figure 3a). These results are in
accordance with the results previously obtained in centaury shoots grown during NaCl-
caused salt stress in vitro [37,39]. The lowest SNP concentration applied at pretreatment
(50 µM) shown a positive effect on total Chl content in centaury leaves during salt stress.
Conversely, the highest SNP concentration (250 µM) decreased total Chl content to levels
lower than the control group of shoots grown on NaCl. These results could be expected
because in addition to oxidative stress, centaury shoots were also exposed to higher in-
tensity of nitrosative stress. The positive effect of SNP on total Chl content under stress
conditions caused by NaCl was also confirmed in cotton, red raspberry, barley, sunflower
and wheat [25,28,54–56]. It was interesting to note that SNP pretreatments did not increase
total Chl content in comparison to the control group of shoots grown on NaCl-free medium.
However, some reports showed that SNP treatment increased total Chl content in cotton
and raspberry plants grown under salt stress in comparison to control conditions [25,54].
In summary, it can be assumed that a lower SNP concentration had a positive effect on Chl
preservation by promoting the synthesis, regeneration and/or inhibiting its degradation
but also promoting the mechanisms that remove ROS, and the ability of SNP to improve
the K+/Na+ ratio [25,27].

The results presented in this work showed that NaCl had negative effect on to-
tal carotenoid content in centaury shoots grown in control conditions (Figure 3b). De-
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creased carotenoid content was also recently reported in centaury shoots under salt stress
in vitro [39]. In centaury shoots treated with NaCl, the application of SNP pretreatments
resulted in increased total carotenoid content in comparison to control group of shoots
grown on medium also supplemented with NaCl. The highest total carotenoid content was
observed after treatment with 250 µM SNP and NaCl together. These findings, describing
the positive effect of SNP on carotenoid content, correspond with published results from
cotton, red raspberry and sunflower plants [25,54,56]. It is quite possible that carotenoids,
as non-enzymatic antioxidants, prevent or minimize the oxidative damage induced by
NaCl. The latest research proposed increased carotenoid content as a marker of salt tol-
erance [57]. Accordingly, it can be concluded that SNP increased centaury’s tolerance to
salt stress.

4.2. SNP and Oxidative Stress Biomarkers during Salt Stress in C. erythreae

In control conditions, a decrease in MDA content was observed in centaury shoots
during salt stress in comparison to shoots grown on NaCl-free medium (Figure 4a). This
result is unexpected because, theoretically, exposure to salt stress should increase the
degree of lipid peroxidation. It is possible that the duration and/or level of stress intensity
were not sufficient. However, similar results were also recorded in the halophyte species
Prosopis strombulifera and Salvadora persica, as well as in soybean and a salt-tolerant cultivar
of date palm, where no significant changes in MDA content under NaCl-induced stress
was detected [58–61]. Pretreatments with 50 and 250 µM SNP decreased MDA content in
NaCl-treated centaury shoots in comparison to both control groups. The effect of SNP on
the reduction of MDA content was also shown in other plant species such as cotton, wheat,
apple and lentil [25,27–29]. The most interesting results, in terms of lipid peroxidation, were
obtained in centaury shoots treated with SNP and NaCl together. The highest MDA content
was obtained with the application of 50 µM SNP and NaCl whereas the lowest recorded
rate of lipid peroxidation was obtained with the application of 250 µM SNP and NaCl.
According to certain studies, SNP application can reduce the activity of lipoxygenases
and thereby reduce the degree of lipid peroxidation. In addition, NO has the ability to
remove peroxyl radical and prevent further oxidative damage [62,63]. However, at low
concentrations, NO, together with O2

•−, forms peroxynitrite, which has the ability to
initiate lipid peroxidation [17,53].

In control conditions, salt stress caused a slight increase in H2O2 content in comparison
to shoots grown on NaCl-free medium (Figure 4b). On the same media, pretreatments
with all SNP concentrations induced significant H2O2 production in centaury shoots, with
higher H2O2 content after salt stress. This result can be explained by considering H2O2 not
only as oxidative stress marker, but also as a signaling molecule that is important for the
establishment of salinity tolerance [64,65]. The application of all SNP concentrations, alone
or in combination with NaCl, reduced H2O2 content in centaury shoots after all tested
treatments. This reduction may be responsible for the induction of antioxidant defense
system to scavenge H2O2. These results are in accordance with SNP application reducing
the H2O2 content in cucumber, lettuce, wheat, brown mustard and lentil [23,28,29,66,67].

4.3. SNP and Nonenzymatic Antioxidants during Salt Stress in C. erythreae

The accumulation of endogenous proline content under salinity conditions can be
considered as a marker of plant stress tolerance [14]. Increased proline content during
exposure to NaCl-induced stress has been documented in numerous plant species including
centaury [38]. The results obtained during this investigation showed that the application
of all SNP pretreatments increased the proline content in centaury shoots grown on NaCl,
similar to those grown on 1

2 MS medium, in comparison to both control groups (Figure 5). In
addition, it was noted that all SNP concentrations in treatments were positively correlated
with increased proline content. It is obvious that SNP alone, as a potential stressogenic
factor, further induced proline accumulation in centaury shoots, likely with enhanced
activity of proline-synthesizing enzymes, together with a reduction in proline catabolism
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under stress conditions [68]. On the contrary, pretreatments including combinations of
SNP and NaCl together, reduced free proline content in centaury shoots. Many studies
indicated that NO is involved in proline metabolism during stress conditions but the
detected effects were different. Some reports revealed increased proline content in SNP-
treated Lactuca sativa [66], Pisum sativum [69] and Brassica chinensis [70] under saline stress.
Conversely, reduced proline content, as a consequence of SNP pretreatment, was detected
in cucumber [23] and Brassica rapa [71] under salt stress. All of these results imply that
enhanced proline content is not always essential for plant stress tolerance response because
the accumulation of this osmolyte does not always correlate with better plant responses, as
in case of NaCl-treated centaury shoots. In addition, considering that synthesis of different
osmolytes is an “energetically expensive” process, it is possible that centaury activates other
mechanisms with lower energy demands, for example, efficient ions compartmentalization
to achieve salinity tolerance [72].

Phenolic compounds belong to the group of secondary metabolites that participate in
numerous physiological processes in plants; one of those roles is ROS scavenging under
various environmental stresses [73]. Although in most plant species total phenolic content
increased under high salinity, there are reports describing decreased phenol content in
Phaseolus vulgaris and Schizonepeta tenuifolia grown under salt stress conditions [74,75].
The same result was observed in NaCl-treated centaury shoots (Figure 6a). The effect
of SNP on the total phenolic content increase under NaCl stress conditions was previ-
ously documented in mangrove species Aegiceras corniculatum, wheat, sunflower, and
apple [27,56,76,77]. A similar result was detected in centaury shoots pretreated with SNP
and then grown on 1

2 MS medium or medium supplemented with NaCl. Treatments with
all SNP concentrations also increased total phenolic content, while the highest increment
among all the treatments was recorded in centaury shoots after combination treatments
with all SNP concentrations and NaCl together. During abiotic stress, NO can increase
the activity of phenylalanine ammonia-lyase (PAL) and consequently enhance phenolic
compounds biosynthesis [17]. The increased activity of the PAL enzyme could be the reason
for the increased total phenolic content in centaury shoots after exposure to SNP.

Due to its ability to react with antioxidants, the DPPH radical is a good indicator of
the antioxidant capacity of plants [78]. The results obtained in this work showed that, in
control conditions, centaury shoots grown on a medium supplemented with NaCl had
decreased antioxidant capacity in comparison to shoots grown on a NaCl-free medium
(Figure 6b). This result is in accordance with the previous reports where decreased DPPH
concentration under NaCl-induced stress in cucumber, sage, spinach, henbane and flax was
described [23,79–82]. In order to investigate the changes in centaury antioxidant capacity,
the influence of SNP pretreatments on DPPH concentration was tested. The results showed
that, in general, all SNP pretreatments increased DPPH concentration in centaury shoots.
The largest DPPH concentration was detected in shoots grown on a combination medium
supplemented with SNP and NaCl together. These changes in DPPH concentrations, based
on their free radical scavenging capacities, positively correlated with total phenolic content
in centaury shoots. Furthermore, in several medicinal herbs and selected species of wild
vegetables, total phenolic amounts were also significantly correlated with antioxidant
capacity [83,84].

4.4. SNP and Enzymatic Antioxidants during Salt Stress in C. erythreae

Various stress conditions can induce ROS production, which leads to a change in
enzyme activity in order to maintain homeostasis in plant cells. Antioxidant enzymes
that play a significant role in removing ROS forms and protecting plant cell structures
from oxidative stress, include SOD, CAT and POX [16]. Increased SOD, CAT and POX
activities under NaCl stress have been documented in many species including sunflower
and oilseed rape [56,64]. In this work, decreased activities of SOD, CAT and POX were
observed in centaury shoots grown under stress conditions caused by NaCl. Although
unexpected, the same results were also reported in halophytic species Salvadora persica,
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date palm and the oil-seed crop Brassica juncea [60,61,67]. The positive effect of SNP on
the activity of SOD, CAT and POX was previously confirmed in citrus seedlings, wheat
and lentil under salinity stress [28,29,85]. The application of SNP increased SOD activity in
centaury shoots grown under NaCl, as well as in shoots grown on NaCl-free medium in
comparison to the corresponding control groups (Figure 7a). The highest SOD activity was
recorded after 50 µM SNP pretreatment while increased SNP concentration decreased SOD
activity in centaury shoots. The same trend was also observed in cotton seedlings [25]. The
application of SNP pretreatments also increased CAT activity in centaury shoots grown
under NaCl-induced stress conditions as well as in shoots grown on nutrient media without
NaCl (Figure 7b). The highest CAT activity was determined after the application of 250 µM
SNP pretreatment. It can be concluded that SNP stimulated CAT activity in centaury
shoots, which has also been observed in tomato and sunflower [22,56]. As in the case of
CAT, the same pattern in POX activity was observed. SNP pretreatments increased POX
activity, with the highest activity recorded after 250 µM SNP pretreatment (Figure 7c).
Similar results were recorded in cotton and sunflower plants grown under salinity stress
conditions [25,56]. It is known that the addition of signaling molecules such as NO and
hydrogen sulfide (H2S), stimulates the activity of antioxidant enzymes [86]. The role of NO
in salt tolerance has been studied in numerous plant species, and there is evidence that the
application of NO donors protects plants from salt stress by increasing antioxidant enzyme
activity [21]. All the results suggest that NO mitigates the salt-induced oxidative stress by
enhancing the activity of enzymatic antioxidants, thus improving centaury’s tolerance to
salt stress caused by NaCl.

5. Conclusions

Centaury shoots grown under NaCl-induced stress decreased the content of photo-
synthetic pigments, total phenolic compounds and DPPH. The activities of SOD, CAT and
POX were also reduced under salt stress conditions. All these results indicate that cen-
taury is a salinity-sensitive plant species. However, the MDA concentration was decreased
while H2O2 concentration did not drastically change under stress conditions caused by
NaCl, which indicate that centaury can be also be considered a salinity-tolerant species.
Under salt stress conditions, proline content also did not significantly change which is
not an attribute of salinity-tolerant species. In addition, it is possible that centaury has
a preference for other osmolytes, rather than proline. In salt stress conditions, Na+ and
Cl− ions can act as “cheap osmolytes”. In addition, the effective removal of Na+ from
the cytosol does not result in excessive ROS generation, eliminating the high activity of
antioxidant mechanisms. Therefore, it is necessary to investigate the mechanisms that
regulate the transport of ions in centaury in order to reveal if this important medicinal plant
is a halophytic species. The results presented in this work also shown that SNP, a widely
used NO donor, improved centaury tolerance to salinity (Figure 8). SNP showed a positive
effect on total Chl and carotenoid content and affected lipid peroxidation, proline and total
phenolic content, DPPH concentrations as well as antioxidant enzyme activities in centaury
shoots grown under salt stress caused by NaCl. In addition to NO, SNP releases cyanide
and iron ions as toxic by-products, and thus limits its potential application in agriculture.
Therefore, nanoparticles that release NO, as well as S-nitrosothiols and S-nitrosoglutathione,
the natural reservoirs of NO in biological systems, have been suggested as alternatives to
SNP application.
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Figure 8. Schematic illustration showing how SNP affects centaury shoots during salt stress in vitro. 
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27. Aras, S.; Keles, H.; Eşitken, A. SNP mitigates malignant salt effects on apple plants. Erwerbs-Obstbau 2020, 62, 107–115. [CrossRef]
28. Sehar, Z.; Masood, A.; Khan, N.A. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum

L.) under salt stress. Environ. Exp. Bot. 2019, 161, 277–289. [CrossRef]
29. Yasir, T.A.; Khan, A.; Skalicky, M.; Wasaya, A.; Rehmani, M.; Sarwar, N.; Mubeen, K.; Aziz, M.; Hassan, M.M.; Hassan, F.; et al.

Exogenous sodium nitroprusside mitigates salt stress in lentil (Lens culinaris Medik.) by affecting the growth, yield, and
biochemical properties. Molecules 2021, 26, 2576. [CrossRef]
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