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Abstract: Chilli is an universal spice cum solanaceous vegetable crop rich in vitamin A, vitamin
C, capsaicin and capsanthin. Its cultivation is highly threatened by fruit rot disease which cause
yield loss as high as 80–100% under congenial environment conditions. Currently actinobacteria
are considered as eco-friendly alternatives to synthetic fungicides at pre and post-harvest pathosys-
tems. Hence, this research work focuses on the exploitation of rhizospheric, phyllospheric and
endophytic actinobacteria associated with chilli plants for their antagonistic activity against fruit
rot pathogens viz., Colletotrichum scovillei, Colletotrichum truncatum and Fusarium oxysporum. In vitro
bioassays revealed that the actinobacterial isolate AR26 was found to be the most potent antagonist
with multifarious biocontrol mechanisms such as production of volatile, non-volatile, thermostable
compounds, siderophores, extracellular lytic enzymes. 16S rRNA gene sequence confirmed that
the isolate AR26 belongs to Streptomyces tuirus. The results of detached fruit assay revealed that
application of liquid bio-formulation of Stretomyces tuirus @ 10 mL/L concentration completely
inhibited the development of fruit rot symptoms in pepper fruits compared to methanol extracts.
Hence, the present research work have a great scope for evaluating the biocontrol potential of native
S. tuirus AR26 against chilli fruit rot disease under field condition as well against a broad spectrum of
post-harvest plant pathogens.

Keywords: actinobacteria; Streptomyces tuirus; chilli fruit rot; Colletotrichum scovillei; Colletotrichum
truncatum; Fusarium oxysporum; liquid bio-formulation

1. Introduction

Chilli (Capsicum annuum L.) is one of the most economically important spices cum
solanaceous vegetable crops and is grown throughout the world for its green and red
ripe fruits. It is a universal spice crop of India and occupies a major share in the Indian
economy. In addition to adding pungency, taste, aroma and colour to cuisines, chilli
have been used for centuries as medicine with countless health benefits, with antioxidant,
anti-mutagenic, anti-carcinogenic, anti-arthritic and anti-inflammatory properties. Chilli
fruits are rich in capsaicin, an appetite stimulant, and capsanthin, a pigment that gives
its distinctive flavour and colour. Green chilli fruits contain more vitamin C than citrus
fruits, whereas red chilli fruits contain more vitamin A than carrots [1,2]. Despite its rich
nutritional and economic value, its commercial production is greatly threatened by fruit rot
disease caused by complex pathogens including different species of Colletotrichum, Fusarium
and Alternaria [3–5]. These pathogens extensively damage the fruits and significantly
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reduce the quality, yield, appearance and marketability of the fruits [6,7]. It is a highly
destructive pre- and post-harvest disease which causes yield losses up to 100% under
congenial environmental conditions [8–10].

Though this disease can be managed with the repeated application of fungicides,
pre- and post-harvest application of synthetic fungicides has been curtailed due to the
persistence of fungicides on the fruits, which pose a direct risk to consumers and the
environment through food chain contamination [11–13]. The use of naturally occurring
bioactive compounds, especially those derived from antagonistic microorganisms, have
been explored as prospective alternatives to synthetic fungicides due to their reduced
toxicity and impact on humans and the environment [14–16]. Biological control of chilli
anthracnose using antagonistic microorganisms or their metabolites is not a new concept,
but a sustainable and ecologically acceptable approach in the context of leaving no toxic
residues on the produce, safer application methods and ease of delivery, with minimal
reliance on chemicals [17,18].

Although different groups of microorganisms have been employed for disease manage-
ment, several research findings over the past few decades have highlighted the biocontrol
potential of actinobacteria against a wide range of plant pathogens [19–21] through various
mechanisms, including fungal cell-wall lysis, antibiosis, competition for nutrients, induc-
tion of host systemic resistance, phytotoxin degradation, plant growth stimulation, nutrient
assimilation, rhizosphere competence and mineral availability [22–28].

Several species of actinobacteria were reported to have strong antagonistic activity against
various species of Colletotrichum infecting a variety of crops. Taechowisan et al. [29] reported
that Streptomyces spp. SRM1 exhibited antagonistic activity against Colletotrichum musae caus-
ing anthracnose in banana. Streptomyces violaceoruber reduced the incidence of chilli anthrac-
nose by inhibiting the spore germination and mycelial growth of Colletotrichum capsici [30].
Streptomyces ambofacines S2 extract completely inhibited the expression of anthracnose
symptoms of Colletotrichum gloeosporioides in red pepper fruits [18]. Actinobacteria not only
prevent post-harvest pathogenic infection but also prolong the shelf life of a variety of
crops without upsetting the natural balance.

A diverse group of actinobacteria inhabit the rhizosphere, phyllosphere and endo-
sphere region of the plant and a subset of these provide a wide range of services and benefits
to the plant in terms of suppressing plant diseases, promoting plant growth, increasing
crop yield and enhancing soil fertility [31–33]. Particularly, when employed to curtail the
plant infections, native actinobacterial isolates are more adaptable to their regular niche,
have a higher success rate and are more resilient to local environmental challenges than
the introduced microbes [34,35]. Furthermore, the introduced microbes must be able to
co-habit with the native microbiome in order to provide more benefits to the plants. Hence,
precolonization of the host by well adapted native biocontrol agents may prevent the
growth and survival of plant pathogens.

The present study was, therefore, undertaken with the following objectives: (1) to
isolate native actinobacterial isolates associated with rhizosphere, phyllosphere and surface
sterilized tissues of chilli plants; (2) to identify the efficient actinobacterial isolate having
antifungal potential against fruit rot pathogens Colletotrichum spp., and Fusarium sp.; (3) to
unravel the antifungal mechanisms of potential actinobacterial isolates against fruit rot
pathogens under in vitro conditions; (4) to assess the in vivo antifungal efficacy of liquid
formulation and soluble metabolites of potential actinobacterial isolates on chilli fruits.

2. Materials and Methods
2.1. Fruit Rot Pathogens

Fruit rot fungal pathogens viz., Colletotrichum scovillei, Colletotrichum truncatum and
Fusarium oxysporum were isolated from infected chilli fruits collected from various loca-
tions of Tamil Nadu, India. The infected portion of the fruits were cut into small pieces
(5 mm) using a sterile blade and surface sterilized with 1% NaOCl4 for 1–2 min followed
by 70% ethanol for 30 s and rinsed thrice with sterile distilled water [36]. The surface
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disinfected fruit pieces were placed onto sterile Potato Dextrose Agar (PDA) medium
amended with streptomycin sulphate (0.03 g L−1) and incubated at 28 ± 2 ◦C for 7 days.
Pure cultures of the pathogens were obtained by single hyphal tip method. The stock
cultures of the pathogens were maintained as pure cultures on PDA slants at 4 ◦C.

2.2. Antagonistic Actinobacteria

Rhizosphere actinobacteria were isolated from the rhizosphere soil of healthy chilli
plants as described by Anwar et al. [37]. The soil samples were taken from a depth of
10–20 cm and subjected to dry heat pre-treatment for 4 h at 45 ◦C [38] to diminish the fast
growing and abundant soil bacteria that would hinder slow growing actinobacteria [39].
Ten grams (10 g) of pre-treated soil was suspended in 90 mL of sterile distilled water,
shaken thoroughly for 1 h at 100 rpm in an orbital shaker and allowed to settle for an hour.
Subsequently, samples were serially diluted up to 10−5 dilutions and 1 mL aliquot from
10−3–10−5 dilutions were plated on sterile Starch Casein Agar (SCA) supplemented with
25 µg/mL nalidixic acid and 50 µg/mL nystatin as antibacterial and antifungal agents [40].

Phyllospheric actinobacteria were isolated from the leaf, stem, flower and fruits of
healthy chilli plants [41]. Ten grams (10 g) of samples were preheated at 70 ◦C for 15 min
and transferred to 90 mL of 0.85% saline buffer (NaCl) and kept in an orbital shaker at
250 rpm for 30 min at 28 ± 2 ◦C. The solution thus obtained was subjected to the standard
serial dilution pour plate technique on Starch Casein Agar (SCA) supplemented with
nalidixic acid (25 µg/mL) and nystatin (50 µg/mL).

The actinobacteria from the surface sterilized plant tissues were isolated as per the
procedure described by Li et al. [42]. A five-step procedure was employed for the steril-
ization of the plant tissues: (i) the tissue segments were surface-sterilized in 0.1% sterile
Tween 20 for 1 min, (ii) the samples were sterilized with 5% sodium hypochlorite for 4 min
(leaf samples) or 6 min (stem and root samples), (iii) the samples were then rinsed in 2.5%
(w/v) sodium thiosulfate for 10 min and washed three times with sterile distilled H2O,
followed by (iv) immersing in 70% (v/v) ethanol for 4 min (leaf samples) or 6 min (stem
and root samples), and finally (v) the samples were washed with sterile distilled water for
a minimum of three times. To validate the successful surface disinfection process, 0.2 mL
of water from the final wash was spread onto the isolation medium and incubated at
28 ± 2 ◦C. One gram of surface-sterilized plant tissues was homogenized in a mortar and
pestle with 1 mL of 0.9% saline buffer (w/v). One millilitre of the tissue suspension was
serially diluted and 10−3–10−5 dilutions were plated on Starch Casein Agar plates. The
plates were incubated at 28 ± 2 ◦C for 7–10 days. Powdery, bright actinobacterial colonies
were purified, suspended in 20% glycerol and stored at −80 ◦C as stock culture [43].

2.3. In Vitro Antifungal Bioassay
2.3.1. Primary Screening of Actinobacterial Isolates for the Antifungal Activity against
Chilli Fruit Rot Pathogens

Fifty-two actinobacterial isolates were screened for their antifungal activity against
chilli fruit rot pathogens by dual-culture assay [44]. The test isolates were streaked at one
corner of the PDA plates (10 mm from the periphery of a 90 mm diameter Petri dish) and
incubated at 28 ± 2 ◦C for 4 days. After incubation, the 5-day-old pathogen fungal disc
was placed opposite to actinobacterial streak (10 mm away from the periphery). Petri
dishes without actinobacterial isolates served as the control. All plates were incubated
at 28 ± 2 ◦C for 7 days. All the isolates were tested in triplicate. After incubation, the
zone of inhibition was measured and the per cent inhibition of mycelial growth was
calculated. The zone of inhibition (ZI) was measured as the diameter of the halo zone
(in cm) between the actinobacteria and pathogen colony as and when the pathogen in
the control plate covered the entire plate. Per cent inhibition of mycelial growth (PIMG)
was determined according to the formula: PIMG = (C − T)/C 100, where C and T are
the mycelial growth of pathogenic fungus in the control plate and dual culture plate,
respectively. The degree of antifungal activity of various actinobacterial isolates against the
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tested pathogens were evaluated based on the zone of inhibition (ZI) (in cm) and per cent
inhibition of mycelial growth (PIMG) [45]. Based on the zone of inhibition, the antagonistic
activity of actinobacterial isolates were grouped into four categories according to Lee and
Hwang [46] as: − no inhibition (ZI ≤ 0); + weak inhibition (ZI = 0.1–1.0 cm); ++ moderate
inhibition (ZI = 1.01–2 cm); and +++ strong inhibition (ZI ≥ 2 cm).

2.3.2. Secondary Screening for the Antifungal Activity of Actinobacterial Isolates

The antifungal activity of six actinobacterial isolates which exhibited the strongest
inhibition against the tested pathogens by dual culture assay was further confirmed by
paired culture antibiosis assay as per the protocol of Liotti et al. [47] with slight modification.
An 8 mm mycelial disc of the pathogen was placed at the centre of a Petri dish containing
PDA medium and the actinobacterial isolate was streaked at equidistance on both sides of
the pathogen, about 10 mm from the periphery of Petri dish. A control plate was maintained
without actinobacteria. The experiment was replicated thrice. After 7 days of incubation
at 28 ± 2 ◦C, the percentage inhibition of mycelial growth (PIMG) of the pathogen was
calculated as per the formula described above.

2.3.3. In Vitro Screening of Actinobacterial Isolates for Production of Extracellular Lytic
Enzymes and Siderophore

The actinobacterial isolates were assayed for their biocontrol traits viz., amylase,
cellulase, chitinase and protease production by spot inoculating 10 µL of culture in starch
agar medium [48], Carboxy Methyl Cellulose (CMC) agar medium [49], colloidal chitin agar
medium [50] and skim milk agar medium [51], containing starch, cellulose, colloidal chitin
and casein as the respective substrates. Siderophore production was assayed on Chrome
Azurol Sulphonate (CAS) agar medium according to the methodology of Sadeghi et al. [52].
The plates were incubated for 5–7 days at 28 ± 2 ◦C. Three replications were maintained
for each actinobacterial isolate.

The amylase activity of the actinobacteria was evaluated by flooding the plate with
Lugol’s iodine solution for 30 s. A clear hydrolysis zone around the colonies against the
blue background indicated the hydrolysis of starch by the amylase enzyme [53]. Cellulase
activity was determined by flooding the plates with 0.1% Congo red solution and counter
staining with 1 M NaCl for 15–20 min. The formation of a clear zone around the colony due
to the hydrolysis of cellulose indicated a positive result for the production of the cellulase
enzyme by the actinobacterial isolates. The isolates positive for chitinolytic and proteolytic
activity produced a clear halo zone around the colonies due to the hydrolysis of chitin
and casein in the respective media. The formation of a yellow to orange halo around the
actinobacterial colonies due to the removal of iron from CAS represented a positive result
for the production of siderophore.

2.3.4. Antifungal Activity of Volatile Organic Compounds

The four most active actinobacterial isolates that showed significant positive results
for the production of cell wall-degrading enzymes and siderophore were subjected to addi-
tional assays on the production of volatile, non-volatile and thermostable compounds. The
antifungal activity of volatile organic compounds (VOCs) produced by the actinobacterial
isolates was tested against the fruit rot pathogens by the double-sealed plate method [54].
A 90 mm diameter Petri dish bottom containing 15 mL of ISP4 medium was streaked with
a loopful of actinobacterial culture. An 8 mm diameter mycelial plug of the pathogen was
inoculated in the centre of another Petri dish bottom containing 15 mL of potato dextrose
agar medium. A Petri dish “sandwich” was made with the antagonist Petri dish placed
over the pathogen plate in such a way that the pathogen plate was at the bottom and
antagonist plate was on the top. The sandwiched Petri dish was sealed together with a
parafilm without any gaps and incubated at 28 ± 2 ◦C for 7–10 days. A Petri dish con-
taining ISP4 medium without the antagonist placed over the pathogen plate served as the
control. The parafilm-sealed plates ensured no physical contact between the pathogen and
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antagonist. The experiment was conducted with three replications for each isolate. The
rate of inhibition (%) of mycelial growth was calculated as described previously.

2.3.5. Antifungal Activity of Non-Volatile Metabolites

The antifungal activity of non-volatile metabolites in the cell-free culture filtrate of
actinobacterial isolates was determined using the seeded agar method [55,56]. Actinobac-
terial isolates were cultured in a 250 mL conical flask containing 100 mL ISP4 broth and
incubated in an orbital shaker at 150 rpm for 7 days at 28 ± 2 ◦C. Then the culture broth
was centrifuged at 10,000 rpm for 15 min at 4 ◦C. The supernatant obtained was filtered
through a 0.22 µm nitrocellulose membrane filter to obtain cell-free culture filtrate and
subjected to an antifungal assay. The filtrate was mixed with warm PDA (25%) and plated
in a sterile Petri dish. Finally, an 8 mm mycelial disc of the pathogen was placed at the
centre of the seeded PDA medium in the Petri dish. The pathogen growth on the Petri
dish without the cell-free culture filtrate served as the control. The plates were incubated
at 28 ± 2 ◦C until the mycelial disc in the control plate completely covers the plate. Three
replicates were maintained for each isolate. Per cent inhibition (PI) of mycelial growth was
calculated as described previously.

2.3.6. Antifungal Activity of Thermostable Compounds

The actinobacterial isolates were cultured in 100 mL ISP4 broth in a 250 mL conical
flask with constant agitation in an orbital shaker (150 rpm) for 7 days at 28 ± 2 ◦C. The
actinobacterial cells were harvested by centrifugation at 10,000 rpm for 15 min. Twenty-five
millilitres of the supernatant were transferred to a conical flask containing 75 mL PDA
medium and sterilized at 121 ◦C for 20 min. The actinobacterial metabolite-amended sterile
medium was plated into Petri dish and a 9 mm mycelial disc of the tested pathogen was
placed at the centre of solidified medium. The pathogen growth on PDA medium without
actinobacterial metabolite served as the control. The Petri dishes were incubated at room
temperature for 7 days and the Per cent Inhibition (PI) of mycelial growth of the pathogen
was assessed as per the formula described above.

2.3.7. Assessment of In Vitro Antifungal Traits

Among the six isolates, the best isolate with the highest antagonistic potential was
selected based on a bonitur scale as described by Passari et al. [57] and El-Sayed et al. [58].
In this scale, points were given for each in vitro antifungal trait and the maximum bonitur
score is 24 points. The per cent inhibition of mycelial growth (PIMG) was evaluated as
follows: if PIMG is 30–54.9% = 1 point; 55–74.9% = 2 points; 75–95% = 3 points. Lytic
enzyme production was evaluated with 1 point and siderophore with 2 points each.

2.4. Scanning Electron Microscopy (SEM)

The interaction of the actinobacterial isolate AR26 which exhibited strong antifungal
activity against the pathogens in the dual culture plate was documented by Scanning
Electron Microscope (SEM) (Model: FAI QUANTA 250, Czech Republic) at 15 KV [59].
Mycelial discs (5 mm) of the pathogen from the periphery of inhibition zone in the dual
culture plate as well as in the control plate were cut with a sterile scalpel and transferred to
perforated capsules and fixed in 1.5% glutaraldehyde in phosphate buffer for 4 h [60]. Then,
the specimens were washed with 0.2 M sodium cacodylate buffer (pH 6.2) and dehydrated
with an increasing concentration of ethanol washes from 0–100% at 10 min intervals (0%,
30%, 50%, 70%, 80%, 90% and 100%). Later the specimens were mounted on aluminium
stubs using conductive double-sided carbon tape. The stubs were then lyophilized, and
sputter coated with gold (5 nm thickness). Finally, any morphological changes of the
pathogen mycelium in the dual culture plate as well as in the control plate were examined
under scanning electron microscope.
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2.5. Molecular Characterization of Actinobacterial Isolates

The genomic DNA of the actinobacterial isolate was extracted from the spore masses
using the Cetyl Trimethyl Ammonium Bromide (CTAB) method [61]. The 1.5 kb full length
16S rRNA gene of actinobacteria was amplified by Polymerase Chain reaction (PCR) with
a forward primer 27F (5′ AGAGTTTGATCCTGGCTCAG-3′) and reverse primer 1492R
(5′-GGTTACCTTGTTACGACTT-3′) [62]. The PCR amplification was performed with a
25 µL reaction mixture which contained 10 µL of master mix, 1 µL of bacterial genomic
DNA at a concentration of 20 ng, 1 µL of each primer at a concentration of 10 pM and
12 µL of sterilized deionized water. The PCR amplification conditions included an initial
denaturation at 94 ◦C for 5 min, 35 cycles of denaturation at 94 ◦C for 1 min, annealing at
55 ◦C for 1 min, extension at 72 ◦C for 40 s and final extension at 72 ◦C for 10 min. The
PCR amplified products were visualized on 1% agarose gel with a UV transilluminator
and photographed using the gel documentation system and sequenced at Biokart India
Pvt. Ltd., Bangalore, India. The sequence similarities were determined by BLAST analysis
(Basic Local Alignment Search Tool) (BLAST, (https://www.ncbi.nlm.nih.gov) (accessed on
27 November 2022) and submitted in GenBank. The most homologous sequences showing
the highest similarity were retrieved from the NCBI GenBank database and multiple
sequences were aligned using the ClustalW algorithm. A phylogenetic tree was constructed
with closely related nucleotide sequences using the Neighbour-Joining (NJ) method [63]
using MEGA (Molecular Evolutionary Genetics Analysis) 11 software [64] with bootstrap
values of 1000. Evolutionary distances were calculated using the maximum combined
likelihood method and are given in units of the number of base substitutions per site.

2.6. Antifungal Bioassay of Liquid Formulation of Actinobacterial Isolate on Chilli Fruits

The antifungal activity of actinobacterial isolate AR26 on green chilli fruits was deter-
mined as per the antifungal bioassay of Liottia et al. [47]. Fresh fruits of the chilli hybrid
“Ganga” of uniform size and maturity without wounds, scars and rots on their surface
were surface sterilized as described previously. The surface sterilized green chilli fruits
were wounded to the depth of 1 mm with a sterile needle and subjected to following
treatments. (i) healthy control: chilli fruits were inoculated with 20 µL of sterile distilled
water, (ii) pathogen-inoculated control: chilli fruits were inoculated with 6 mm mycelial
disc of pathogen culture, (iii) antagonist inoculated control: chilli fruits were inoculated
with 20 µL of liquid formulation of S. tuirus AR26 at10 mL/L containing 9 × 108 CFU/mL,
(iv) chilli fruits were first inoculated with 20 µL of liquid formulation of S. tuirus at 5 mL/L
and after an hour of incubation, 6 mm mycelial disc of respective pathogens were placed
over it, (v) chilli fruits were first inoculated with 20 µL of liquid formulation of S. tuirus at
10 mL/L and 6 mm mycelial disc of respective pathogens were placed over it.

Inoculated fruits of each treatment were placed in separate glass Petri dishes, sealed
with parafilm and incubated at 28 ± 2 ◦C for 7 days. The experiment was conducted statis-
tically as a completely randomized design (CRD) in three replicates of five fruits each. The
progress of the symptom on the fruits was measured as the lesion diameter after seven days
of incubation. The percentage of inhibition of fruit rot symptom and disease incidence was
calculated as per the formula given below. Per cent disease reduction = [(D − d) × 100]/D,
where D is the lesion diameter in pathogen-inoculated control fruits, and d is the lesion
diameter in actinobacteria and pathogen co-inoculated fruits.

Disease incidence = (Number of diseased chili fruits/Total number of chili fruits) × 100.

2.7. Antifungal Bioassay of Soluble Metabolites of Actinobacterial Isolate on Chilli Fruits

This assay was conducted to differentiate whether the antifungal activity was mediated
by the presence of actinobacterial culture or by its metabolites. The soluble metabolites
produced by the isolate AR26 in the dual culture plate in PDA medium were extracted from
the zone of inhibition by excising the PDA medium from the inhibition zone using a sterile
scalpel. Excised PDA medium was blended with HPLC-grade acetonitrile in a 1:4 ratio

https://www.ncbi.nlm.nih.gov
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(5 g agar in 20 mL of HPLC grade acetonitrile). The mixture was incubated overnight at
28 ± 2 ◦C in an orbital shaker at 150 rpm. The homogenised samples were subjected to
10 min centrifugation at 10,000 rpm, and then filtered through Whatman No.1 filter paper
to separate the agar particles and supernatant. The supernatant was dried in a vacuum
flash evaporator (Roteva Equitron Make). After discarding the eluent, the final product
was diluted in 1 mL of HPLC-grade methanol [65]. The extract obtained was tested for its
ability to control chilli fruit rot pathogens. The assay was performed as described above
with four treatments, using 20 µL of methanol extract of S. tuirus AR26 for treatments and
20 µL of methanol alone for control.

2.8. Statistical Analysis

The data was subjected to a single factor test of significance (ANOVA) using the
analytical software SPSS version 16.0. Significant differences between the average values of
each treatment (p ≤ 0.05) were determined using critical difference.

3. Results
3.1. Primary Screening for Antifungal Activity of Actinobacterial Isolates

In this study, 52 actinobacterial isolates obtained from rhizospheric (26), phyllospheric
(16) and surface sterilized plant tissues (10) of chilli plants were screened for their an-
tagonistic potential against chilli fruit rot pathogens viz., C. scovillei, C. truncatum and
F. oxysporum by dual culture technique. About 19.2% of the rhizospheric isolates, 12.5%
of phyllospheric isolates and 10.0% of the endophytic isolates exhibited strong antifungal
activity against C. scovillei, whereas 15.4% of the rhizospheric isolates and 12.5% of the
phyllospheric isolates and again 10.0 % of endophytic isolates showed antifungal activity
against C. truncatum. With regard to F. oxysporum, 23.1% of rhizospheric, 12.5% of phyl-
lospheric isolates and 10.0% of endophytic isolates showed strong antagonistic activity.
Thirty-eight (73.07%) out of 52 isolates inhibited the mycelial growth of at least one out
of the three pathogens with varying degrees of inhibitory action, ranging from 4.82% to
67.90% (weak to strong inhibition) (Supplementary Table S1 and Figure 1). Six isolates
designated as AR1, AR10, AR26, AL5, AL7, and AFE2 strongly inhibited the growth of all
three pathogens (Figure 2) with an inhibition zone (ZI) greater than 2 cm. Isolate AR26
was found to be significantly superior to other isolates, with the highest mycelial growth
inhibition of 67.90%, 63.21%, and 60.37% and inhibition zones of 3.2 cm, 2.8 cm, and 2.7 cm
respectively for C. scovillei, C. truncatum, and F. oxysporum, followed by the isolate AR10
(Figure 3).

3.2. Secondary Screening for the Antifungal Activity of Actinobacterial Isolates and Scanning
Electron Microscopic Assay

The six isolates (Figure 4) which showed the strongest antagonism against the
three pathogens were further subjected to secondary screening by paired culture antibiosis
to further confirm their antagonistic ability against C. scovillei, C. truncatum and F. oxysporum.
The results of this assay indicated that all six isolates were capable of inhibiting the growth
of C. scovillei, C. truncatum and F. oxysporum. The isolate AR26 was found to be signif-
icantly superior to other isolates in inhibiting mycelial growth of C. scovillei (59.63%),
C. truncatum (61.18%) and F. oxysporum (63.58%), respectively followed by the isolate AR10
(Supplementary Figure S1). The isolate AFE2 recorded the lowest percentage of mycelial
growth inhibition of the tested pathogens, relative to the other five isolates. Scanning
Electron Microscopy (SEM) observations indicated a clear evidence for antifungal activ-
ity of isolate AR26 against C. scovillei, C. truncatum and F. oxysporum. The antifungal
activity was observed as distinct morphological deformities in pathogen hyphae in the
presence of antagonist and hyphae were found to be twisted and shrunk in C. scovillei,
disintegrated in C. truncatum, aggregated into clusters in F. oxysporum with reduction in
mycelial mat (Figure 5). In contrast, the hyphae in the control plate were dense, intact with
regular structure.
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Figure 1. Heat map showing the in vitro antagonism of actinobacterial isolates against chilli fruit rot
pathogens as represented by zone of inhibition.
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Figure 2. Venn diagram representing the actinobacterial isolates exhibiting strong antagonism against
fruit rot pathogens.
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Figure 3. Antifungal activity of actinobacterial isolates against chilli fruit rot pathogens. (A) Control
C. scovillei (D) Control C. truncatum (G) Control F. oxysporum. Antifungal activity of actinobacte-
rial isolate AR26 against (B) C. scovillei (E) C. truncatum (H) F. oxysporum. Antifungal activity of
actinobacterial isolate AR10 against (C) C. scovillei (F) C. truncatum (I) F. oxysporum.
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Figure 5. Scanning Electron Micrographs showing the interaction of antagonist. S. tuirus AR26
with C. scovillei, C. truncatum and F. oxysporum; (A) intact mycelium of C. scovillei in the absence of
antagonist; (B) twisted and shrunken hyphae of C. scovillei in the presence of antagonist; (C) mycelium
of C. truncatum in absence of antagonist; (D) distorted hyphae of C. truncatum in the presence of
antagonist; (E) dense and intact mycelium of F. oxysporum in absence of antagonist; (F) aggregated
hyphae of F. oxysporum in presence of antagonist.

3.3. Screening for the Production of Extracellular Lytic Enzymes and Siderophore by
the Antagonists

All six actinobacterial isolates were able to produce at least 4 out of 5 hydrolytic
enzymes to different degrees. All the isolates tested positive for amylase and cellulase.
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The isolates AR10, AR26 and AL7 produced siderophore and AR1, AR10, AR26 and AL7
recorded chitinase activity. The isolates AL5 and AFE2 produced protease while all other
isolates tested negative for protease activity. The results revealed that the isolates AR10,
AR26 and AL7 were positive for siderophore, amylase, cellulase, and chitinase. The isolate
AR26 was the most potent antagonist to produce prominently siderophore, cellulase and
chitinase (Supplementary Figures S2–S7).

3.4. Antifungal Activity of Volatile, Non-Volatile and Thermostable Compounds

All of the four isolates AR10, AR26, AL5 and AL7 apparently produced volatile,
non-volatile and thermostable compounds, and significant differences in the antifungal
activity against the tested pathogens were observed among the isolates (Figure 6). The
volatile compounds of isolates AR10, AR26, and AL5 were found to be more effective than
non-volatile and thermostable compounds. The volatile organic compounds of isolate
AR26 exhibited the maximum inhibitory effect against C. scovillei (77.04%), C. truncatum
(72.63%) and F. oxysporum (69.53%). The thermostable compound of AR26 exhibited the
strongest inhibitory action against F. oxysporum, followed by AR10.
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3.5. Assessment of In Vitro Antifungal Traits

The results of the assessment for in vitro antifungal traits revealed that out of the
six isolates screened, rhizospheric isolate AR26 showed the highest assessment value of
17 points followed by the isolate AR10 with 15 points. Hence, the actinobacterial isolate
AR26 was selected as the most efficient antagonist for further studies (Table 1).

3.6. Molecular Confirmation of Actinobacterial Isolates

The results of the 16S rRNA sequence analysis of the actinobacterial isolates revealed that
five isolates were closely affiliated to the genus Streptomyces. Isolates AR1, AR10, AL5, AR26
and AL7 exhibited the highest similarity with Streptomyces rochei, Streptomyces deccanensis,
Streptomyces azureus, Streptomyces tuirus, and S. geysiriensis, respectively (Table 2). Phyloge-
netic analysis revealed that the isolates under current study formed five different clades
(highlighted in red) and were supported with good bootstrap values (Figure 7). Isolate
AR10 formed a distinct clade A with S. deccanensis, AL5 formed clade B with S. azureus,
AR26 formed clade C with S. tuirus, AR1 formed clade D with S. rochei, and AL7 formed
clade E with S. geysiriensis, with Pseudomonas fluorescens as the out group.
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Table 1. Actinobacterial isolates for their ability to function as antagonist with various
antifungal mechanisms.

S.No
Isolate
Code

Antagonistic Activity Antifungal Mechanisms

Total
Assessment

Points Out of 24

Mycelial Growth Inhibition (%)
Halo Zone Diameter (cm)

Dual Culture Assay Paired Antibiosis Assay

C.s C.t F.o C.s C.t F.o Siderophore Amylase Cellulase Chitinase Protease

1. AR1 1 1 1 1 1 1 0 1 1 1 0 9
2. AR10 2 2 1 1 2 2 2 1 1 1 0 15
3. AR26 2 2 2 2 2 2 2 1 1 1 0 17
4. AL5 1 1 1 2 1 1 0 1 1 0 1 10
5. AL7 2 1 1 1 1 1 2 1 1 1 0 13
6. AFE2 1 1 1 1 1 1 0 1 1 0 1 9

Mycelial Growth inhibition percentage (1 = 30–54.9%; 2 = 55–74.9%; 3 = 75–95%); Lytic enzyme production was
evaluated with 1 point and siderophore with 2 points each; C.s: C. scoville; C.t: C. truncatum; F.o: F. oxysporum.

Table 2. 16S ribosomal RNA partial sequence analysis of actinobacterial isolates and their closest
BLASTN matches with NCBI database supplementary.

S. No. Isolate
Name Isolation Source NCBI Accession

Number
Base Pair Length

Closest 16S rRNA Sequence Match (BLASTN)
Per Cent Identity (%)

Organism and Strain Base Pair Length

1. AR1 Rhizosphere,
Pudukottai OM883984 1358 bp Streptomyces rochei

AL14 1448 99.70

2. AR10 Rhizosphere,
Karaikal ON692910 1458 bp Streptomyces

deccanensis WJA64 1462 99.73

3. AR26 Rhizosphere, Salem ON140212 1432 bp Streptomyces tuirus
PAS9 1461 99.72

4. AL5 Phyllosphere: Leaf,
Coimbatore ON692752 1486 bp Streptomyces azureus

NRRL B-2655 1516 100.00

5. AL7 Phyllosphere: Leaf,
Trichy ON692754 1466 bp Streptomyces

geysiriensis DSD176 1466 100.00

3.7. Biocontrol Potential of Liquid Formulation and Methanol Extract of S. tuirus AR26

Healthy chilli fruits inoculated with C. scovillei, C. truncatum, F. oxysporum and the co-
inoculation of three pathogens produced typical fruit rot symptoms in the form of lesions of
up to 2.5, 2.2, 2.6 and 2.9 cm, respectively, seven days after inoculation with the pathogens.
Fruits that were not inoculated with the pathogens (healthy control) did not develop fruit
rot symptoms, indicating that C. scovillei, C. truncatum and F. oxysporum were the causative
agent of the anthracnose disease. Chilli fruits inoculated with the liquid formulation of
S. tuirus AR26 caused no symptoms or damage to the fruits, indicating its non-pathogenic
nature and biocontrol ability (Table 3). The liquid formulation of S. tuirus AR26 at both the
concentrations 5 mL/L and 10 mL/L caused significant reductions in disease symptom
when compared to the pathogen-inoculated control. Application of the liquid formulation
of S. tuirus AR26 at 10 mL/L completely (100%) suppressed the fruit rot lesions caused
by C. truncatum, F. oxysporum and Cscovillei + C. truncatum + F. oxysporum. C. scovillei
inoculated fruits recorded 87.9% disease reduction with a corresponding lesion size of
0.30 cm when compared to the C. scovillei inoculated control (2.48 cm) (Figure 8). The liquid
formulation at 5 mL/L concentration reduced the lesion size by 70.85%, 82.68%, 67.32%
and 77.08%, respectively for C. scovillei, C. truncatum, F. oxysporum and the co-inoculation
of all the three pathogens with corresponding lesion size of 0.73 cm, 0.38 cm, 0.85 cm and
0.63 cm. Irrespective of pathogens, the metabolites in the methanol extract of antagonist
also had significant inhibitory effect on the suppression of fruit rot lesions on chilli fruits
compared to the pathogen-inoculated control (Table 4). However, the percentage inhibition
of the fruit rot lesion by the antagonist metabolites was significantly lower than the active
culture formulation of S. tuirus AR26. Antagonist metabolites reduced the lesions up to
70.10%, 62.45%, 53.08% and 44.85% caused by C. truncatum, C. scoviellei, F. oxysporum and
co-infection of three pathogens, respectively.
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Figure 7. Phylogenetic tree representing the evolutionary relationships of five potent antagonistic acti-
nobacterial isolates isolated from chilli plants. Neighbour joining (NJ) phylogenetic tree constructed
from 16S rRNA sequences shows the position of five potent actinobacterial isolates (highlighted in
red) and all isolates belong to the genera Streptomyces. Bootstrap values (expressed as percentages of
1000 replications) are shown at the nodes. Pseudomonas fluorescens 1-42 (MK88064) was used as an
outgroup. GenBank accession numbers are given in parenthesis.

Table 3. Antifungal efficacy of liquid formulation of Streptomyces tuirus AR26 against chilli fruit
rot pathogens.

S. No Treatments/Pathogens Lesion Diameter (cm) Per cent Disease Reduction (%)

1. T1: Healthy (uninoculated) control 0.00 100.00 a (89.71)

2. T2: Antagonist inoculated control (10 mL/L) 0.00 100.00 a (89.71)

3. T3: Colletotrichum scovillei inoculated control 2.48 0.00 c (0.29)

4. T4: Colletotrichum truncatum inoculated control 2.18 0.00 c (0.29)

5. T5: Fusarium oxysporum inoculated control 2.60 0.00 c (0.29)

6. T6: Co-inoculation of C. scovillei, C. capsici and
F. oxysporum 2.88 0.00 c (0.29)

7. T7: C. scovillei + S. tuirus (5 mL/L) 0.73 70.85 d (57.34)

8. T8: C. scovillei + S. tuirus (10 mL/L) 0.30 90.32 b (80.17)

9. T9: C. truncatum + S. tuirus (5 mL/L) 0.38 82.68 c (65.75)

10. T10: C. truncatum + S. tuirus (10 mL/L) 0.00 100.00 a (89.71)

11. T11: F. oxysporum + S. tuirus (5 mL/L) 0.85 67.32 d (55.41)

12. T12: F. oxysporum + S. tuirus (10 mL/L) 0.00 100.00 a (89.71)
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Table 3. Cont.

S. No Treatments/Pathogens Lesion Diameter (cm) Per cent Disease Reduction (%)

13. T13: Co-inoculation of C. scovillei, C. capsici and
F. oxysporum + S. tuirus (5 mL/L) 0.63 77.08 c,d (61.53)

14. T14: Co-inoculation of C. scovillei, C. capsici and
F. oxysporum + S. tuirus (10 mL/L) 0.00 100.00 a (89.71)

CD (0.05) 0.167 8.040

SE (d) 0.082 3.960

The values are the mean of three replications. The means in a column followed by the same superscript letters are
not significantly different at p = 0.05. Values in parenthesis are arc sine transformed.
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villei alone; (F) fruits inoculated with C. scovillei and liquid formulation of S. tuirus AR26 at 10 mL/L; 
(G) fruits inoculated with C. truncatum and methanol extract of S. tuirus AR26; (H) fruits inoculated 
with C. truncatum alone; (I) fruits inoculated with C. truncatum and liquid formulation of S. tuirus 
AR26 at 10 mL/L; (J) fruits inoculated with F. oxysporum and methanol extract of S. tuirus AR26; (K) 
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Figure 8. Antifungal efficacy of liquid formulation and methanol extract of S. tuirus AR26 against
chilli fruit rot pathogens. (A) Fruits inoculated with sterile distilled water; (B) fruits inoculated with
methanol alone; (C) fruits inoculated with liquid formulation of S. tuirus AR26 at 10 mL/L; (D) fruits
inoculated with C. scovillei and methanol extract of S. tuirus AR26; (E) fruits inoculated with C. scovillei
alone; (F) fruits inoculated with C. scovillei and liquid formulation of S. tuirus AR26 at 10 mL/L;
(G) fruits inoculated with C. truncatum and methanol extract of S. tuirus AR26; (H) fruits inoculated
with C. truncatum alone; (I) fruits inoculated with C. truncatum and liquid formulation of S. tuirus AR26
at 10 mL/L; (J) fruits inoculated with F. oxysporum and methanol extract of S. tuirus AR26; (K) fruits
inoculated with F.oxysporum alone; (L) fruits inoculated with F. oxysporum and liquid formulation of
S. tuirus AR26 at 10 mL/L AR26; (M) fruits inoculated with C. scovillei, C. truncatum, F. oxysporum and
methanol extract of S. tuirus AR26; (N) fruits inoculated with C. scovillei, C. truncatum, F. oxysporum
alone; (O) fruits inoculated with C. scovillei, C. truncatum, F. oxysporum and liquid formulation of
S. tuirus AR26 at 10 mL/L.

Table 4. In vivo antifungal efficacy of methanol extract of S. tuirus AR26 against chilli fruit
rot pathogens.

S. No Treatments/Pathogens Lesion Diameter (cm) Per cent Disease Reduction (%)

1. T1: Healthy (uninoculated) control 0.0 100.00 a (89.71)

2. T2: Methanol extract inoculated control 0.0 100.00 a (89.71)

3. T3: C. scovillei inoculated control 2.93 0.00 f (0.29)

4. T4: C. truncatum inoculated control 2.50 0.00 f (0.29)

5. T5: F. oxysporum inoculated control 2.35 0.00 f (0.29)
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Table 4. Cont.

S. No Treatments/Pathogens Lesion Diameter (cm) Per cent Disease Reduction (%)

6. T6: Co-inoculation of C. scovillei, C. capsici and
F. oxysporum 3.40 0.00 f (0.29)

7. T7: C. scovillei + Methanol extract of S. tuirus 1.10 62.45 C (52.22)

8. T8: C. truncatum + Methanol extract of S. tuirus 0.75 70.10 b (56.99)

9. T9: F. oxysporum + Methanol extract of S. tuirus 1.10 53.08 d (46.79)

10. T10: Co-inoculation of C. scovillei, C. capsici and
F. oxysporum + methanol extract of S. tuirus 1.88 44.85 e (46.04)

CD (0.05) 0.326 3.129

SE (d) 0.159 1.525

The values are the mean of three replications. The means in a column followed by same superscript letters are not
significantly different at p = 0.05. Values in parenthesis are arc sine transformed.

4. Discussion

The use of synthetic fungicides is a common practice among farmers for many decades
for the management of chilli fruit rot disease; however, this can cause several ill effects to
the environment and living creatures. The most urgent and necessary activity of human
society is to eliminate the use of fungicides in food crops [66] like chilli which are directly
consumed by people. Hence, protecting crops with safe biocontrol agents will not only
address concerns about fungicide residues in fresh and processed products, but also increase
the export value of fungicide-free food products in domestic as well as world markets.
Furthermore, antagonistic microbe–plant interactions reduce the dependence on chemical
pesticides by upto 20% [67]. Native actinobacteria adopting a dual role as a biocontrol
agent and biofertilizer is a more sustainable, promising and versatile candidate towards
the eco-friendly management of plant disease with multiple benefits to society and the
ecosystem as a whole.

Hence, in the present study, around 52 actinobacterial isolates were screened for
their antagonistic activity against the chilli fruit rot pathogens. Among which, six isolates
AR1, AR10, AR26, AL5, AL7 and AFE2 exerted strong antifungal activity against all three
pathogens with an inhibition zone of >2 cm and belonged to the genus Streptomyces. It
was evidenced from previous literature that several species of Streptomyces have emerged
as biocontrol agents that are safe alternatives to synthetic fungicides for the management
of phytopathogens [68,69]. There is ample scientific evidence indicating the successful
interaction of various Streptomyces spp. with chilli plants to curtail the infection of fruit
rot pathogens both at pre- and post-harvest levels. Shahbazi et al. [70] reported that
Streptomyces rochei strain P42 displayed the highest inhibitory activity against C. acutatum,
C. capsici and C. gloeosporioides. S. griseocarneus R132 inhibited the development of anthrac-
nose symptom in chilli fruits [47], and likewise the application of S. violaceoruber fermenta-
tion broth reduced the incidence of the chilli anthracnose under greenhouse conditions [30].

The results of the present study also revealed that a higher proportion of native rhizo-
spheric actinobacteria exert strong antagonistic activity against C. scovillei and C. truncatum
compared to phyllospheric and endophytic isolates. Similar results were also highlighted by
Shahbazi et al. [70], who reported that out of 66 native rhizosphere strains of streptomycetes,
16 strains showed very strong to moderate inhibition against C. acutatum, C. capsici and
C. gloeosporioides. Many researchers have reported that diverse species of actinobacteria are
recognized to play a crucial function in the rhizosphere by suppressing pathogenic species,
as well as promoting the growth and multiplication of beneficial microbes. Streptomyces is
one of the most dominant and promising biocontrol bacterial genera of plant diseases which
efficiently colonise the plant rhizosphere and are known to produce over two-third of an-
tibiotics with the ability to inhibit a wide range of phytopathogens [71,72]. Hyder et al. [73]
stated that eight native rhizospheric bacterial isolates obtained from chilli plants were
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found to exert antifungal activity against damping pathogen Phytophthora capsici in vitro
and in vivo.

Based on the dual culture and paired antibiosis assay, the actinobacterial isolate AR26
obtained from chilli rhizosphere, which was subsequently identified as Streptomyces tuirus,
was found to be the most effective isolate in inhibiting the mycelial growth of all the
three tested pathogens. This finding is in accordance with the results of Chaudhry [74]
who reported that S. tuirus strongly inhibited carrot cavity spot pathogen Pythium violae
including various other pathogens such as Phytophthora spinosum, Phytopythium helicoides,
Fusarium oxysporum, Fusarium falciforme, Fusarium solani, Sclerotium rolfsii, and
Sclerotinia sclerotiorum. Scanning electron micrographs of the interaction of S. tuirus with
fruit rot pathogens in the dual culture plate revealed mycelial deformities like shrinkage,
distortion and aggregation of C. scovillei, C. truncatum and F. oxysporum hyphae, in contrast
to dense, smooth and regular mycelium in the control plate. Xu et al. [75] also observed
severe morphological and internal abnormalities such as the shrinkage and aggregation
of Magnaporthe oryzae hyphae when treated with the culture filtrate of rice endophyte
Streptomyces hygroscopicus OsiSh-2.

S. tuirus also exhibited positive results for most of the antifungal bioassays under
study. It is the most potent antagonist to produce almost all the tested extracellular hy-
drolytic enzymes, most prominently cellulase and chitinase which are reported to be the
important hydrolytic enzymes responsible for the biocontrol ability of an antagonist. High
chitinase-producing strains are more antagonistic to fruit-rotting pathogens compared
to low-chitinase-producing strains [76]. Jha and Modi [77] and Bhattacharyya et al. [78]
pointed out that the genus Streptomyces is an efficient producer of various lytic enzymes,
which plays an important role in the biological control of plant diseases by degrading the
cell wall of phytopathogenic fungi made up of chitins and glucans. It is also evident from
the earlier reports that Streptomyces spp. are significantly responsible for the suppression of
plant diseases through the production of chitinase, glucanase [40] and protease [79]. Shah-
bazi et al. [70] stated that the production of hydrolytic enzymes, especially chitinases, can
be considered as a potential antagonistic mechanism against chilli anthracnose pathogens.
Therefore, the production of these enzymes will help to select potential actinobacterial
isolates for the biological control of the tested pathogens.

S. tuirus AR26 is also a highly efficient synthesizer of siderophore which is considered
to be one of the most important mechanisms for the biocontrol of plant pathogens [80], in
which the antagonist inhibits pathogen growth by depriving it of the available iron in the
environment [81]. Hence, it is possible that the siderophore-producing ability of S. tuirus
AR26 might also have contributed to the suppression of mycelial growth of all the tested
pathogens. It is similar to the finding of Liotti et al. [47] who reported the possible role of
siderophore of S. griseocarneus R132 in the biocontrol of F. oxysporum in chilli.

Volatile, non-volatile and thermostable compounds of the S. tuirus isolate AR26
also reported significant antifungal activity, particularly volatile organic compounds,
which recorded the maximum antifungal activity against the fruit rot pathogens. Many
Streptomyces spp. were reported to produce various volatile compounds that were effec-
tive against the anthracnose disease in various crops [82]. The volatile compounds from
Streptomyces philanthi RM-1-138 and Streptomyces spp. are highly potent for the biocontrol
of chili anthracnose caused by C. gloeosporioides PSU-NY8 [14] and cucumber anthracnose
caused by C. orbiculare [83] respectively in the post- harvest pathosystem. Metabolites
produced by Streptomyces include bioactive compounds such as macrolide, benzoquinones,
aminoglycosides, polyenes, and nucleoside antibiotics that are involved in the suppression
of various phytopathogens [84,85].

The results of detached fruit assay revealed that application of active antagonists in
the form of a liquid bio-formulation was found to be most effective against all the three
pathogens compared to methanol extracts. The active culture of the antagonist S. tuirus
AR26 in the liquid bio formulation caused a significant reduction in the expression of
fruit rot symptom, ranging from 87.9% to as high as 100%. It completely suppressed the
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expression of symptoms caused by C. truncatum, F. oxysporum and C. scovillei + C. truncatum,
F. oxysporum in chilli fruits, which is approximately 30%, 50% and 55% higher than the
suppression by the methanol extract. Our finding is in line with the research findings of
Sadeghian et al. [50] who also reported that active antagonists as practical formulations
seem more effective compared to crude extracts against the bitter rot of apple fruits caused
by C. gloeosporioides.

Therefore, the inhibition of fruit rot pathogens observed in this study might be due
to the antagonistic potential of S. tuirus AR26 through the production of antifungal com-
pounds, siderophores, chitinase or through the synergistic action of all these mechanisms.
It has been documented in earlier findings that the antifungal ability of actinobacteria
might be due to the synergistic activity of two or more antagonistic mechanisms. Further-
more, Evangelista-Martínez [86] also reported that the Streptomyces sp. CACIA-1.46HGO
strain inhibited the hyphal growth of many fungal plant pathogens by the production of
secondary metabolites, extracellular enzymes and probably by the combined effect of these
mechanisms. It is well understood from the findings of Yasmin et al. [87] who reported
that the antagonistic activity of Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and
Bacillus sp. might be due to the production of siderophores, lytic enzymes and HCN or the
synergistic interaction of these two or with other metabolites.

5. Conclusions

The management of chilli fruit rot disease still continues to be the focus of intensive
research. Though there are several ways of managing this disease, none of the methods
were found to be completely successful when applied alone. Hence a preliminary at-
tempt was made to screen the antifungal activity of native actinobacteria against fruit rot
pathogens under in vitro conditions. Current results confirmed the potentiality of native
actinobacterial isolate S.tuirus AR26 to be exploited as a biointensive component under
an integrated disease management strategy. The actinobacteria S. tuirus AR26 exhibited
multifarious biocontrol mechanisms such as the production of volatile, non-volatile and
thermostable compounds, competition for iron through the synthesis of siderophores, and
production of extracellular lytic enzymes such as chitinase and cellulases. Hence, S. tuirus
AR26 has a great scope for evaluating its biocontrol potential against chilli fruit rot disease
under field conditions as well against a broad spectrum of post-harvest plant pathogens.
Larger investigations in the future will demonstrate such possibilities. As farmers be-
come increasingly aware of the concept of sustainable agriculture and organic farming,
use of this actinobacteria based bio-formulation will definitely address concerns about
ecologically sustainable and socially acceptable long-term solutions to tackle notorious
fruit rot pathogens.
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