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Bielińska-Wąż and Katarzyna Zorena

Received: 30 December 2022

Revised: 13 February 2023

Accepted: 17 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

life

Article

Deep Learning and Procrustes Analysis for Early Dysgraphia
Risk Detection with a Tablet Application
Eugenio Lomurno *,† , Linda Greta Dui † , Madhurii Gatto † , Matteo Bollettino † , Matteo Matteucci
and Simona Ferrante

Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
* Correspondence: eugenio.lomurno@polimi.it
† These authors contributed equally to this work.

Abstract: Dysgraphia is a neurodevelopmental disorder specific to handwriting. Classical diagnosis is
based on the evaluation of speed and quality of the final handwritten text: it is therefore delayed as it
is conducted only when handwriting is mastered, in addition to being highly language-dependent and
not always easily accessible. This work presents a solution able to anticipate dysgraphia screening
when handwriting has not been learned yet, in order to prevent negative consequences on the
individuals’ academic and daily life. To quantitatively measure handwriting-related characteristics
and monitor their evolution over time, we leveraged the Play-Draw-Write iPad application to
collect data produced by children from the last year of kindergarten through the second year of
elementary school. We developed a meta-model based on deep learning techniques (ensemble
techniques and Quasi-SVM) which receives as input raw signals collected after a processing phase
based on dimensionality reduction techniques (autoencoder and Time2Vec) and mathematical tools
for high-level feature extraction (Procrustes Analysis). The final dysgraphia classifier can identify
“at-risk” children with 84.62% Accuracy and 100% Precision more than two years earlier than current
diagnostic techniques.

Keywords: dysgraphia; longitudinal monitoring; early screening; time series embedding; procrustes
analysis; deep learning

1. Introduction

Handwriting is one of humanity’s first major technological revolutions in systems of
communication and self-expression. It is a skill typically developed in early childhood [1]
and typified by substantial complexity. Cognitive activities related to handwriting include
general thinking, creativity, and language comprehension, while, from a motor point of
view, several joints between hand and arm are involved, all of which must be precise and
synchronous. Despite the increasing digitization of the education system, handwriting
remains a central skill in every child’s schooling and learning. In fact, recent studies based
on the examination of brain activity through electroencephalography show that children
learn and remember better when writing with a pen rather than a keyboard [2]. However,
up to 27% of children [3], even if followed in the learning phase, fail to correctly learn
handwriting and thus are unable to perform writing, composing, and spelling tasks [4].

Dysgraphia, from the Greek “dys” meaning “impaired” and “graphia” meaning
“making letter forms by hand”, is the neurodevelopmental disorder of biological origin in
the reproduction of alphabetical and numerical characters. The writing skills of individuals
with a dysgraphic condition are below the level expected for their age and cognitive level,
despite adequate learning opportunities and the absence of any evident neuropathologies
or sensory-motor problems [5]. Dysgraphia may manifest itself in a stand-alone manner,
or it may also coexist with other learning difficulties [6], with the possible consequence of
being easily confused with other transient disorders, or even not being diagnosed at all [7].
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Dysgraphia affects not only the school learning process but also daily life activities, with
possible negative emotional and behavioral consequences for children, such as increased
anxiety, loss of self-esteem, and risk of precocious school abandonment [6,8]. It is therefore
important to monitor children’s handwriting abilities over time, in order to be able to detect
handwriting weaknesses as early as possible and to properly intervene and avoid negative
consequences [8] on the academic, working and daily individuals’ lives.

Typically, the diagnosis of dysgraphia is made after the second year of primary school,
when the process of learning to handwrite should be well established. Consequently, it is
currently almost impossible to detect dysgraphia before that age, which inevitably leads
to negative consequences on the lives of the most disadvantaged children. In particular,
among the weaknesses of current methodologies, one can highlight:

• The possibility of intervening only after the time when handwriting skills should have
been learned, slowing down the diagnosis and making the adoption of countermea-
sures less effective [9].

• The strong dependence on the native language.
• The necessity to depend only on handwritten text, and thus without providing a

quantitative assessment of gestural production [10].
• The requirement for children to reach the clinicians’ office, which may not be easily

accessible in terms of costs and waiting time [11].

This work addresses all the current critical issues in dysgraphia diagnosis, develop-
ing a solution that can move towards a new approach, that of anticipating dysgraphia
screening at an age when handwriting is not mastered yet, starting from symbols drawing.
Indeed, since the object of study of dysgraphia are children, a population whose abilities
are constantly developing, it is essential to investigate how growth and education influence
their writing skills over time and, in particular, how this development process differs in
children potentially “at-risk”. This, together with the fact that the disorder of dysgraphia
has an intrinsic developmental character, leads to the extreme need for longitudinal moni-
toring of handwriting skills. Given this rationale, this paper presents an early dysgraphia
classifier based on real, quantitative, and longitudinal data, developed through state-of-
the-art mathematical tools and deep learning techniques. Raw data collected through the
serious games for a tablet [9] were cleaned and subsequently reduced in dimensionality
through autoencoder-based architectures. The result of this process was used to calculate
outlier distances through Procrustes Analysis, to realize threshold-based classifiers and
classification meta-models. The final result is a tool able to identify “at-risk” children
in the pre-literate age, and particularly, more than two years earlier than the currently
applicable protocol. The performance achieved, i.e., a false positive rate equal to zero and
an Accuracy of 84.62%, suggests that the proposed approach represents a reliable tool with
great potential utility for clinicians, parents, and teachers.

2. Related Works

With the growth of technological development, the assessment of handwriting quality
is increasingly being entrusted to digital tools. The advent of tablets is opening up a
new world for the quantitative analysis of writing problems: their advantage is that, by
recording handwriting in real-time, they allow for a kinematic analysis of the written stroke,
and thus consider not only the static and final aspects of handwriting but also its dynamics,
which has proven to be fundamental in the analysis of handwriting disorders. The aim of
much of the work developed in recent years is to combine the effectiveness of traditional
methods based on subjective rules with more general data-driven approaches that exploit
statistics and machine learning techniques [4].
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2.1. State of the Art

In 2013, Accardo et al. [12] examined with a cross-sectional study data on students
attending classes from the second grade of primary school to the third grade of secondary
school. They were asked to perform four different cursive tasks on a commercial digitizing
tablet, using a sheet of lined paper affixed on its surface and an ink pen in order to reproduce
a normal “pen and paper” context. Within this study, the authors demonstrated the utility
of kinematic writing parameters to study the development and learning of handwriting
over time. The results highlighted how these writing parameters could be used to objectify
the diagnostic methods, thus quantifying the deficit of hand movement skills in patients of
the same age presenting handwriting difficulties.

In 2018, Asselborn et al. [13] proposed a study considering children performing the
dysgraphia BHK test from the first to the fifth grade, again through a digital tablet covered
with a sheet of paper. By means of a random forest classifier, they discovered that frequency-
related features were the most discriminative to predict dysgraphia. Two years later, the
same authors contributed to the dysgraphia study with a new paper in which they asked
children to perform the BHK test using the Apple Pencil on a specially designed iPad
application (Dynamico app v1.0) [4]. In this study, they were not interested in a binary
dysgraphia result, but rather a scale of handwriting difficulty. The idea was therefore
to calculate how much a child’s score deviated from the average score of children of the
same age and gender. Taking advantage of the PCA and k-means algorithms, they first
discovered that tilt and static did not appear to be significant in explaining the differences
in handwriting between children, as opposed to kinematic and pressure characteristics.
Finally, they were able to create threshold values within their test population, resulting in
five classes of handwriting difficulty to assess the children.

In 2020, Richard and Serrurier [14] collected data consisting of images of handwritten
text and audio recordings, both from children without any diagnosis and from children
diagnosed with dyslexia and/or dysgraphia. The aim was to apply classical machine
learning techniques (such as Naïve Bayes, Logistic Regression, and Random Forest) to
obtain a model capable of identifying one of the two neurodevelopmental disorders. Thanks
to its promising results, this research is seen as a further demonstration of how artificial
intelligence can effectively help automate and predict the assessment of such disorders.

In the same year, Drotár and Dobeš [15] used a machine learning approach to dis-
criminate between deteriorated handwriting and dysgraphia on different writing tasks
performed by children aged between 8 and 15 years. Also in this work, the authors opted
for the use of a tablet, this time used with a sheet of paper on which to write with a pen.
By comparing different machine learning algorithms, the results presented in the paper
showed that machine learning tools could be used to detect dysgraphia, even when dealing
with a heterogeneous set of subjects that differ in age, gender, and hand.

In 2021, Deschamps et al. [16] further investigated the possibility of anticipating
dysgraphia screening by developing an automated, widely applicable pre-diagnostic tool.
By asking more than 500 children from second to fifth grade to perform the French BHK
test on a graphic tablet, they collected data consisting of almost a hundred features of the
written tracks. By testing different machine learning algorithms, they achieved a satisfactory
discriminatory performance, comparable to that of a human examiner, reinforcing the belief
that such tools would be of great benefit in the detection of dysgraphia.

In 2022, Ghouse et al. [17] explored many deep learning techniques for classifying
dysgraphia in children’s handwritten images. In particular, they used convolutional neu-
ral networks to improve the efficiency of traditional manual dysgraphia classification.
They focused on mitigating the overfitting problem that characterized previous machine
learning-based research, introducing appropriate tuning parameters and achieving promis-
ing results.

The results from these studies are promising and useful in a pre-clinical context, but
they share a limitation with classical diagnostic tools. In fact, they rely on the analysis of
handwritten text, thus requiring to postpone the evaluation when handwriting is learned.
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Recently, Dui et al. [11] confirmed the effectiveness of deep learning in the context of
dysgraphia prevention even before handwriting is learned. Using serious games from the
iPad application Play-Draw-Write, the authors collected data from children in the last year
of kindergarten, and through the use of a convolutional neural network called LearNet,
they were able to effectively discriminate between “at-risk” and “non-at-risk” children. In
addition, the work showed how the Play-Draw-Write application can be complementary
to expert observation, thus becoming a valuable aid in identifying areas of difficulty to
be strengthened, even without the need for a trained teacher, or even in a remote context.
The main limitation of the study was the uncertainty of labeling the risk of dysgraphia. In
fact, as the authors pointed out, the risk of grapho-motor retardation was assessed by the
subjective and non-clinical judgment of a pool of trained teachers, and therefore highly
subject to noise. Hence, a longitudinal observation of the same children until it was possible
to test for their real handwriting abilities was necessary.

Further studies on the use of artificial intelligence to analyze and prevent dysgraphia
are summarized in the work of Moetesum et al. [18].

2.2. Play-Draw-Write Application

The present study is based on Play-Draw-Write, the tablet application developed at the
NearLab of Politecnico di Milano University [9]. It was developed in Unity 2018.3.2f1, for
an iPad 6 with Apple Pencil 1 characterized by a sampling frequency of 240 Hz for stylus
position, pressure, altitude, and azimuth angles. Play-Draw-Write was designed to assess
handwriting-related features, starting from symbol drawing instead of word production
analysis. It was developed to address the weaknesses of current dysgraphia diagnosis
methodologies and therefore to meet the following important requirements [19]:

• To provide a quantitative assessment of gestural production and thus objective param-
eters that are typically altered in dysgraphic handwriting.

• To be sensitive to children’s learning development, in order to discriminate longitudinal
improvements, thus allowing to anticipate dysgraphia screening to a pre-literacy age.

• To be easily usable, independently from the language, and easily accessible for non-
clinical users to make the detection of handwriting difficulties accessible to the whole
community.

• To amuse children in order to facilitate repetitive use over time.

The assessment of gestural production characteristics is made through the quan-
tification of three handwriting principles, which are known to be altered in dysgraphic
handwriting [20,21]: isochrony, homothety, and speed–accuracy trade-off (SAT). Isochrony is the
property according to which the writing speed increases with stroke size, such that the
execution time remains approximately constant. Homothety is the property according to
which the fraction of time spent on each letter, relative to the total time for the entire word,
is constant, independently from the stroke size. SAT is instead the property according
to which the more accurate the task, the longer it takes to accomplish it, and vice versa.
Play-Draw-Write investigates handwriting through Serious Games applications, which
boost pupils’ engagement, enable continuous monitoring, and allows data acquisition to
evaluate the above laws [22].

The serious game categories considered by the present study are Copy and Tunnel
Games. Copy Games require to copy symbols on an empty canvas, beginning from a square
in Copy Square exercise and then following with a symbols’ sequence, i.e., a circle, a line,
and a reversed U, in Copy Sequence exercise. Both Copy Games have three different copy
modalities, i.e., spontaneous, big, and small. This game is designed to study isochrony and
homothety. Tunnel Games instead require to pass first through 15 different square-shaped
tunnels in Tunnel Square exercise and then through 15 different italic-“ele”-shaped tunnels
in the Tunnel Word exercise, in both cases as fast as possible and without crossing the
borders. Tunnel Game is designed to study SAT. Indeed, the Tunnel Game presents 15
tunnels of varying amplitude (A), i.e., the path length, and width (W) in a random order, to
create different Indexes of Difficulty (ID = A

W , in particular, 5 for Tunnel Square and 8 for
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Tunnel Word). IDs represent the difficulty to achieve the tunnel task so that the greater the
ID, the more difficult the task [23]. Sample screenshots of the four games considered are
shown in Figure 1.

Figure 1. Screenshots of the games used for data collection in this paper. In the top row, from left
to right, an example of Copy Square and Copy Sequence. In the bottom row, from left to right, an
example of Tunnel Square and Tunnel Word.

The main advantage of Play-Draw-Write lies in the possibility of being played by chil-
dren from any country in the world, regardless of the language spoken or the alphabet used.
Furthermore, it is a tool that allows for objective assessment of handwriting development,
potentially administered in a pre-clinical setting via teleconsultation or remote monitoring.
Play-Draw-Write is therefore a technological support that paves the way toward an early
dysgraphia detection: it allows the screening of pre-literacy skills to identify potential
handwriting difficulties before they arise and offers continuous, accessible, and low-cost
monitoring of their evolution, while pupils enjoy playing games [19].

3. Method and Experiments

The aim of this research work is to exploit the longitudinal administration of the
Play-Draw-Write test to anticipate dysgraphia screening at an age when handwriting has
not been mastered yet.

3.1. Participants and Protocol

The longitudinal protocol followed to collect data on the children’s handwriting skills
involved five acquisitions over three years: the first measurement was taken in February of
the last year of kindergarten (2020), while the last one was taken in May of the second grade
(2022). During the last time point, children were also asked to perform the BVSCO-2 Test
(Batteria per la Valutazione della Scrittura e della Competenza Ortografica) [24], that is, the
most widely adopted and standardized test in Italy for detecting handwriting difficulties.
The BVSCO-2 Test leveraged for handwriting skills assessment in this work comprises
three handwriting exercises:

1. Writing a sequence of letters L and E in cursive, without lifting the pen, for one
minute;

2. Repeating the word UNO (ONE, in Italian) in the preferred case, for one minute;
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3. Writing numbers as letters, in the preferred case, for one minute.

In each exercise, when the children score is less than two standard deviations below
the normative mean of the same age and period of the year, they are considered affected
by dysgraphia. The three scores are then normalized with normative mean and standard
deviation. The global score is the median z-score: if this is less than the threshold -2, the
pupil is considered affected by dysgraphia. The result of this test was therefore used to
produce the dysgraphia risk labels used in this study, identifying 18% of the test population
as “at-risk”. From now on, the five measurements taken at the five different time-points are
indicated with the notation: y1, y2a, y2b, y3a, y3b as in Figure 2.

Figure 2. The timeline of the longitudinal study on dysgraphia carried out for this paper. The five
data collections are spread over a three-year time window, at the end of which the BVSCO-2 Test has
been carried out.

From the literature, it is assumed that the prevalence of dysgraphia is at least 5% [25],
so in order to include at least 10 potentially pathological subjects in the sample, 200 children
need to be enrolled. Taking into account the extended time frame that includes the transition
from kindergarten to school, the sample size was increased to 250 kindergarten children to
account for potential dropouts. Thus, the longitudinal study started with the inclusion of
247 children attending the last year of kindergarten. The acquisition was carried out directly
in the selected schools, and in detail, in the locations in the province of Varese in Italy. Due
to variable events beyond our control, as expected, some children were lost or added to
the study at each measurement, resulting in a population of 210 children participating in
the y3b acquisition and the BVSCO-2 Test. Both female (99) and male (111), right- (185)
and left-handed (25) children were considered in the data collection. The sessions took
place in quiet rooms, after ensuring that the participants were comfortably seated and in
optimal lighting conditions. The invitation to participate in the study was extended to the
entire class population, excluding only children who had previously been diagnosed with
neurological or sensorimotor pathologies that could affect performance.

Overall, data were collected during the five time-points indicated by each participating
child and for each of the proposed serious games. The experimental procedure was
approved by the Ethics Committee of the Politecnico di Milano (no. 24/2019) and written
consent was received from headmasters and parents.

3.2. Data Preprocessing

The app collected data from the interaction between the Apple Pencil and the tablet
surface in terms of position (x and y coordinates), the pressure exerted, and the inclination
of the pen. The data thus acquired were converted into multivariate time series composed
of the positional features (x and y coordinates) and pressure. Features related to pencil incli-
nation were discarded as they were on average constant and consequently uninformative in
a classification problem. Since the sampling frequency of the Play-Draw-Write application
in Unity was 50 Hz, the first step to obtain the time series was to sub-sample from the
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Apple Pencil, which instead samples at 240 Hz. At the same time, each time series was
truncated by 5% of its length at the beginning and at the end to remove any insignificant
sections and thus to avoid border effects. Children who did not participate in the final
BVSCO-2 Test and whose labels were therefore not available were then discarded. The
resulting data were normalized in x- and y-coordinates with respect to the initial position
of the Apple Pencil, and the time vector was re-scaled in the range from zero to one.

Every serious game was played by the children in each of its modes, i.e., 3 executions
for the two Copy Games and 15 executions for the two Tunnel Games, as summarized in
Figure 3. To ensure an impartial assessment of the children’s manual dexterity, the order
of execution of the Tunnel Games was always kept random from child to child. In order
to facilitate a robust and stable analysis, the executions of the Tunnel Games are grouped
according to the Index of Difficulty (ID), defined as the ratio between the length and width
of the tunnel considered. Specifically, the 15 executions of Tunnel Games are such that they
can be grouped into 5 IDs for the Tunnel Square and 8 IDs for the Tunnel Word. In order to
group the randomly ordered Tunnel Games executions and to obtain a unique and more
stable signal for each ID that is comparable between the children, the average signal was
thus chosen as the representative execution for that ID, fixing measurement, game, feature,
and child. From now on, for ease of notation, the term “ID” will be used instead of “copy
mode” also for Copy Games.

Figure 3. The study protocol for dysgraphia screening adopted at each measurement. Notice that
the three executions of the Copy Games coincide with the three required copy modalities, while the
fifteen executions of the Tunnel Games can be grouped according to the Index of Difficulty (ID).

Up to this point, the features available for each game consist of raw multivariate time
series to which simple cleaning operations, i.e., cutting off heads and tails and normaliza-
tion, have been applied. No explicit computation of high-level features has been added,
precisely to allow subsequent steps to learn how to extract the most important information
in a fully automatic manner. Indeed, the next step was to apply a nonlinear transformation
to the previously processed data in order to reduce their dimensionality and extract a more
meaningful representation. For this purpose, an embedding technique called Time2Vec
was chosen and used exploiting deep learning algorithms. This approach is related to time
decomposition techniques that encode a time signal into a set of frequencies but, instead of
using a fixed set of frequencies as in Fourier transforms, frequencies can be learned [26].
Given a generic time instant τ and a number of components s, the Time2Vec function is a
vector of size s + 1 defined as:

t2v(τ)[i] =
{

ωiτ + ϕi, i = 0
F(ωiτ + ϕi), 1 ≤ i ≤ s

(1)
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where F is a periodic activation function, in this case the sine one, and ωi and ϕi are
learnable parameters.

An ad hoc neural network belonging to the autoencoder family was constructed for
each feature of each collected sample. Such architectures, composed of two sequential
sub-networks, namely the encoder and the decoder, are particularly convenient precisely
for creating latent, low-dimensional representations of the input data [27]. The idea behind
such a model lies in the quality of reconstruction of the input after passing through the
bottleneck represented by the latent space: the higher the quality of the reconstructed data,
the higher the quality of its compression. In this case, the architecture identified as optimal
involves a fully connected layer of the same dimensionality as the input as encoder, a latent
space consisting of a Time2Vec layer of tunable dimension, and a fully connected layer
again of the same input dimensionality as decoder for reconstructing the data.

For each autoencoder, three vectors of learned parameters have been considered, as
shown in Figure 4. In detail, the two vectors of the latent representation, i.e., pulsations ωi
and phases ϕi with i = 1, . . . , s, and the vector of weights of the decoder’s layer, representing
the importance of each of the sinusoids found by the network, i.e., pi with i = 1, . . . , s.
Since the most discriminative features for the identification of handwriting difficulties are
those related to frequency [11], the linear component of Time2Vec, i.e., the component
corresponding to i = 0, was excluded from the extracted feature set and used only at the
reconstruction stage.

Figure 4. The diagram of the autoencoder architecture used in this work. The data are compressed
by the Encoder within the latent space formed by a Time2Vec layer, and then reconstructed by the
Decoder as accurately as possible.

Given the heterogeneous size of the individual runs, each sample was divided into
ordered windows consisting of 50 timestamps each. Since these windows were highly
overlapping, they were selected with hops of 5 timestamps. To select the optimal number
of Time2Vec components, the first 75% of each dataset was used as the training set and the
remaining 25% as the test set of a grid search. The best reconstruction result was obtained
by having the number of components s = 9, achieving on average a mean squared error
between input and output in the order of magnitude of 10−6. Figure 5 shows an example of a
test set window for the pressure feature extracted from the execution of one of the children
with respect to the y1 Copy Square game. Because of this excellent embedding, each
signal of hundreds of time instants has been synthesized into a compressed representation
consisting of 3 vectors of length equal to 9.
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Figure 5. An example of pressure signal reconstruction of a sample belonging to the test set. It is pos-
sible to notice how the excellent analytical performance is reflected in a high-quality reconstruction.

3.3. Procrustes Analysis and Ablation Study

With the aim of introducing a distance metric between the obtained periodic signals,
and thus between children’s signals, the technique of Procrustes Analysis was relied upon.
Procrustes Analysis is a rigid shape analysis that uses similarity transformations, i.e.,
isomorphic scaling, translation and rotation, to find the best fit between two reference
shapes. In other words, the goal of this technique is to make two input figures appear as
similar as possible in order to compute a distance between them [28,29].

At this point in the data processing, the most intuitive choice would be to apply
Procrustes Analysis to the aggregation of the 9 sinusoids obtained from the Time2Vec
embedding. Two possible configurations were selected to perform this aggregation, config-
urations that became part of the tuning hyperparameters of this ablation study phase. In
detail, the choices evaluated consist of:

• Using the average of the sinusoids weighted with respect to the absolute value of the
decoder weights. In this way, the resulting sinusoids combination is bounded in the
range −1 and 1.

• Using the sum of the sinusoids weighted with respect to the real value of the decoder
weights. In this way, the resulting sinusoids combination would not necessarily be
contained between −1 and 1.

At this stage of data processing, the Procrustes Analysis was applied to periodic
signals obtained as combinations of s sinusoids. Regardless of the configuration of the
aggregation, the Procrustes Analysis needs reference landmarks in both sinusoids to be
performed. In this context, the natural choice was to consider the extremes of the curves
obtained. Since this technique requires the number of reference landmarks on the two
shapes analyzed to be the same, the N extremes furthest from the x-axis were considered,
with the hyperparameter N dynamically tuned. Once the landmarks on two different
periodic signals had been identified, the two possible choices for pairing them were the
following, as shown in Figure 6:

• To associate the landmarks according to their distance from the x-axis, and thus
according to an order by value.

• To reorder the landmarks according to the time coordinate and thus to associate them
in order of appearance.
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Figure 6. A toy example of landmark-matching for Procrustes Analysis in the time series domain
with N = 3. The choices considered involve sorting by curve values, or sorting by time order.

Once the matching criterion has been chosen via tuning, it is possible to exploit it for
each measurement and each game to construct very simple dysgraphia classifiers based
solely on the threshold and the metric resulting from the Procrustes Analysis. In detail, the
training technique involves for each ID and feature the calculation of the average signal
among all children and the subsequent application of the algorithm from the Procrustes
Analysis between the children’s signals and the average signal. The distances thus obtained
are used for the calculation of the optimal threshold for each ID and feature, with respect
to the BVSCO-2 Test score. Finally, a voting on IDs and features classifiers is performed,
assigning to each child a risk probability. Again, it is possible to calculate the optimal thresh-
old, but this time, a probability threshold. Algorithm 1 provides a concise representation of
the described technique.

Algorithm 1 Fit Procedure.

1: for each ID do
2: for each f eature do
3: Computation of the average signal among all children
4: Landmarks selection on the average signal
5: Computation of children average signal distances via Procrustes Analysis
6: Research of the best distance threshold to classify each child as “at-risk” or “not-at-

risk”
7: end for
8: end for
9: Voting on IDs and features to assign a dysgraphia-risk probability to each child

10: Research of the best probability threshold to classify each child into one of the two
classes

The output of the Fit Procedure is thus a classifier that assigns each child a probability
corresponding to the risk of dysgraphia. The choice of how to optimize the threshold in
turn includes the selection of a metric appropriate to the problem. Although Accuracy is
often considered the best choice in classification problems, in this case, the strong class
imbalance requires a metric that takes into account the distribution of labels. For this reason,
the F1-score was chosen between Precision and Recall, i.e., their harmonic mean.

Once the implementation strategy of the classifiers, the hyperparameters to be tuned
and the evaluation metrics have been defined, the last necessary step is the choice of
the criterion to validate and compare the performance obtained. Although there are
computationally much less onerous techniques, the technique of stratified nested k-fold
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cross-validation was preferred. This technique consists of a double loop, an external one for
test sets and an internal one for validation sets, and thus allows an extremely robust and
objective evaluation of the entire dataset at hand. In the conducted experiments, a k = 5
was chosen, so as to obtain 5 external folds and 5 internal folds, as illustrated in Figure 7.

Figure 7. The diagram of the Stratified Nested 5-fold Cross-Validation strategy used to evaluate the
performance of the proposed models.

The implemented version involves overlapping internal folds in order to keep an
adequate size of each validation and test set, even given the limited cardinality of the
dataset. The in-depth description of the entire pipeline is summarized in Algorithm 2. In
detail, for each iteration of the algorithm, the possible configurations are evaluated, i.e.,
whether to aggregate the 9 sinusoids by averaging with absolute weights or with weighted
sum, and whether to associate the landmarks according to the values of the obtained curves
or following the temporal ordering. The number of landmarks varies dynamically from two,
i.e., the minimum number of points to perform the Procrustes Analysis, up to the maximum
value of comparable extremes between the curves, depending on both the measurement
and the game. At the end of each internal cycle, the best configuration is selected on the
basis of the average F1-score between the validation sets, and the performance on the test
set is finally evaluated.

The final result is then a double validation performance average and a single test
performance average for each of the four games and each of the five time-points considered.
Since these are very simple classifiers, it was opted to construct a single model for each
time-point that adaptively considers the contribution of each model associated with each
game. A model ensembling technique called Blending and particularly in vogue in the
world of machine learning competitions was therefore opted for. In particular, it is a meta-
model that learns how to combine the predictions of simple models in an optimal manner,
resulting in a robust and high-performance classification algorithm [30,31].
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Algorithm 2 Stratified Nested 5-fold Cross-Validation.

1: for each outer f old do
2: for each inner f old do
3: for each possible con f iguration do
4: for each ID do
5: for each f eature do
6: for each child do
7: Computation of sinusoids combination to obtain a unique periodic repre-

sentative signal
8: end for
9: end for

10: end for
11: for each possible number o f landmarks do
12: Fit Procedure on training set
13: end for
14: Selection of the best number of landmarks on the current validation set
15: end for
16: end for
17: Selection of the best configuration based on average performance on the inner vali-

dation folds
18: Voting on current test set using the 5 classifiers probabilities from the best configura-

tion to obtain each dysgraphia-risk probability
19: Final classification on current test set, using as threshold the average probability

threshold from the 5 classifiers
20: end for
21: Concatenation of all the test predictions and performances evaluation on the whole

dataset, in micro averaging fashion

The meta-model created in this work was then implemented for each of the five
acquisition time-points, using in each of them the outputs produced by the four classifiers
associated with the four games, as shown in Figure 8. It was thus possible to obtain two
datasets, one extracted from the 25 validation folds and used to train and evaluate the
meta-model (from now on named meta-training set), and one extracted from the 5 test
folds and used in turn as the final test set (from now on named meta-test set), in both cases
consisting of four features corresponding to the predicted probability.

Figure 8. Schematic representation of the meta-model built from the predictions of the four threshold-
based classifiers.

A Quasi-SVM was chosen as the meta-model [32]. It is a small neural network com-
posed of a single hidden layer called RandomFourierFeatures with a tuned unit number
and a single output neuron with sigmoidal activation aimed at simulating the behavior of
a Support Vector Machine [33]. Specifically, such a model was trained with the hold-out
technique on the meta-training set divided in a stratified manner into 80% and 20% por-
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tions and finally tested on the meta-test set. The training procedure was performed for
1000 epochs minimizing Hinge loss with the Adam optimizer, learning rate equal to 10−4,
early stopping with patience equal to 50, and the class balancing technique [34].

4. Results

In this section, results related to the classifiers, their configurations, and the realized
meta-models are presented. Finally, a quantitative comparison in longitudinal perspective
is made and the predictions of the best realized algorithm are inspected.

All choices regarding threshold-based classifier configurations were made with re-
spect to validation performance within the stratified 5-fold cross-validation. The same
configuration is then reapplied on the model to be evaluated on the test set. This means
that for each time-point and for each game, there are 5 best configurations. Since there are
5 time-points and 4 games, the choice of the best configuration is repeated 100 times in
total. The results in terms of best configurations are reported below:

• Weighted average of sinusoids and landmarks aggregated by value order: 26%.
• Weighted average of sinusoids and landmarks aggregated by time order: 27%.
• Weighted sum of sinusoids and landmarks aggregated by value order: 25%.
• Weighted sum of sinusoids and landmarks aggregated by time order: 22%.

It is noticeable how, despite the slight overall percentage variation, there is no par-
ticularly dominant configuration over the others, both from a general point of view and
with regard to the aggregation of sinusoids and sorting for Procrustes Analysis. The search
algorithm therefore managed to exploit each configuration almost equally, demonstrating
their effectiveness depending on the context.

The optimal number of landmarks obtained as a result of the tuning step varied greatly
from game to game, and, in general, from run to run, as is evidenced by the average number
of points identified equal to 51.47 and its standard deviation of 42.80. In Figure 9, it can
also be seen that the models based on the Tunnel Word game required fewer points than
the other games, they also demonstrate the effectiveness of tuning the N parameter despite
the increase in computation time.

Figure 9. The optimal number of landmarks identified by the tuning performed via stratified nested
5-fold cross-validation, divided by each game and represented as a boxplot.

Regardless of the configuration used, the threshold-based classifiers were used to make
the prediction vectors, which were exploited to calculate the metrics and construct the
meta-models. In addition to the models presented, a dummy-classifier called Baseline was
added, which classifies each child as “not-at-risk”, i.e., consistently predicts the most likely
class. The first set of results can be found in Table 1, which shows the main metrics used
to assess the quality of classification models, regardless of cardinality and class balance.
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Table 2, on the other hand, shows the second set of results containing the most informative
metrics in problems with unbalanced classes, and taking into account the proportions of
classes within the various datasets.

Table 1. The metrics calculated on the respective test sets used to compare the classifiers realized for
each time-point. Values in bold represent the best results, underlined values the second best.

Data Model Accuracy Precision Recall Specificity F1-Score

Baseline 83.59 0.00 0.00 100.00 0.00
Copy Square 78.22 18.75 8.82 92.26 12.00

y1 Copy Sequence 78.39 9.09 2.94 93.94 4.44
Tunnel Square 79.31 0.00 0.00 95.83 0.00
Tunnel Word 80.40 14.29 2.94 96.36 4.88
Quasi-SVM 84.62 100.00 6.25 100.00 11.76

Baseline 82.09 0.00 0.00 100.00 0.00
Copy Square 81.64 25.00 2.78 98.25 5.00

y2a Copy Sequence 77.78 15.38 5.41 93.53 8.00
Tunnel Square 79.51 14.29 2.70 96.43 4.55
Tunnel Word 72.33 11.54 8.11 86.39 9.52
Quasi-SVM 82.59 100.00 2.78 100.00 5.41

Baseline 81.01 0.00 0.00 100.00 0.00
Copy Square 78.95 11.11 2.70 95.35 4.35

y2b Copy Sequence 81.82 42.86 8.11 97.67 13.64
Tunnel Square 81.63 33.33 2.86 98.76 5.26
Tunnel Word 73.63 18.18 11.76 87.84 14.29
Quasi-SVM 81.56 100.00 2.94 100.00 5.71

Baseline 81.64 0.00 0.00 100.00 0.00
Copy Square 78.10 33.33 21.05 90.70 25.81

y3a Copy Sequence 76.19 25.00 15.79 89.53 19.35
Tunnel Square 76.81 25.00 13.16 91.12 17.24
Tunnel Word 80.48 20.00 2.63 97.67 4.65
Quasi-SVM 82.61 66.67 10.53 98.82 18.18

Baseline 81.64 0.00 0.00 100.00 0.00
Copy Square 76.19 16.67 7.90 91.28 10.71

y3b Copy Sequence 78.10 10.00 2.63 94.77 4.17
Tunnel Square 75.85 7.14 2.63 92.31 3.85
Tunnel Word 74.29 13.64 7.90 88.95 10.00
Quasi-SVM 81.64 0.00 0.00 100.00 0.00

For time-point y1, in Table 1, it is possible to notice that the Quasi-SVM classifier
performs better in all metrics than the Baseline and, in general, can be considered the best
model. Accuracy, Precision, and Specificity are much higher than the other threshold-based
classifiers, while Recall and F1-score are slightly lower than the highest value, but the
difference is very tiny. Precision and Specificity are both 100% with an overall Accuracy of
84.62%. The Copy Square-based classifier performs slightly better than the Quasi-SVM in
terms of Recall and F1, but this result is counterbalanced by an increase in the false positive
rate, which drops Precision to 18.75% and at the same time reduces Accuracy to 78.22%,
which is clearly below the Baseline. The fact that the Quasi-SVM classifier is the best can be
seen even better from Table 2: all weighted average metrics are much higher than both the
Baseline and the single-game classifiers.

For time-point y2a, Table 2 shows that the Quasi-SVM classifier is the best among the
other classifiers regardless of the considered metric. Accuracy is equal to 82.59%, Precision
to 100% and, consequently, Specificity to 100% (Table 1). As far as Recall and F1-score are
concerned, these are higher in the Tunnel Word-based classifier which, however, having a
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very low Precision and slightly lower Accuracy and Specificity, can be considered overall
worse than the Quasi-SVM classifier.

Table 2. The weighted average metrics calculated on the respective test sets used to compare the
classifiers realized for each time-point. Values in bold represent the best results, underlined values
the second best.

Data Model Precision (WAvg) Recall (WAvg) F1-Score (WAvg)

Baseline 69.87 83.59 76.12
Copy Square 72.46 78.22 74.85

y1 Copy Sequence 69.91 78.39 73.57
Tunnel Square 67.98 79.31 73.21
Tunnel Word 71.10 80.40 74.69
Quasi-SVM 87.01 84.62 78.48

Baseline 67.39 82.09 74.02
Copy Square 72.71 81.64 75.08

y2a Copy Sequence 70.06 77.78 73.18
Tunnel Square 69.63 79.51 73.37
Tunnel Word 68.62 72.33 70.35
Quasi-SVM 85.63 82.59 75.19

Baseline 65.62 81.01 72.51
Copy Square 69.45 78.95 73.33

y2b Copy Sequence 76.03 81.82 76.35
Tunnel Square 73.62 81.63 74.73
Tunnel Word 69.47 73.63 71.31
Quasi-SVM 84.98 81.56 73.81

Baseline 66.65 81.64 73.39
Copy Square 74.73 78.10 76.05

y3a Copy Sequence 72.34 76.19 73.97
Tunnel Square 71.82 76.81 73.80
Tunnel Word 70.74 80.48 73.84
Quasi-SVM 80.07 82.61 77.04

Baseline 66.65 81.64 73.39
Copy Square 69.99 76.19 72.59

y3b Copy Sequence 68.56 78.10 72.53
Tunnel Square 67.30 75.85 71.07
Tunnel Word 69.12 74.29 71.43
Quasi-SVM 66.65 81.64 73.39

For time-point y2b, the Copy Sequence-based model achieves the best weighted av-
erages of Recall and F1-score (Table 2), but the slight improvement with respect to the
Quasi-SVM model cannot compensate the loss in weighted Precision. From Table 1, the
meta-model continues to have a perfect Precision, much higher than other models. Fur-
thermore, despite the Copy Sequence Classifier achieves higher Accuracy, the difference is
negligible, since it is in the first decimal digit. The same applies to the other competitors,
e.g., the Tunnel Word-based classifier, which detects more children “at-risk” and there-
fore has higher F1-score and Recall than the Quasi-SVM model, but these values are not
sufficient when considering the substantial loss in Accuracy and Precision. However, it
is interesting to note that the acquisitions made during time-point y2b succeed in being
exploited positively by most of the proposed models with respect to the Baseline, as in the
case of the Copy Sequence-based classifier, which even on its own produced good results.

For time-point y3a, in Table 1, it is possible to see that the Recall of Quasi-SVM
increases slightly compared to the other measurements at the expense of Precision, which
for the first time reaches the nonetheless competitive value of 66.67%. Specificity also
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decreases albeit slightly, reaching 98.82%. Here, the Copy Square-based model gets the
best Recall and F1-score while the best Accuracy is still obtained by the Quasi-SVM model.
Looking also at the weighted averages (Table 2), the meta-model is still the best choice.

Finally, for time-point y3b, the Quasi-SVM classifier collapses and behaves in the same
way as the Baseline by predicting all children in the Test set as “not-at-risk” (Tables 1 and 2).
It is therefore necessary to look for an alternative, but although the Copy Square-based
classifier gets the best scores for Accuracy, Recall, and F1-score, the actual values are not
comparable with those obtained from the meta-models implemented for the previous
time-points. This is confirmed also by the lower weighted averages of Recall and F1-score
compared to the Baseline model.

Longitudinal Analysis

From now on, the analysis of the results proceeds by considering only the Quasi-
SVM model for all the time-points, since it has been consistently better on average than
Baseline and the other single-game-based classifiers. In general, the meta-model achieves
similar performances in the five measurements except for the last one. It is possible to
visualize the phenomenon described in Figure 10, where a picture of the evolution of the
weighted averages of the metrics over time is shown, comparing the Baseline model and
the Quasi-SVM.

Figure 10. A summary of the weighted averages of the main metrics considered to compare the
models presented. For each time-point, the Quasi-SVM meta-model is compared with the Baseline.

The rational explanation behind why the meta-model obtains the best scores in the first
measurement, i.e., the one most temporally distant from the collection of labels by BVSCO-2
Tests, is to be found in the temporal variation in the average level of children’s cognitive
and motor skills. In our opinion, it is indeed very likely that the discrepancies between
drawing skills and writing skills may have changed at different rates, and that this results
in Play-Draw-Write game executions with patterns more similar to those captured by the
BVSCO-2 Test precisely during the last year of kindergarten. Another reason identified lies
in the fact that as children approach the second year of elementary school, the apparent
differences between them in passing the proposed serious games are smaller, resulting
in a more complex classification problem. In addition to its performance, it is for these
reasons that the Quasi-SVM was chosen as the final dysgraphia classifier to be proposed
from February of the last year of nursery school, i.e., starting well over 2 years earlier than
current diagnosis protocols.

Figure 11 shows the BVSCO-2 z-score obtained from the children participating in the
study. The dotted line indicates the classification threshold of the test, while the colored
dots are the children classified as “at-risk” by the classifier. It can be seen that the children
identified over time by the Quasi-SVM model are different at each time point, except for a
single child who is identified at two different time-points, namely y1 and y3a. With the
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exception of precisely time-point y3a, for which the model has found an optimal class
separation hyperplane that however predicts the presence of false positives, all other
models manage to identify at least one child as correctly “at-risk” with the highest possible
Accuracy. This turns out to be an advantage for two reasons: on the one hand, the moment
the algorithm presents a report of dysgraphia during the last year of kindergarten and
the first year of primary school, it can be given full confidence. On the other hand, the
children identified as dysgraphic are not those with the worst z-scores, which would be
easily detected by a teacher or clinician, but those closer to the threshold and probably with
characteristics less distinguishable from the “non-at-risk” population. Therefore, thanks to
the developed model, Play-Draw-Write detects children whose difficulty is not so evident
yet, but that will emerge over time.

Figure 11. Scatterplot of the z-score of the BVSCO-2 test obtained by the children participating in
the study. The colored dots, below the threshold, represent the subjects predicted as “at-risk” by the
Quasi-SVM classifier.

5. Discussion

The awareness that Dysgraphia is a very complex phenomenon is increasing [4], as
well as the awareness that its classical diagnosis has several weaknesses. The latter, in
fact, is delayed since it is based on the assessment of the speed and quality of the final
handwritten text, when handwriting is mastered: it thus relies on a subjective evaluation
of the final product. Moreover, it can also be further delayed by an often expensive and
difficult to be reached professional consultation [10].

With this in mind, this work focused on the possibility of digitizing the early screen-
ing of dysgraphia by exploiting the iPad application Play-Draw-Write. Thanks to the
acquisitions carried out, the reduction of their dimensionality by means of deep learning
techniques, the realization of classification models based on Procrustes Analysis and the
ensemble technique used to realize the final meta-models, it was possible to confirm that
symbol drawing allows for the objective assessment of handwriting development. Symbol
drawing has the advantage of being able to be carried out by people from any country in
the world, thus enabling the identification of potential weaknesses in handwriting through
an accessible and inexpensive technological support.

The one presented turns out to be an innovative approach in the literature and is
evaluated over a wide time range precisely to identify the best moment to detect any delays
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in handwriting learning and intervene even before the consequences of such difficulty
become apparent. From the encouraging results, there is evidence that such a preventive
analysis is not only valid, but also finds its maximum effectiveness precisely in the instant
of time most distant from that commonly chosen to assess children’s handwriting skills.
It is also interesting to underline that the task, which is highly nonlinear, manages to be
accomplished successfully and with performances that are far from obvious despite the
scarcity of available data. Indeed, we are convinced that each model associated with the
individual serious game as well as each meta-model can benefit in terms of performance
and generalization from a larger number of children involved in data acquisition.

Regarding the performance obtained by the Quasi-SVM classifiers, it was deliberately
preferred to opt for models that would penalize the Recall metric over Precision. Indeed,
the goal was not to make a tool that would replace the role of a clinician rather than a
teacher, but instead to support their work with a tool that would identify the “at-risk” class
as accurately as possible. In this way, in addition to having a tool for confirming diagnoses
with a zero false-positive rate, it is possible to identify precisely those individuals whose
delays in learning to write turn out to be less obvious, ideally prioritizing them for a more
extensive clinical analysis.

Thanks to the repeated use of the Play-Draw-Write application over time, it was
possible to observe how the features extracted from the proposed exercises became less
informative as the months passed and the children’s writing skills improved. This suggests
that a possible future development could concern the acquisition of data at a time even
before the last year of kindergarten, when the children’s ability to solve the drawing
exercises also shows substantial differences. We argue that the use of the Play-Draw-Write
application coupled with the proposed classification protocol may therefore be a successful
tool in a pre-clinical setting, such as school or home, increasing the accessibility of early
detection of handwriting difficulties. It is also important to emphasize the accessibility
of such a tool as well as its acceptability by the children, who, being comfortable in
a familiar environment and using a tool as familiar to them as the tablet, expressed a
perceptible enjoyment.

Future developments of this work could focus on adding variables calculated from
the raw signals, such as distance to a fixed point or instantaneous speed. Another option is
to realize the autoencoder based on Time2Vec in a multivariate manner, thus considering
information from the entire set of variables, and perhaps also to consider the linear (non-
periodic) term of Time2Vec. Finally, other strategies can be developed to select landmarks on
periodic signals, e.g., considering other references instead of the distance to the x-axis. With
this work, we hope to have laid the roots for the emergence of a useful dysgraphia support
for children, to help them build a better foundation for their learning and, consequently,
for their entire lives.
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