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Abstract: Due to a vast influx in the secretory phase of the menstrual cycle, leukocytes represent
40-50% of the decidua at the time of implantation. Their importance for the implantation, main-
tenance of pregnancy, and parturition are known yet not fully understood. Thus, in idiopathic
infertility, decidual immune-related factors are speculated to be the cause. In this review, the immune
cell functions in the decidua were summarized, and clinical diagnostics, as well as interventions,
were discussed. There is a rising number of commercially available diagnostic tools. However, the
intervention options are still limited and/or poorly studied. In order for us to make big steps towards
the proper use of reproductive immunology findings, we need to understand the mechanisms and
especially support translational research.
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1. Introduction

For a successful pregnancy free of complications, maternal immune factors, includ-
ing cells and soluble factors, must be precisely balanced [1]. On the one hand, the semi-
allogeneic fetus expressing both maternal and paternal antigens must be tolerated.
On the other hand, tissue remodeling is constantly accompanied by both destructive
(type 1 inflammation) and constructive (type 2 inflammation) immune mechanisms
(see Figure 1). Thus, implantation requires inflammatory actions, while protection against
foreign antigens and pathogens must not be impaired at the fetomaternal interface [2].

Active tolerance mechanisms mediate the prevention of rejection of the sperm and,
later, also of the conceptus. In contrast to passive tolerance due to a lack of immune
mechanisms, active tolerance is involved in pregnancy [3]. The maternal immune milieu
is characterized by immunomodulatory and anti-inflammatory factors, e.g., interleukin
(IL)-4, IL-10, transforming growth factor (TGF)-f3, leukemia inhibitory factor (LIF) and
human chorionic gonadotropin (hCG). Their secretion occurs by the cells of the repro-
ductive tract, embryonal cells, as well as by immune cells themselves. Interestingly, the
reproductive, immune cells are adapted to their reproductive tasks and are, therefore,
distinct from their peripheral pendants. They recognize foreign antigens but induce active
tolerogenic responses and, thereby, induce the development of regulatory T helper cells
and B cells [3-5].

Decidualization of the endometrium includes all processes that prepare the tissue
for the implantation of blastocysts during the menstrual cycle [6]. The endometrium is
composed of epithelial and stromal cells as well as secretory cells that form the glands.
Furthermore, the endometrium is permeated by numerous vessels and has a strong blood
supply. In relation to the ovarian cycle, decidualization begins after ovulation, when
both hormones, progesterone and estradiol, increase. By that, specific processes are initi-
ated [7]. Endometrial stroma cells differentiate into decidual stroma cells. In response to
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the hormones, decidual cells proliferate, and a receptive microenvironment is formed [6,8].
During decidualization, stromal cells secrete the Insulin-like growth factor binding protein
(IGFBP)-1 and prolactin. These factors are also used as markers for decidualization in vitro.
IGFBP-1 controls growth and development—especially under hypoxic conditions [9], as
found in early pregnancy. Moreover, due to the decidual transition of the stroma cells, they
secrete increasing amounts of IL-15 [10].
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Figure 1. Schematic immune changes during decidualization and early pregnancy. During the
menstrual cycle, the decidualization starts in the second half of the secretory. Exposure to semen
and seminal plasma activates both inflammatory as well as anti-inflammatory mechanisms. Anti-
inflammatory cells and factors (green) contribute to the tolerance towards semen and the fetus. This
includes tolerogenic macrophages (M2c), regulatory T cells (Treg), interleukin (IL)-10, transforming
growth factor (TGF)-3, and human leukocyte antigen (HLA)-G. Type 1 inflammatory processes (red)
support mild tissue destruction, which is necessary for tissue remodeling during implantation and
placentation. This includes T helper cells (Th)1, inflammatory macrophages (M1), and several factors,
such as IL-1p, -6, -8, tumor necrosis factor (TNF)-«, granulocyte-macrophage colony-stimulating
factor (GM-CSF) and the chemokines CCL5, CXCL10, -16. Together with rather type 2 inflammatory
effects (yellow), tissue remodeling and angiogenesis are induced. This is mediated by “wound
healing”-like macrophages (M2a/d), Th2, and factors such as IL-4, -17, -22, and human chorionic
gonadotropin (hCG). In the decidual environment, otherwise, cytotoxic cells, such as natural killer
(NK) cells and cytotoxic T lymphocytes (CTL), are less cytotoxic and rather secrete angiogenic factors.
Moreover, cells such as innate lymphoid cells type 3 (ILC3) support both a microenvironment that
favors tissue remodeling as well as mediating tolerance. All three immunological branches need to
be tightly controlled in order to support the optimal development of early pregnancy. A shift towards
tolerance or away from inflammation can cause shallow placentation and an insufficient remodeling
of spiral arteries. A shift away from tolerance towards inflammation can cause the rejection of the
conceptus. After completion of placentation, the immune balance shifts towards tolerance in order to
maintain the pregnancy. Decidual tissue remodeling and, thus, inflammatory processes are barely
needed anymore until the induction of labor.

The process of decidualization and implantation parallels the initiation and pro-
gression of benign and malignant neoplasms. While cancer cells transform from ep-
ithelial to mesenchymal cells, the reverse takes place during decidualization. Endome-
trial fibroblastic stromal cells undergo mesenchymal-to-epithelial transformation [11],
becoming epithelial-like cells. Similar to cancer cells, these exhibit high proliferative,
anti-apoptotic capacities [12,13]. These processes are hormonally driven to varying ex-
tents [13-15]. Signaling cascades are also shared, including key regulators of cell growth
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(mitogen-activated protein (MAP) kinases, neurogenic locus notch homolog protein 1
(Notch-1), and Dickkopf-related protein 1 (Dkk1) [16-20]), cell motility (Notch 1 and
homeobox protein A10 (HOXA10) [12,15,21,22]) and the interaction between the immune
system. Similarly, to immune cells in the decidua, angiogenetic and invasive processes
can be supported by immune cells in the tumor microenvironment. Both tumor and tro-
phoblastic cells express immune inhibitory ligands, including B7 family molecules such
as programmed cell death ligand (PD-L) 1, PD-L2, CD80, and CD86 [23,24], and T cell
immunoglobulin and mucin-domain containing-3 ligand (TIM-3L) [25]. Similar to the
immune cells, such as macrophages and NK cells, which support trophoblast invasion,
the presence of tumor-associated macrophages (TAMs) is associated with tumor progres-
sion and metastasis [26,27]. In contrast, the presence of NK cells per se is no marker of
tumor progression unless the phenotype is considered. Whereas cytotoxic NK cells show
anti-tumoral effects, low-cytotoxic NK cells rather support tumor progress [25]. Moreover,
higher prolactin levels, as found during decidualization, are also observed in several tumor
types, especially in breast cancer [28].

The stromal cell reprogramming includes the downregulation of inflammatory
capacity [29]. Moreover, immune cells are recruited to the decidualized tissue progres-
sively, which participates in the functionalization of the decidua. On the one hand, immune
cells are ultimately instrumental in implantation [6,30,31]. Natural killer (NK) cells and
macrophages are found in close proximity to implanting trophoblast cells and support
invading processes [32] accompanied by rather inflammatory factors. On the other hand,
the semi-allogenic fetus must be tolerated. Several tolerance mechanisms take part in
this process. The prerequisite for this is the general shift of the local immune micro mi-
lieu toward tolerance, which is accomplished by various factors. Decidual leukocytes
are affected by seminal plasma if exposed to it, which contains several immunomodulat-
ing factors (e.g., TGF-f3, soluble human leukocyte antigen (HLA)-G). Although foreign
antigens of the semen lead to the activation of immune responses, these factors shift the
leukocytes towards tolerogenic behavior. In humans, decidualization starts independently
of conception in every menstrual cycle. After conception, decidualization continues and
is additionally affected by the secreted factors of the embryo. Trophoblastic cells secrete
TGF-$ and especially hCG, which further affect the decidua and leukocytes. Moreover, in
the first trimester before placental perfusion, vascularization and plugging of the maternal
arteries prevents blood flow to the placental intervillous space. This creates and maintains
a hypoxic environment [33]. Hypoxia also affects the decidual leukocytes by the stabiliza-
tion of the transcription factor HIF (hypoxia-inducible factor). HIF regulates over 70 targets
directly and, thereby, promotes angiogenic as well as tolerogenic milieu [34].

Due to the vast recruitment, the early decidua contains approximately 30-40% leuko-
cytes, of which NK cells represent the largest subpopulation at 70%. The second most
abundant leukocytic cell type is macrophages (20%) [35,36]. Other decidual immune cells
include T cells, B cells, dendritic cells, and other innate lymphoid cells [35,37,38]. Immune
cells support the processes of decidualization, implantation, and placentation.

The aim of this review is to provide an overview of the importance of the immune
balance, which does not only include pro- and anti-inflammation but type 1 inflammation,
type 2 inflammation (often named as anti-inflammatory because of its inhibitory actions on
type 1 inflammation) and the tolerogenic mechanisms. It also provides a summary of the
idea behind diagnostic efforts and their limitations, as well as the need for improvement
concerning therapeutical options and especially the definition of suitable guidelines.

2. Decidual Innate Lymphoid Cells

The most abundant leukocytes in the decidua are NK cells (50-70%), which makes
the uterus the organ with the highest frequency of NK cells in the body [33]. Interestingly,
uterine NK cells differ vastly from blood NK cells. In the periphery, NK cells live up to their
name as cytotoxic defenders—especially against infected and tumor cells. In contrast to
peripheral blood NK cells, uterine NK cells do barely act cytotoxic but produce cytokines,
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growth factors, and chemokines during decidualization, receptivity, and implantation [38]
(see Figure 2). Their metabolism and protein profile are unique when compared to pe-
ripheral NK cells [39]. Several factors contribute to the decidual phenotype of NK cells,
including IL-15, TGF-f [40], and hypoxia [41].
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Figure 2. Comparison of peripheral vs. decidual leukocyte tasks. During decidualization, immune
cells are recruited to the decidua and locally adjusted towards rather tolerogenic and implantation-
supporting functions. Since they belong to the group of innate lymphoid cells (ILCs), NK cells are
the most abundant cells in the decidua. The second most abundant cells are macrophages. Due to
their vast secretory capacity, all the shown cells are not only adjusted by the decidual environment
but also participate in the creation of an implantation-supporting milieu as well. Frequencies in the
periphery and in the decidua in early pregnancy and phenotypic characteristics are shown.

Blood NK cells are activated through the Fc receptor CD16/FcyRllla to initiate
antibody-dependent cell-mediated cytotoxicity (ADCC), which is not expressed in the
uterine subset (CD16-CD56M). Moreover, NK cells detect target cells with downregulated
major histocompatibility complex (MHC)I escaping the recognition by cytotoxic T cells
(referred to as “missing self”). Thereby, the cytotoxic behavior of NK cells is inhibited by
MHCI. This mechanism plays a pivotal role in fertility. To maintain the decidual phenotype
of NK cells, fetal extravillous cells express HLA-G and -E isoforms [42], which are less
polymorphic, well-conserved, non-classical MHCI molecules. These pregnancy-related im-
munomodulators induce inhibitory decidual NK cell signaling and suppress the anti-fetal
immune response [42,43]. In addition, HLA-G stimulates decidual NK cells to secrete vari-
ous factors, such as vascular endothelial growth factor (VEGF), IL-6, and IL-8 [44,45]. These
cytokines promote invasion and angiogenesis and are, therefore, central to decidualization
and, eventually, placentation [46,47]. This makes NK cells essential in the remodeling of
spiral arteries, which is necessary for proper placentation [48]. Moreover, decidual NK
cells produce both pro- and anti-inflammatory cytokines, including interferon (IFN)-y and
tumor necrosis factor (TNF)-« as well as TGF-f and IL-10 [33,49], contributing to the local
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immune balance. Chemokines produced by decidual NK cells involving CCL5, CXCL10,
and CXCLS8 (IL-8) comply with several tasks. On the one hand, leukocytes are recruited
to the decidua. On the other hand, NK cells guide the trophoblast during implantation in
terms of the right direction and invasion depth into the decidua [50-52]. Therefore, NK
cells are located in close proximity to trophoblast cells [32].

NK cells belong to the group of innate lymphoid cells (ILC). Recently, the involvement
of the other ILC subtypes in processes at the fetomaternal interface (<1%; [53]) has been
described [53,54]. ILCs correspond to T cells in terms of cytokine secretion but do not
express T cell receptors (lin-CD127* [55]; NK cells—cytotoxic T cells, ILC1-T helper (Th)1,
ILC2-Th2, ILC3-Th17). However, the function and occurrence of the ILC 1-3 subtypes
during pregnancy are largely unclear [53,56,57]. ILC3 has been the most studied and is
the second most abundant ILC subtype in the decidua after NK cells. They produce the
cytokines IL-8, IL-17, IL-22, and granulocyte-macrophage colony-stimulating factor (GM-
CSF, CSE2), which also play important roles in pregnancy [58,59]. IL-8 and IL-17 support
trophoblast invasion [60]. Low IL-22 and GM-CSF levels can be correlated with recurrent
pregnancy loss [61-64]. Because ILC3 also promotes tolerance to intestinal commensals,
similar tolerance-stimulating properties are also thought to occur during the stages of
pregnancy. Although ILC3 can express MHCI], it is specifically downregulated in the
uterus of mice and in the human decidua at term. TGF-f3, hCG, and hypoxic conditions,
which are major regulators in decidualization and early pregnancy, cause a downregulation
of MHCII, which might contribute to fetal tolerance [55,65].

3. Decidual Macrophages

Since macrophages are key cells in tissue remodeling in both destructing and con-
structing processes, they are vital leukocytes due to the course of the menstrual cycle. In
the decidua, macrophages form the second most abundant leukocyte population after NK
cells (20%) [66]. Macrophages are phagocytes keeping homeostasis, can mediate antigen
presentation, and participate in creating the immune milieu by cytokine production [67,68]
(see Figure 2). During pregnancy, different macrophage subtypes accomplish the diverse
tasks in the decidua [69,70]. However, the predominant differentiation stage of the decidual
macrophages varies depending on the gestational age [71]. The beginning of gestation is
more characterized by inflammatory mechanisms in the context of invasion and tissue rear-
rangement. At the time of implantation, macrophages resemble mainly pro-inflammatory
M1 macrophages [72], which soon develop into tissue-remodeling M2a macrophages. Dur-
ing placentation, macrophages are located in the stroma near the invading trophoblasts
and spiral arteries [32,73]. There, they support trophoblast invasion and spiral artery
remodeling [74] by the secretion and regulation of the activity of matrix metalloproteinases
(MMPs) [75]. These MMPs mediate the breakdown of the extracellular matrix, loosening the
tissue integrity in order to rearrange it. Similar to decidual NK cells, HLA-G from extravil-
lous trophoblasts induces macrophages to produce IL-6 and IL-8 in the first trimester [45].
By that, macrophages support angiogenesis and trophoblast invasion [76,77]. In addition,
decidual macrophages secrete chemotactic molecules, cytokines, and growth factors to
support placentation [78]. Furthermore, clearance of apoptotic degradation bodies by
macrophages occurs [79-82].

After the implantation and placentation phase, immune cells mainly mediate fetal toler-
ance. This prevents fetal rejection. Trophoblastic cells secrete TGF-3, CXCL16, PD-L1, IL-10,
and macrophage colony-stimulating factor (M-CSFE, CSF1) for macrophage stimula-
tion [81-84]. These factors differentiate the macrophages into an M2c-like phenotype. M2c
macrophages secrete anti-inflammatory cytokines, including IL-10 and TGF-f3, contributing
to a tolerogenic milieu [71,85]. Due to the large number of macrophages at the fetomaternal
interface but the low number of dendritic cells, macrophages are the predominant antigen-
presenting cells at this site [86]. However, decidual macrophages have an altered antigen
presentation potential and are more likely to mediate active tolerance [87].
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The onset of contractions marks the end of pregnancy. Now the immunological
milieu of the endometrium is modulated toward inflammatory processes [88]. Accordingly,
macrophages differentiate back to the M1 phenotype and support inflammatory processes
by secreting IL-6 and decreasing IL-10 and TGEF-p levels [80,89].

4. Other Leukocytes in the Decidua

Dendritic cells (DC) represent appr. 2% of the decidual leukocytes [90]. Defense
against infection is the main task for DC in non-pregnant women. Although present in
a relatively low abundance, they interact with T cells, NK cells, and macrophages and
thus regulate the more abundant cells at the fetomaternal interface. Thereby, DC supports
the decidualization and implantation process [91]. Most significantly, during activation
of T cells, DC determines the subtype, of which the balance is important for pregnancy
success. DC is influenced by hormones, such as progesterone and estrogen, as well as hCG.
hCG drives DC-mediated regulatory T cell (Treg) differentiation, whereas progesterone
and estradiol rather support DC-mediated Th2 differentiation.

T lymphocytes are as well present at the fetomaternal interface [52]. In the CD4* Th
subset, Th1 lymphocytes can be detrimental to fetal tolerance when activated. In contrast,
Tregs help to create a tolerogenic environment, and Th2 cells support the remodeling
processes. The largest fraction of decidual T cells is CD8* T lymphocytes [92]. These
cytotoxic T cells have to be tightly controlled to not disturb fetal tolerance. Similar to
their innate lymphoid cell pendants (NK cells), the decidual cytotoxic T cells differ from
peripheral CD8* T cells. They interact with inhibitory molecules such as HLA-C expressed
by trophoblast cells and express significantly enhanced co-inhibitory molecules such as
inhibitory killer cell immunoglobulin-like receptor (KIR), Tim-3 and cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) compared to peripheral CD8* T lymphocytes supporting
fetal tolerance [92,93].

Along with the other leukocytes, B cells are present in the decidua as well. They
participate in the defense against infection but also support fetal tolerance. A subset of
regulatory B cells (Bregs) secret anti-inflammatory cytokines supporting the tolerogenic
niche. Moreover, B cells are able to express protective antibodies against paternal antigens
to prevent rejection [94]. Antibody-producing B cells are also referred to as plasma cells.

Dendritic cells are also present in the human decidua an represent 1.7% of the
leukocytes [90]. They show an immature phenotype [90,95]. In vitro, decidual dendritic
cells mediate tolerance towards T cells [95] by secreting anti-inflammatory factors such as
IL-10 under the influence of decidualized stromal cells [96].

5. Immune Implications in Adverse Pregnancy Outcomes

Inadequate decidualization can cause subfertility, infertility, and adverse pregnancy
outcomes. The decidua creates a receptive environment which is needed for the attachment
of the blastocyst, the invasion of trophoblast cells, and the placentation. Thereby, different
immune types cooperate, including tolerance as well es tissue remodeling which integrates
destructive (type 1 inflammation) and regenerative (type 2 inflammation) mechanisms,
which have to be timely coordinated (see Figure 1).

Recurrent implantation failure (RIF) or recurrent pregnancy loss (RPL) can be caused
by a disbalance towards type 1 inflammation due to either an increase in type 1 cytokines
(i.e., TNF«x or IFNYy), inflammatory cells (i.e. Thl) or cytotoxic activity by NK cells or
a decrease in tolerogenic (i.e. Tregs, M2c macrophages, IL-10, TGEF-$3) or type 2 inflammatory
mechanisms (i.e. Th2, M2a macrophages, IL-4, IL-13). Reasons for this imbalance can
be manifold, including systemic immune alterations, genetic constitution, inflammatory
effectors including immune disorders, stress, diet, physical exercises, and obesity, or altered
activators including paternal factors, HLA matching, genetics of the embryo, and more. On
a cellular basis, not only local immune cells but also trophoblast cells, as well as decidual
epithelial and stromal cells, affect the balance by activating and inhibiting soluble and
cell-to-cell-contact-mediated factors and receptors [24,42,51,52,97-100].
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Detailed insight has already been provided by several reviews (i.e. in [101-105]).

6. Clinical Significance in Reproductive Medicine

The process of decidualization includes the proliferation and priming of endometrial
stroma cells. This includes tissue remodeling and angiogenesis. The influx of leukocytes
supports this structural adaption as well as the establishment of a receptive, tolerogenic
milieu. General interventions to improve decidualization success are limited (see Table 1)
but developing. The further sections aim to provide an overview of diagnostical and
therapeutical tools targeting the immune balance during the decidualization process.

6.1. Targeting Regeneration
6.1.1. Endometrial Scratching

Endometrial scratching causes a local injury that is aimed at activating the wound
healing processes, which share mechanisms with decidualization [106]. However, the
studies came to inconsistent conclusions. Several studies show an enhanced implantation
rate after scratching [107-138], while there are also several studies that could not or barely
show significant differences due to scratching [139-164]. Some of these studies even
recorded a negative effect or considerable pain for the patient, clearly delivering arguments
against endometrial scratching. As the enthusiasm conducting endometrial scratching is
declining, the debate concerning the effect of endometrial scratching is still ongoing, where
many factors play a potentially decisive role.

The timing of scratching throughout the cycle and the timing of the subsequent
embryo transfer might be detrimental. Only a few studies addressed this in detail. A study
showed better results when endometrial scratching was conducted in the luteal phase
of the previous cycle compared to the follicular phase in the same cycle of the embryo
transfer [110]. It was shown that endometrial scratching has a timely limited effect but is
not restricted to the actual cycle. Until around 90 days after intervention, an improving
effect was observed [111]. However, in a study where scratching in the proliferative (65.6%),
periovulatory (69.6%), or secretory (64.3%) phases were compared, no significant differences
due to the timing were seen [165]. Moreover, the form and force of the intervention
might also affect the outcome. Peeling instead of scratching was shown to improve the
pregnancy rate [112]. The aim of scratching is not to cause a vast injury but activate wound
healing mechanisms due to a limited injury. Similar approaches are also used in other
disciplines. In dermatology, microneedling is used to cause minimal physical trauma,
which then activates regeneration due to the release of growth factors and stimulation of
stem cells [166]. Whether similar mechanisms are also active in endometrial scratching
remains to be elucidated. Nonetheless, molecular studies repeatedly showed an elevation
of the expression of receptivity genes after scratching.

In several studies, endometrial scratching induced an elevation of pro- receptivity
factors LIF [167], the homeobox proteins HOXA10 and HOXA11, as well as the cytokines
IL-6, IL-8, IL-12, IL-13, IFN-y and monocyte chemotactic protein-(MCP-) 1 [116] as well as
pro-angiogenic factors HIF, VEGF and the actual microvessel density [140].

These factors mediate and support receptivity and implantation. However, in patients
with RIF LIF [168], HOXA-10 [169], HOXA-11 [170], HIF and the microvessel density [140]
are significantly decreased. Restoration of these factors due to endometrial scratching
might support implantation and placentation. On a molecular level, endometrial scratching
builds a receptive microenvironment. The success of this intervention might, however,
be dependent on additional factors. Scratching might support decidualization when
there is a temporal or environmental reason, but not genetically or chronically altered
decidualization. The identification of a suitable patient group could support the success of
endometrial scratching.

For a more detailed insight, many reviews and meta-analytic publications were pub-
lished concerning this topic, which seems to be declining but is still under a heated debate
(reviewed i.a. in [171-178]).
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6.1.2. Platelet-Rich Plasma

The infusion with autologous platelet-rich plasma (PRP) is thought to support regen-
eration processes to improve thin endometrial lining found in patients with RIF [179]. PRP
is found to be rich in growth factors, cytokines, and antibacterial peptides—especially after
the activation of the platelets. This includes the tolerance-mediating TGF-f3, pro-angiogenic
VEGEF, other growth factors such as platelet-derived growth factors PDGE, fibroblast growth
factor FGF, insulin-like growth factor IGF1, IGF2 and epidermal growth factor EGEF, inflam-
matory cytokines IL-8 and regenerative cytokines IL-4, IL-13 and IL-17 [180-182].

Thus, it locally facilitates regenerative mechanisms and benefits the whole decidual-
ization process. In patients with thin endometrial lining, RIF, and recurrent miscarriage,
the intrauterine infusion improves pregnancy rates and success effectively (reviewed i.a.
in [183-188]). Comparing intrauterine infusion of hCG, G-CSF, PBMCs, or PRP, the infusion
of PRP showed the most effective results in patients with RIF [189].

Activated PRP by thrombin and calcium chloride improves the in vitro behavior,
including migration, invasion, and proliferation of endometrial cells [190]. Primary en-
dometrial cells and cell lines show an increased expression of proteases, cytokines including
IL-1e, IL-13, and IL-15, and chemokines including CCL5, CCL7, and CXCL13 after PRP
treatment [190]. These interleukins can activate an immune response. Since IL-15 is impor-
tant for NK cell function, it supports the major decidual leukocyte subset. Proteases are
necessary for tissue remodeling, which is essential in implantation. Chemokines recruit
further leukocytes to the decidua to support its proper function. Moreover, it affects the
hormonal levels supporting implantation success [191].

Although standardization of the method is still lacking, the intrauterine infusion
with PRP is a promising tool supporting the regenerative capacity of the endome-
trial/decidual tissue.

6.2. Targeting Immune Balance

It is speculated that the majority of idiopathic infertility and (recurrent) pregnancy
complications are caused by immunological disturbances. Genetic as well as environmental
influences affect the immune cell’s ability to create the needed tolerogenic niche. There are
diagnostic tools available. However, the therapeutical interventions, which directly target
immune components, are still limited, or their application is not sufficiently tested [192,193].

6.2.1. Diagnostic Tools

Several commercial tests are already available which directly or indirectly capture
immune-related changes. Endometrial biopsies or pipelle samples can be tested for NK
cell, Treg, and plasma cell counts [194,195]. Altered numbers in these immune cells can be
an indication of an immune-related cause of infertility.

Elevated plasma cell (antibody-producing B lymphocytes) counts indicate chronic
endometritis [196]. An altered endometrial microbiome or chronic infections can create
a misregulated inflammatory environment, which impairs fertility. Commercial tests
are available to sequence the microbial colonization of the endometrium. However, the
treatment options are limited to antibiotics combined with pre- and probiotic support
afterward [197]. This might help to establish a healthy microbiome in all body niches,
including the uterus. It is thought that besides the occurrence of healthy or unhealthy
species also, the quantity plays a critical role in the effects of the upper reproductive tract
microbiome [198].

Not only the number but also the function of the immune cells affect the fertility. The
activity of immune cells depends on external factors, involving soluble factors creating the
local immune milieu and cell-to-cell contacts, as well as internal factors, such as the genetic
variants and expression quantity of receptors. Classical MHCI molecules show a broad
polymorphism, of which certain haplotypes were correlated with increased pregnancy
complications. These can be addressed by the characterization of the HLA and KIR or its
receptor KIR genotyping [199]. Certain HLA and their pregnancy-relevant receptor types
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are found to be associated with poor IVF outcomes, including disturbances in implantation,
the formation of the placenta, or the maintenance of the pregnancy [200]. However, the
significance is limited, and further research is necessary.

An altered immune milieu can also be caused by autoimmune responses referred to
as autoimmune-related infertility. In this case, autoantibodies can be tested. This includes
anti-cardiolipin antibodies, lupus anticoagulants, anti-32-glykoprotein-I antibodies, anti-
transglutaminase IgA, and anti-nuclear antibodies, which can be tested [199,201].

A ratio of TNFoc" or IFNY* and IL-10" or IL-4™ T helper cells in the peripheral blood
before treatment correlates with IVF success rate [202-205].

6.2.2. Interventions

Besides the various causes for an enhanced inflammatory/rejecting uterine micromi-
lieu, it can be treated with glucocorticoids, intravenous infusion of phospholipid-stabilized
soybean oil (intralipid), anti-TNF«, immunoglobulins [206], tacrolimus or heparin.

Glucocorticoids

Glucocorticoids are steroid hormones which are implicated in various processes.
Although the level of glucocorticoids released under stress can compromise fertility,
the right dose and timing of glucocorticoid release promote relevant reproductive func-
tions [207]. Glucocorticoids also show immune modulatory effects. In general, gluco-
corticoids are potent immunosuppressors. Specifically in the uterus, NK cells [208] and
macrophages [209,210] express the glucocorticoid receptor. By exposure to glucocorti-
coids, uterine NK cells decrease in their number [211] and show lowered cytotoxicity [212].
Accordingly, prednisolone decreases NK cell cytotoxicity in vitro [213]. Prednisone also
binds TNF« according to in silico analysis inhibiting the inflammatory action of TNFo [214].
These changes create a rather tolerogenic milieu preventing sperm or fetal rejection. Be-
sides the immunological changes, dexamethasone increases the survival and the prolactin
secretion [14] as well as the IFGBP-1 secretion [215] of primary endometrial stroma cells
in vitro.

However, the success of peri-implantation glucocorticoid administration is still under
debate [216]. Although the administration of prednisolone significantly decreases the
pathologically elevated numbers of uterine NK cells in patients with RIF, it must not
improve the pregnancy rates after treatment [217]. Due to the temporal changes in the
immune requirements during decidualization and early pregnancy, the need for general
immune suppression must be carefully considered. However, diagnostic tools revealing
the immune milieu are limited and not standardly used [218]. More research is needed
to develop appropriate guidelines for the administration of glucocorticoids in artificial
reproductive techniques (reviewed i.a. in [219]).

Intralipid

Fatty acids show an immune suppressive effect. Thus, soybean oil, which is the active
component of intralipid, causes an immune suppressive effect. The exact mechanism
of this modulatory capacity is not clearly understood. It inhibits pro-inflammatory Th1l
cells and the cytotoxic activity of NK cells [220,221]. In patients with RIF, the perfusion
with intralipid decreased the endometrial immune activation [222], supporting a rather
tolerogenic milieu. The success of intralipid has been summarized in several reviews
(i-a., [223-229]). However, conflicting studies raise doubts on the effectiveness. In periph-
eral blood, a rather pro-inflammatory shift towards cytotoxic T cells was observed after
intralipid treatment [230]. Other studies did not find an improvement in pregnancy and
birth rates [231]. Further research is suggested in order to investigate the success of the
administration of intralipid [225,232].
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Tumor Necrosis Factor « Inhibition

TNFoa is the major effector cytokine of the inflammatory TH1 immune responses. It
shows a pleiotropic effect on various cell types and is especially involved in autoimmune
responses. Immune as well as non-immune cells express the TNF« receptors and are
affected by this cytokine [233]. Blocking or neutralizing antibodies (Adalimumab, Humira;
Infliximab, Remicade; Certolizumab pegol, Cimzia; Golimumab, Simponi) or fusion pro-
teins (Etanercept, Enbrel) against TNFo or its receptors prevent its inflammatory effector
functions and can support a tolerogenic micromilieu [234].

In patients with RIF, etanercepts improve pregnancy and live birth rate [235].

Especially in subfertile women with elevated TNFa:IL-10 ratios concerning the T helper
cells in peripheral blood [236] or increased peripheral NK cell numbers [237], anti-TNFx
binding therapy decreased the inflammatory parameters and thereby increased the preg-
nancy and live birth rate.

Intravenous Immunoglobulin

The action of intravenous immunoglobulin is a result of a variety of mechanisms.
Polyclonal immunoglobulin G (IgG) substitutes pathologic autoantibodies. It prevents
the activation of antigen-presenting cells and shifts the T cell balance towards regulatory
T helper cells. In sum, it downregulates the production of pro-inflammatory cytokines
and supports a rather tolerogenic or balanced immune milieu [238-240]. Moreover, im-
munoglobulins suppress NK cell cytotoxicity in vitro [213].

The usage of IVIG in RIF and RPL can support fertility [241], especially in patients
with known inflammatory pathologies, including NK cell changes in count or cytotox-
icity [242-245] and Th1:Th2 ratio [240,246] (reviewed in [247-249]). In couples with
recurrent IVF failure and HLA similarity, IVIG might also increase the chances of preg-
nancy [250], suggesting a rather immune-balancing than only tolerance-mediating effect
of IVIG.

Tacrolimus

Tacrolimus is a calcineurin inhibitor, which is used to prevent organ rejection in trans-
plant patients. Calcineurin inhibitors prevent the production of IL-2. IL-2 is a crucial au-
tocrine signal in T cell development and proliferation. Thus, the treatment with tacrolimus
prevents T cell-mediated inflammatory responses and increases anti-inflammatory cy-
tokines [251]. Thus, in RIF patients with elevated Th1:Th2 ratio, tacrolimus improves the
pregnancy and live birth rate [252].

Heparin

In addition to the beneficial effects on the decidualization of stromal cells, increas-
ing the secretion of IGFBP-1 and prolactin [253], heparin also favors a regulatory T cell
response [254], which might support the tolerogenic immune milieu. Heparin shifts the
endometrial cytokines towards and implantation-supporting milieu by increasing the
expression of IL-6 and G-CSF [255]. Moreover, heparin inhibits the activity of the inflam-
matory transcription factor NF-«B in endometrial stroma cells [256]. Thereby, heparin
improves the live birth rate [257] in RIF [258] and RPL [259] patients and decrease in
adverse pregnancy outcomes [260]. There are also reports which did not find any improve-
ments due to heparin [261-264]. This could also indicate that the patients for whom this
treatment is eligible or the intervention itself needs to be defined more precisely.

Granulocyte Colony Stimulating Factor

Granulocyte colony-stimulating factor (G-CSF; CSF3) is injected either subcutaneously
or intrauterine. Locally it might improve endometrial receptivity, implantation processes,
and angiogenesis. Thus, G-CSF can increase the live birth rate in patients undergoing
IVF [265-267]. Although the exact mechanisms remain unclear, it is known that G-CSF is
also produced during implantation. Moreover, in the decidua, the expression of its receptor
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increases pre-ovulatory. G-CSF signaling is involved in proliferation and differentiation and
affects the Th2 cytokines and shifts the T helper cell balance towards regulatory responses.
G-CSF is a strong inhibitor of cytotoxic NK cell function [268], which is necessary for the
uterine receptive milieu. The success of G-CSF in increasing pregnancy rate has been
reviewed in detail (i.a., in [267,269,270]). Although not all studies found an improving
effect of intrauterine perfusion of G-CSF [271-273]. Thus, more research is necessary in
order to define the working administration and patient group.

Intrauterine Injection of hCG

The intrauterine injection of hCG before intrauterine insemination (IUI) or embryo
transfer (ET) can also shift the local balance towards a receptive, tolerogenic environment.
However, several studies showed contradictory results [274]. It is speculated that this
intervention only helps a certain group of patients which needs to be specified in further
studies. The hCG priming of the leukocytes shifts their immune response to a rather
implantation-supporting and tolerogenic phenotype. In patients with RIF, intrauterine
administration of hCG increases the percentage of Tregs while improving the live birth
rate [275]. Another option is to prime autologous peripheral blood mononuclear cells
(PBMCs) with hCG ex vivo and re-inject them into the uterine cavity. This procedure
increases the live birth rate in patients with RIF [276]. Despite the promising results, more
research is needed [276-278].

Seminal Plasma and Paternal Antigens

Independently of fertilization and the fertile window, unprotected sexual intercourse
shifts the local immune balance towards tolerance independently of the fertile window.
The immunoregulatory components of seminal plasma affect the local cells [279,280].

There are more options to target the optimal balance between tolerance and immune
activation against the paternal antigens. The induction of tolerance to paternal antigens
is one factor which explains the correlation of the frequency of sexual intercourse with
the conceiving rate. Similarly, the induction of mucosal tolerogenic immunity might also
explain the increased conceiving rate by the exposure to semen by unprotected oral sex.
As a therapeutic tool, active immunization with partner antigens became is suggested.
Through active immunization with partner lymphocytes, the maternal immune system
is aimed to get familiar and trained with the paternal antigens [281]. The immunological
mechanisms are not clearly understood. It is speculated that the immune reaction against
the paternal antigens is enough activating in terms of the production of anti-paternal
cytotoxic antibodies (APCA). These antibodies, although with cytotoxic potential, are
negatively correlated with recurrent spontaneous abortion (RSA) [282]. Their presence after
the immunization might explain the elevated pregnancy rates. Probably, as no adjuvants
are used, no too inflammatory responses are caused, which would induce rejection and
harm fertility.

At the latest, with this example, it is striking that fertility is based on a fine balance
between pro- and anti-inflammatory events.

Other conditions and interventions often indirectly affect systemic immune functions.
For example, obesity creates a harmful systemic inflammatory milieu, whereas moderate
physical exercise supports optimal systemic immune balance.

Besides these available options, there are barely coherently standardized recommen-
dations regarding immunomodulatory therapies currently.
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Table 1. Overview of immune-targeting interventions to support sufficient decidualization.

Diagnostics Interventions Objectives
Glucocorticoids [219], intrauterine
application of
NK cell count phospholipid-stabilized soybean

Plasma cell count
Treg cell count
Th1:Th2 ratios

[194,195,202-205]

oil [225,232], anti-TNF«x [235-237],
hCG infusion [276-278],
immunoglobulins [247-249],
tacrolimus [252], heparin
[257-259], G-CSF [267,269,270]
Immunization with partner
antigens

Balanced tolerogenic
Micromilieu

Balanced inflammatory
micromilieu

Microbiome
[197]

Antibiotics, Pre- and
Probiotics

Modify colonizers

Recurrent implantation
failure
Thin endometrial lining

Scratching [171-178],
PRP infusion [183-188], G-CSF
[267,269,270]

Wound-healing-like
Decidualization,
Regeneration

7. Summary and Outlook

The invasive implantation to build a hemochorial placenta in humans brings the
fetal tissue in close contact with maternal tissue and immune cells. Instead of passive
immunological ignorance, active tolerance is mediated by about 40-50% of the decidual
cells, which are leukocytes. In order to avoid the rejection of the paternal antigens, these
tolerance mechanisms actively create a tolerogenic niche. Decidual leukocytes, therefore,
differ from their peripheral pendants.

Besides preventing rejection, decidual leukocytes support trophoblast invasion, tissue
remodeling, and angiogenesis in order to build a sufficient placenta. These processes
require locally and temporally limited inflammatory conditions. These are not comparable
to the inflammatory conditions during inflammation which can cause vast destruction and,
in the context of pregnancy, the rejection of the foreign structures, including the onset of
labor resulting in abortions and pre-term labor. Thus, the decidual leukocytes must be
optimal balanced to support pregnancy establishment, development, and maintenance (see
Figure 2).

Although the immune components of the decidua and their relevance for pregnancy
are known, translational routine implementations are lacking or are expandable. Further
research is necessary to examine the actual pathologies, the effects of the interventions, and
which diagnostics are necessary to find the suitable intervention for the individual patients.
We suggest that attention to immunorelevant therapeutical interventions follow the rise of
immunodiagnostics which are already available and find the recognition that it deserves in
order to support the success of reproductive medicine.
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