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Abstract: The challenging alterations in climate in the last decades have had direct and indirect
influences on biotic and abiotic stresses that have led to devastating implications on agricultural
crop production and food security. Extreme environmental conditions, such as abiotic stresses, offer
great opportunities to study the influence of different microorganisms in plant development and
agricultural productivity. The focus of this review is to highlight the mechanisms of plant growth-
promoting microorganisms (especially bacteria and fungi) adapted to environmental induced stresses
such as drought, salinity, heavy metals, flooding, extreme temperatures, and intense light. The present
state of knowledge focuses on the potential, prospective, and biotechnological approaches of plant
growth-promoting bacteria and fungi to improve plant nutrition, physio-biochemical attributes, and
the fitness of plants under environmental stresses. The current review focuses on the importance of the
microbial community in improving sustainable crop production under changing climatic scenarios.
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1. Introduction

The severe impacts of transmutation with intense episodes of extreme weather can
have significant consequences on agricultural outputs that should cause widespread food
insecurity and affect survival of populations [1,2]. The severity, frequency, magnitude,
and duration of extreme climatic events will become more highlighted and noticeable
in the future [3]. The alterations in climate extremes have a direct or indirect influence
on biotic and abiotic stresses with devastating impacts on agricultural crop production
and food security [4]. Biotic stresses comprising phytopathogens and pests [5], as well as
abiotic stresses including drought [6], soil salinity [6,7], heavy metals [8,9], flooding [10],
high irradiance [11], low temperature [12] and high temperature [13], can cause intensified
impacts on plant growth, physiology, metabolism, nutrient acquisition, and ecological
desertification. The diverse effects of abiotic stresses on different mechanisms of plants are
summarized in Figure 1.

In changing climate scenarios, intervention with microbes is considered a new sus-
tainable strategy in agricultural production and mitigation of the resilient impacts of
stresses [14]. The beneficial microbes and endophytes exhibit real-time amplifications to
alleviate the devastating climatic impacts on plant health, physiology and biochemical
aspects [14,15]. These microbial communities have several adaptations to abiotic stresses
under different ecological processes, including facilitation of organic matter decomposition
and nutrient acquisition in the rhizosphere of several plants [16]. Beneficial microbes, in-
cluding plant growth-promoting rhizobacteria (PGPR), may have a controversial influence
or no influence at all on plant growth and fitness under stressful environments, whereas
other strains of PGPR have beneficial effects under climate-induced stressful extremes [17].
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The PGPR engineered for agricultural practices boost plant growth, pathogen control, and
microbial ecosystems by alleviating abiotic resiliencies [18,19].
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Plant growth-promoting rhizobacteria tackle abiotic stresses by boosting several phys-
iological and biochemical processes (nutrient uptake, photosynthesis, and source–sink
relationships), metabolism and the regulation of homeostasis, osmotic potential, protein
function, phytohormone production (indole-3-acetic acid and 1-aminocyclopropane-1-
carboxylic acid deaminase), enzymatic activity, and nutrient solubilization [20–22]. To
combat the punitive impact of abiotic stresses, numerous PGPR strains (including Bradyrhi-
zobium sp. SUTNa-2 [23], Pantoea dispersa IAC-BECa-132, Pseudomonas sp., Enterobacter
sp. [24], Bacillus amyloliquefaciens EPP90, Bacillus subtilis, Bacillus pumilus [25], Curtobac-
terium sp. SAK 1 [26], Burkholderia phytofirmans PsJNT [27], Pseudomonas putida KT2440 [28],
Enterobacter sp. [29], Serratia marcescens, Microbacterium arborescens, Enterobacter sp. [30],
Bacillus cereus PK6-15, Bacillus subtilis PK5-26 and Bacillus circulans PK3-109 [31], Azospiril-
lum lipoferum FK1 [32], and Azospirillum brasilense Sp7 and Azospirillum brasilense Sp245 [33]
have been used to facilitate the management mechanisms of different cereal and legume
crops under stressful environments. Plant growth-promoting rhizobacteria employ various
strategies to endure harsh weather conditions (Table 1).

Table 1. Summary of the positive effects of microbial agents in mitigating unfavorable drought and
salt stress conditions in plants (2012–2020).

Microorganism Stress Plant Species References

Bacteria

Azospirillum brasilense Drought Marandu grass (Urochloa brizantha) [34]
PGPRs strain IG 3, Enterobacter ludwigii, and

Flavobacterium sp. Drought Wheat (Triticum aestivum) [35]

Bacillus sp. Drought Sugarcane (Saccharum spp.) [36]



Life 2023, 13, 1102 3 of 23

Table 1. Cont.

Microorganism Stress Plant Species References

Bacillus megaterium, B. subtilis, and Bacillus
thuringiensis Drought Wheat (Triticum aestivum L.) and chickpea

(CicerArietinum) [37]

Bacillus sp. (12D6) and Enterobacter sp. (16i) Drought Wheat (Triticum aestivum) and maize (Zea mays) [38]
Actinobacterium Drought Maize (Zea mays L.) [39]

Proteobacteria, Actinobacteria, Gemmatimonadetes,
Chloroflexi, Cyanobacteria, and Acidobacteria Drought Cotton (Gossypium hirsutum) [40]

Bradyrhizobium japonicum and Azospirillum brasilense Drought Soybean (Glycine max) [41]
Acinetobacter calcoaceticus EU- LRNA-72 and

Penicillium sp. EU-FTF-6 Drought Foxtail millet (Setaria italica L.) [42]

Pseudomonas lini, Bacillus, and Serratia plymuthica Drought Jujube (Ziziphus jujuba) [43]
Rhizobium tropici and Azospirillum brasilense Drought Common bean (Phaseolus vulgaris) [44]

Azotobacter chroococcum Salt Tomato (Solanum lycopersicum) [45]
Microbacterium oleivorans, Brevibacterium iodinum, and

Rhizobium massiliae Salt Pepper (Capsicum annuum) [46]

Bacillus spp. Salt Pepper (Capsicum annuum) [47]
Pseudomonas sp. and Hartmannibacter diazotrophicus Salt Alfalfa (Medicago sativa) [48]

Pantoea agglomerans Salt Rice (Oryza sativa) [49]
Arthrobacter aurescens, A. woluwensis, Microbacterium

oxydans, Bacillus megaterium, and B. aryabhattai Salt Soybean (Glycine max) [50]

Bacillus aryabhattai and B. mesonae Salt Tomato (Solanum lycopersicum) [51]
Pseudomonas sp. Salt Arabidopsis thaliana [52]

Pseudomonas fluorescens Salt Barley (Hordeum vulgare) [53]
Arthrobacter nitroguajacolicus Salt Wheat (Triticum aestivum) [54]
Bacillus cereus and B. aerius Salt Safflower (Carthamus tinctorius) [55]

Pseudomonas and Azospirillum brasilense Salt Rapeseed (Brassica napus) [56]
Pseudomonas geniculate Salt Maize (Zea mays) [57]

Bacillus halotolerans and Lelliottia amnigena, Salt Wheat (Triticum aestivum) [58]

Fungi

Glomus mosseae and Glomus intraradices Drought Rose geranium (Pelargonium graveolens L.) [59]
Trichoderma atroviride strain (TaID20G) Drought Maize (Zea mays L.) [60]

Gaeumannomyces cylindrosporus Drought Maize (Zea mays) [61]
Arbuscular mycorhizal fungi (AMF) Drought Sweet potato (Ipomoea batatas (L.) Lam.) [62]

AM fungus Funneliformis mosseae Drought Trifoliate orange [Poncirus trifoliata (L.) Raf.] [63]
Trichoderma harzianum Drought Tomato (Solanum lycopersicum) [64]

Rhizophagus intraradices, Funneliformis mosseae,
F. geosporum Drought Wheat (Triticum aestivum [65]

Arbuscular mycorrhizal fungi Drought Chinese lyme grass (Leymus chinensis) and
limpograss (Hemarthria altissima) [66]

Trichoderma harzinum 1, Trichoderma harzianum 2,
Chaetomium globosum, and Talaromyces flavus Drought Rice (Oryza sativa L.) [67]

Funneliformis mosseae, Glomus mosseae, G. intraradices,
and G. etunicatum Salt Desert grass (Panicum turgidum) [68]

Trichoderma harzianum Salt Indian mustard (Brassica juncea) [69]
Trichoderma harzianum Salt Tomato (Solanum lycopersicum) [70]
Trichoderma harzianum Salt Rice (Oryza sativa) and maize (Zea mays) [71]

Klebsiella sp. Salt Oat (Avena sativa) [72]
Glomus etunicatum, G. intraradices, and G. mosseae Salt Cucumber (Cucumis sativus) [73]

Colobanthus quitensis and Deschampsia antarctica Salt Lettuce (Lactuca sativa) and tomato (Solanum
lycopersicum) [74]

Bacteria + Fungi

Bacillus thuringiensis + Arbuscular
mycorrhizal fungus Drought French lavender (Lavandula dentata) [75]

Pseudomonas putida + Rhizophagus irregularis Drought Calotrope (Calotropis procera Ait.) [76]
Micrococcus yunnanensis + Claroideoglomus etunicatum Drought Moldavian balm (Dracocephalum moldavica L.) [77]
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Table 1. Cont.

Microorganism Stress Plant Species References

Pseudomonas fluorescens + Rhizophagus irregularis or
Funneliformis mosseae Drought Arizona cypress (Cupressus arizonica Green) [78]

Pseudomonas fluorescence + Glomus mosseae Salt Bean (Phaseolus vulgaris) [79]
Methylobacterium oryzae + Glomus etunicatum Salt Rice (Oryza sativa) [80]

Bacillus subitilis + Glomus. etunicatum, G. intraradices,
and G. mosseae Salt Acacia (Acacia gerrardii) [81]

Bradyrhizobium sp. + Trichoderma asperelloides Salt Cowpea (Vigna unguiculate) [82]

In addition, root-associated microbes such as fungi can potentially influence different
ecological processes to optimize plant health and growth, resulting in a great impact on
plant physiology, nutrition, and survival ability that improves plant tolerance against
environment-induced stresses [83]. These endophytic fungi confer abiotic stresses through
the synthesis of various plant beneficial substances (ACC-deaminase, auxins, gibberellins,
abscisic acid, siderophores) and solubilize nutrients for healthy plant growth [84,85]. The fu-
gal endophytes form a mutualistic association with plants to promote photosystem activity,
protein accumulation, primary metabolism that leads to higher growth, and tolerance under
abiotic stresses [65,86]. Plants develop mutualistic relationships with several plant growth-
promoting endophytic fungi, including Piriformospora indica [86], arbuscular Mycorrhizal
fungi [65], Trichoderma albolutescens, Trichoderma asperelloides, Trichoderma orientale, Tricho-
derma spirale, and Trichoderma tomentosum [87], Penicillium aurantiogriseum 581PDA3, Al-
ternaria alternate 581PDA5, Trichoderma harzianum 582PDA7 [88], and Porostereum spadiceum
AGH786 [89], which can increase tolerance against abiotic stresses by improving the bio-
chemical and physiological processes of different plants, as summarized in Figure 2.
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The focus of this review is to highlight the mechanisms of plant growth-promoting mi-
croorganisms (especially bacteria and fungi) adapted to environmentally induced stresses
such as drought, salinity, heavy metals, flooding, extreme temperatures, and intense light.
The present state of knowledge focuses on the potential, prospective, and biotechnological
approaches of plant growth-promoting bacteria and fungi to improve physiological and
biochemical attributes and the fitness of plants under environmental stresses. Additionally,
emphasis is placed on the significance of the role of microbial communities in promoting
sustainable crop production amidst changing climatic scenarios.

2. Drought Stress

Disruption in the water cycle has become a serious challenge to overcome that is an
alarming worry to farmers, horticulturists, and the world’s population as it threatens the
food needs of humans and animals. In this context, farmers have increased the amount of
irrigation to improve the quantity and quality of agricultural crops; however, this strategy
could increase the cost of production [90]. Drought can be described as an unfavourable
environmental condition with an insufficient level of moisture that can affect normal
development and growth cycle of plants [91]. It has been highlighted that drought can
reduce yield and cultivation potential (ideal yield) of soybean by up to 70% [92].

Severe climatic variations with unstable precipitation can result in prolonged drought
in certain crops depending on the duration and intensity of drought [93], which ultimately
affects crop development and productivity [94]. The effect of drought on yield is a highly
complex mechanism that could adversely influence fertilization, embryogenesis, seed
development, and the physiological, biochemical, and molecular processes of plants [95],
which includes cell dehydration, reduced leaf size, stem elongation, root proliferation,
nutrient uptake, and their use efficiency [96,97]. Drought also alters the signal activity of
nitrogen and carbon metabolism enzymes, as well as the level of antioxidants in plants [98].
Plant signal genes are responsible for the accumulation of abscisic acid (ABA) via distinct
regulatory pathways under drought stress conditions [99]. Modulation of gene expression
related to drought stress is achieved by critical signaling pathways such as strigolactone,
reactive oxygen species (ROS), and lipid-derived signaling [100,101]. Moreover, soluble
sugar, programed cell death [99], and qualitative trait loci (QTL) [102] are gene expression
adjustments in response to drought stress.

Alterations in the time and duration of precipitation generate long-term drought,
which prominently affects the activities of microbial communities. The availability of
water in the changing climate scenario is one of the most important factors that influences
soil microbial activity [103]. Microbes adapt different strategies to deal with short- and
long-term drought in response to changing climatic patterns [104]. Beneficial engineering
of microorganisms within the root rhizosphere and root endosperm is a strategic approach
to attaining healthy and productive crops under drought stress conditions [105]. Microbial
communities under changing climatic conditions improve crop production efficiency [106].
Inoculation with microbes such as plant growth-promoting bacteria, fungi, and algae, either
alone or in combination [107] is considered as one of the best alternatives to fertilizers that
can enhance plant growth [108], root growth, and nutrient availability via mobilization
and mineralization [109] and can help in the alleviation of drought stress [35]. These endo-
phytic and epiphytic plant growth-promoting microbial diversities have adapted several
mechanisms, such as synthesis of exopolysaccharide, 1-aminocyclopropane-1-carboxylate
deaminase, volatile compounds, osmolytes, and antioxidants that can up- or downregulate
stress-responsive genes, change root morphology, and improve nutrient uptake against
drought stress in different cereal crops under changing climatic conditions [42,110]. Several
plant growth-promoting microbes improve phosphorous and zinc solubilization, nitro-
gen fixation, and siderophore production and act as antimicrobial agents against harmful
microbes that could reduce tolerance in food crops against drought stress and extreme
climatic conditions [111,112].



Life 2023, 13, 1102 6 of 23

Some beneficial fungi (arbuscular mycorrhizal fungi—AMF) and algae (Amphora
ovals) adapt several biochemical, physiological, and molecular strategies to overcome
drought conditions and improve crop growth and productivity under changing climate
scenarios [113,114]. Plant growth-promoting fungi such AMF, Trichoderma spp., and
certain algae promote antioxidant enzymes, nutrient uptake, chlorophyll, proline content,
and phytohormone production, which can promote growth and tolerance against drought
stress in host plants [113,115]. Over the last decade, many studies have demonstrated the
use of plant growth-promoting bacteria and fungi that can mitigate the unfavourable effects
of drought stress in host plants as summarized in Table 1.

3. Salt Stress

Salinity is one of the major global and environmental concerns that limits agricultural
productivity and is attributed to extreme episodes of climatic changes [116]. Water quality
and irrigation management irrespective of source, such as dams, ponds, rivers, artesian
wells, or high-depth aquifers, contains salt complexes [117]. These salt complexes include
some of the important cationic species, such as calcium (Ca2+), magnesium (Mg2+), sodium
(Na2+), and potassium (K+), and among the anionic complexes are chloride (Cl−), carbonate
(CO3

2−), bicarbonate (HCO3
−), sulfate (SO4

2−), and boron (B) that all can have deleterious
effects on agriculture ecosystems and plant productivity. Thus, the increased accumulation
of these salts in low-quality irrigation water on arable land converts the land into non-
usable and non-productive soil [118]. Soils irrigated with saturated water extract with an
EC of 4.0 dS m−1 (40 mmol L−1 of NaCl) are considered to be saline and can cause osmotic
pressure of 0.2 MPa that leads to a reduction in vegetable yields [119].

The expansion of salinity into formerly unaffected areas due to drastic climate changes
can have adverse effects on plant growth through osmotic inhibition and phytotoxic effects
on certain ions in the rhizosphere that trigger secondary oxidative stress in plants [116,120].
Salinity generates low water potential in the soil, thus restricting water availability for
plants [121]. Plants with low osmotic potential under saline conditions often suffer from
physiological drought that restricts nutrient mobilization to the aerial parts of plants. An
excessive concentration of salt in the soil solution negatively affects plant physiology,
photosynthesis, metabolism, protein and ATP synthesis, growth, and the productivity of
crops [122]. The toxic effects of sodium (Na+) and chlorine (Cl−) ions are prevalent in
saline soils, which disturbs enzymes and other macromolecules, thus damaging cellular
organelles, disrupting photosynthesis and respiration, inhibiting protein synthesis, and
causing ion-induced deficiencies [123].

Salinity negatively affects the photosynthetic rate of plants, which can impair crop
productivity and cell membrane activity. Salinity also affects osmotic potential, which
can reduce water availability, and further impacts CO2 permeability and deactivates the
transport of photosynthetic electrons via shrinking intracellular spaces [124]. Stomatal
closure can decrease carbon fixation and the production of reactive oxygen species (ROS)
such as superoxide and single oxygen, which disrupt cellular processes by damaging lipids,
proteins, and nucleic acids [125]. The unbalanced concentration of salt within the cell
causes ionic toxicity and inhibits cell metabolism and other functional processes. Na+

can disrupt plant nutrition by inhibiting potassium ion (K+) uptake, which leads to the
disturbance of enzymatic activity (K+ regulates more than 50 enzymes) within the cell [126].
The salt stress also triggers hormonal activity and alters assimilation and partition between
sources and tissues [127]. Salinization alters phytohormones (abscisic acid, cytokinin, trans-
Zeatin, indole-3-acetic acid, and carboxylic acid) in the tissues and nodules of the plant
that cause leaf senescence and early tissue death [128]. It was demonstrated that carboxylic
acid is the precursor of ethylene, which plays a vital role in the initiation of salt-induced
senescence [129].

Plants adapt several strategies and evolutionary, physiological, and ecological pro-
cesses to mitigate or tolerate salinity stress and improve productivity. The application of
plant growth-promoting bacteria (PGPBs) is the most viable and effective alternative that
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can mitigate toxicity and the adverse effects of salinity while improving crop health and
productivity [130]. These microorganisms mainly act as producers of phytohormones such
as auxins, cytokinins, and gibberellins, which contribute to the growth of root systems, stim-
ulate water absorption, and inhibit the effects of salinity [131,132]. Plant growth-promoting
bacteria of different Pseudomonas sp. can improve peroxidase enzymes, total polyphenol
and proline content, which are being indicated to increase relative water content in the
leaves of Coriandrum sativum under salinity stress [133]. Plant prolines are the most adapt-
able and sensitive amino acids to stress conditions and can act as protectors of enzymes
and defend plant tissues against osmotic stress [47].

The association of PGPBs with beneficial fungi has synergistic effects on plant growth
through induced tolerance against saline conditions [134]. Arbuscular mycorrhizal fungi
can improve crop performance and tolerance to salinization by reducing Na+ absorption
while enhancing nutrient and water uptake and the antioxidant mechanisms of several
plants [121,135]. Different species of ectomycorrhiza fungi (ECM), such as Hebeloma, Lac-
caria, Paxillus, Pisolithus, and Rhizopogon, can restrict Na+ transportation within plant
tissues, thus improving mineral nutrition and water uptake and alleviating the effects
of salination in host plants [136]. Trichoderma species are widely used as a biocontrol
and plant growth-promoting agent in agriculture and can colonize in diverse substrates
under different environmental conditions, therefore inducing tolerance against abiotic
stresses [137].

Beneficial microorganisms are associated with increased water absorption, better use
efficiency and uptake of nutrient, and improved soil fertility and structure, thus helping
plants under salt stress conditions [138]. These microorganisms utilize nitrogen (N) for
biological nitrogen fixation, nitrate reductase activity, and N use efficiency [139] while
increasing phosphorous availability through phosphate solubilization [140]. In addition,
these microorganisms can also increase the fertilizer use efficiency of NPK by 50% while
alleviating the negative effects of salt stress in plants [141].

Over the past decade, numerous studies have highlighted the role of plant growth-
promoting bacteria and fungi in mitigating the harmful effects of salt stress in plants
(Table 1).

4. Heavy Metals

Heavy metals (HMs) are a serious threat to agriculture that can significantly harm
different environmental, ecological, and nutritional factors of plants. The rising population
has led to increased fertilizer use for higher food production, which can consequently lead
to contamination of the environment and food chains [142]. The anthropogenic activities of
humans, including mining, various industries, metallurgy, the use of chemical fertilizers
containing HMs, and transportation, have led to a dramatic increase in HM accumulation
in the ecosystem [143,144]. Heavy metals released into the air, environment, and soil can
be absorbed by plants through roots and leaves, which can disrupt plant metabolism and
cause several health risks to humans [143,145]. Edible plants are the major source of food
in the human diet, and their contamination with toxic metals may result in catastrophic
health hazards [143].

The term HMs refers to any metallic element that has a relatively high density and is
either toxic or poisonous even at low concentration [142,143]. Heavy metals are generally
categorized to belong to the group of metals and metalloids with high atomic density
(density greater than 4 g cm−3) and mass [142]. Heavy metals include non-essential plant
elements such as lead (Pb), cadmium (Cd), aluminum (Al), chromium (Cr), mercury (Hg),
arsenic (As), silver (Ag), and platinum group elements [143,146]. Some heavy metals, such
as copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), nickel (Ni), and molybdenum (Mo),
are essential micronutrients and are required for many of the biochemical functions of
plants, including plant growth, oxidation and reduction reactions, electron transport, and
many other metabolic processes; however, their high concentration can cause phytotoxic-
ity [143,147].
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Heavy metal toxicity in plants can cause leaf chlorosis, alter chlorophyll a and b ratios,
decrease photosynthesis, inhibit root elongation, increase ROS production and membrane
leakage, and change lipid composition through changing inter-cellular concentrations of
nutrients [148,149].

Soils are a major sink for metal contamination in terrestrial ecosystems [131]. A
diverse range of plants is used for the phytoremediation of toxic heavy metals and met-
alloids [150]. In addition, microorganisms such as PGPBs and PGPFs can enhance the
effectiveness of phytoremediation [9,146,150] by producing organic acids, siderophores,
bio-surfactants, bio-methylation, and redox processes that could transform heavy metals
into soluble and bioavailable forms [9,150]. These microorganisms help the host plants by
increasing biomass and phytoremediation attributes through synthesis of phytohormones
such as indole-3-acetic acid (IAA) and enzyme like 1-aminocyclopropance-1-carboxylic
acid deaminase (ACC), as well as through nitrogen fixation, P solubilization, and Fe se-
questration [131,150]. These multiple traits improve the metabolic activity of microbes
(Firmicutes, Proteobacteria, and Actinobacteria and most represented genera belong to
Bacillus, Pseudomonas, and Arthrobacter) in heavy metal-contaminated sites [131,151].

Microbes play a key role in the remediation of HMs through phyto-stabilization,
phyto-extraction, and phyto-volatilization [131,146]. Several studies have demonstrated
the beneficial aspects of microbes in reducing HM toxicity in plant species over the past
few decades (Table 2).

Table 2. Summary of the positive influence of microbes in mitigating heavy metal toxicity in contami-
nated sites (2010–2020).

Microorganism Heavy Metal Reference

Bacteria

Azotobacter chroococum and Rhizobium leguminosarum Pb [152]
Pseudomonas sp. SRI2, Psychrobacter sp. SRS8, and Bacillus sp. SN9 Ni [153]

Sporosarcina ginsengisoli As (III) [154]
Bacillus cereus Cr (VI) [154]

P. macerans NBRFT5, B. endophyticus NBRFT4, B. pumilus NBRFT9 Cu, Ni, and Zn [155]
Bacillus thuringiensis GDB-1 As [156]
Bacillus cereus strain XMCr-6 Cr (VI) [157]

Bacillus subtilis Cr (VI) [158]
Pseudomonas putida Cr (VI) [158]

Pseudomonas sp. LK9 Cd, Cu, and Zn [159]
Enterobacter sp. And Klebsiella sp. Cd, Pb, and Zn [160]

Kocuria flava Cu [154]
Pseudomonas veronii Cd, Cu, and Zn [154]

Bacillus pumilus E2S2 and Bacillus sp. E1S2 Cd and Zn [161]
Enterobacter cloacae B2-DHA Cr (VI) [162]

Planomicrobium chinense, B. cereus, P. fluorescens Co, Mn, Ni, and Pb [163]
B. cereus, P. moraviensis Mn and Cd [164]

B. safensis FO-036b (T) and P. fluorescens Pb and Zn [165]

Fungi

Pleurotus platypus Ag [166]
Rhizopus oryzae (MPRO) Cr (VI) [167]

Aspergillus versicolor Cu and Ni [154]
Aspergillus fumigatus Pb [168]

Rhizopus oryzae Cu [169]

Algae

Spirogyra spp. and Cladophora spp. Cu (II) and Pb (II) [154]
Spirogyra spp. and Spirullina spp. Cr Cu, Fe, Mn, and Zn [154,170]

Cystoseira barbata Cd, Ni, and Pb [171]
Hydrodictylon, Oedogonium, and Rhizoclonium spp. As [172]
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5. High Temperature

High temperature is one the major abiotic stress in extreme climates that has deleteri-
ous impacts on crop yield, global production, human health, and socio-economic damage
and wildfires [173,174]. The exposure of plants to unsuitable temperatures during crop
cycles results in reduced growth and biochemical aspects. Prolonged heat stress has severe
implications on different metabolic processes, including water relations, heat shock proteins,
carbohydrate metabolism, and physiological disruptions that lead to cell death [91,175].
High temperature stress crucially affects the grain filling stage [176], grain quality [177],
grain protein content [178], biomass, phenology, leaf senescence, grain yield [179], and the
plant canopy in wheat [180]. High temperature stress also has drastic influences on several
crops, including rice [181], sorghum [182], pearl millet [183], maize [184], and wheat [185].

High temperature stress induces the production of reactive oxygen species (ROS),
which damage the cell membranes of plants and trigger stress responses [186]. The ROS
molecules encompass free radicals from oxygen (O2) metabolism, including superoxide
radicals (O2

−), hydroxyl radicals (OH−), hydrogen peroxide (H2O2), and singlet oxygen
(1O2) [187]. Reactive oxygen species are produced via aerobic metabolism through the
interaction of O2 and escaped electrons from electron transport chains in the chloroplast and
mitochondria under normal conditions [188]. However, under stress conditions, accumula-
tion of ROS affects cellular components and causes damage to membranes through lipid
peroxidation [186,189]. Plants adapt several mechanisms, including the induction of antiox-
idants and signaling processes to overlap ROS damage [190] and the use of metabolites,
proteins, and membrane lipids to cope with temperature stress [191].

Plant–microbial association (bacteria and fungi) is an alternative and climate resilient
strategy that promotes plant growth and improves tolerance against abiotic stress [192],
especially high levels of temperature stress [193]. These microorganisms fight against
induced climatic changes (abiotic factors) that impair the general performance of plants
by improving phytohormone synthesis, the availability of nutrients, water absorption,
and structure, therefore contributing to the successful adaptation of plants under stressful
conditions [138]. Beneficial microorganisms are involved in various mechanisms, such
as the stimulation of phytohormones (indole-3-acetic acid (IAA), ethylene, cytokinins,
gibberellins) [194], polyamines (speridine, spermine, cadaverine) [195], and solubilization
of phosphate [196–198], and zinc [199–201], as well as production of secondary metabolites
that can improve the stability of leaf cell membranes and leaf abscission, and plant tolerance
to abiotic stresses [44,202].

In addition, these microorganisms may induce plant oxidative stress, reducing the
deleterious effects of ROS [203]. Beneficial microorganisms such as bacteria, actinomycetes,
and fungi provide shelter to host plants against extreme climatic events and unfavorable
environmental alterations [204]. Several studies have highlighted the ameliorative effect of
PGPBs [205,206] and PGPFs [65,115,207], which can increase tolerance against the negative
impacts of high temperature stress in different crop plants. Furthermore, PGPBs and PGPFs
can compensate and mitigate the adverse impact of high temperature, as is evident from
the past twelve years of study (Table 3).

Table 3. Summary of the positive effects of microbes in mitigating unfavorable high and cold
temperature and flooding stress conditions in plants (2012–2020).

Microorganism Stress Plant Species Reference

Bacteria

Azospirillum brasilense and Bacillus amyloliquefaciens High temperature Wheat (Triticum aestivum) [175]
Bacillus amyloliquefaciens High temperature Rice (Oryza sativa) [205]
Bacillus amyloliquefaciens High temperature Wheat (Triticum aestivum) [208]

Pseudomonas syringae High temperature Arabidopsis thaliana [209]
Enterobacter sp. High temperature Arabidopsis thaliana [210]
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Table 3. Cont.

Microorganism Stress Plant Species Reference

Bacillus velezensis High temperature Wheat (Triticum aestivum) [211]
Bacillus cereus High temperature Tomato (Solanum lycopersicum) [212]
Bacillus cereus High temperature Tomato (Solanum lycopersicum) [213]

Pseudomonas, Bacillus, Stenotrophomonas, Methylobacterium,
Arthrobacter, Pantoea, Achromobacter, Acinetobacter,

Exiguobacterium and Staphylococcus, Enterobacter, Providencia,
Klebsiella and Leclercia, Brevundimonas, Flavobacterium,

Kocuria, Kluyvera, and Planococcus

Cold temperature Wheat (Triticum aestivum) [214]

Arthrobacter, Flavimonas, Flavobacterium, Massilia, Pedobacter,
and Pseudomonas Cold temperature Tomato (Solanum lycopersicum) [215]

Rhizobacterial isolates of Bacillus genera, Gu2 and 127b Cold temperature Wheat (Triticum aestivum) [216]
Pseudomonas fragi, P. chloropaphis, P. fluorescens, P. proteolytica,

and Brevibacterium frigoritolerans Cold temperature Bean (Phaseolus vulgaris L.) [217]

Bradyrhizobium japonicum Flooding Soybean (Glycine max) [218]
Achromobacter xylosoxidans, Serratia ureilytica, Herbaspirillum

seropedicae, and Ochrobactrum rhizosphaerae Flooding Tulsi (Ocimum sanctum) [219]

Pseudomonas putida Flooding Cucumber (Cucumis sativus) [220]
Azospira oryzae, Pelomonas saccharophila, and Methylosinus sp. Flooding Rice (Oryza sativa) [221]

Pseudomonas putida Flooding Rumex palustris [222]

Fungi

Glomus deserticola and Glomus constrictum High temperature Tomato (Solanum lycopersicum) [223]

Aspergillus japonicas High temperature Soybean (Glycine max) and
sunflower (Helianthus annuus) [224]

Thermomyces sp. High temperature Cucumber (Cucumis sativus) [225]
Thermomyces lanuginosus High temperature Cullen plicata [226]

Glomus mosseae Cold Elymus nutans Griseb [227]

Trichoderma harzianum Cold Tomato
(Solanum lycopersicum L.) [115]

Glomus versiforme and Rhizophagus irregularis Cold Barley (Hordeum vulgare L.) [228]
Rhizophagus irregularis Cold Cucumber (Cucumis sativus L.) [15]
Rhizophagus irregularis Flooding Tomato (Solanum lycopersicum) [229]

Glomus intraradices, G. versiforme, and G. etunicatum Flooding Cattail (Typha orientalis) and
rice (Oryza sativa) [230]

Trichoderma Flooding Rice (Oryza sativa) [231]
Aspergillus fumigatus Flooding Arabidopsis sp. [232]

Bacteria and fungi

Bradyrhizobium + arbuscular mycorrhizal fungi High temperature Soybean (Glycine max L.) [233]

Proteobacteria, Actinobacteria, Chloroflexi, and Nitrospirae
+ Dothideomycetes, Sordariomycetes, and Ascomycota

High temperature
and drought

Sorghum (Sorghum bicolor L.)
and foxtail millet
(Setaria italica L.)

[234]

Bacillus and Pseudomonas + Penicillium Cold temperature Potato (Solanum tuberosum) [235]

Paraburkholderia graminis C4D1M and Funneliformis mosseae Cold temperature Tomato
(Solanum lycopersicum L.) [236]

6. Low Temperature

Low temperature is also one of the most devastating environmental factors that affects
plant growth and productivity. Occasional drops in the temperature of agricultural soils
can affect the activity of terrestrial biota and plant growth. Low temperature corresponds to
chilling (0–15 ◦C) that usually occurs in temperate regions and decreases plant productivity.
These conditions stimulate the growth of saprophytic fungi that may disrupt soil nutrient
cycling and compromise plant health [215]. Low temperatures disturb cellular homeostasis
and some ROS, including hydrogen peroxide (H2O2), singlet oxygen (O2

−), and HO., and
also disrupt some cellular functions related to proteins, lipids, carbohydrates, and DNA
that may cause cell death in plants [217,227].
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Several beneficial microorganisms have been reported to mitigate and alleviate the
harsh impacts of abiotic stress, as indicated in Table 3. Different bacterial species, such as
Pseudomonas fragi, P. chloropaphis, P. fluorescens, P. proteolytica, and Brevibacterium frigoritol-
erans, have been observed reducing freezing injuries and the content of lipid peroxides
and ROS while stimulating some enzymatic activity (superoxide dismutase, catalase, per-
oxidase, and glutathione reductase) that could improve tolerance against cold stress in
common bean seedlings [217]. Plant growth-promoting fungi such as Trichoderma harzianum
and AMF (Glomus mosseae) are some of the most studied fungi in relation to improving
resistance against cold stress conditions. These fungi could activate different enzymatic
activity, discourage ROS production, and limit lipid peroxidation levels, which could de-
crease the damage caused by cold stress in tomato (Solanum lycopersicum L.) and Elymus
nutans Griseb plants.

7. Flood Stress and Oxygen Deficit

Global agriculture is severely affected by climate change. Flooding is one of the
most drastic conditions of climate extremes and has detrimental impacts on soil fertility
and nutrients, causing disruption to the crucial processes of plants [237]. The intensity
and frequency of flooding is increasing due to climate extremes that could be a serious
threat to the stability and productivity of ecosystems [238]. Plants frequently experience
stresses that are typically caused by insufficient water or a lack of oxygen in flooding
conditions. Flooding leads to localized depletion of oxygen due to stagnant water and
sediment deposition on the soil surface [239]. The inhibition of cellular respiration and the
submersion of non-photosynthetic plant tissues or roots under flooding are some of the
most serious plant stresses [240].

Plants under flood stress undergo several physiological and molecular changes that
might be due to the lack of oxygen availability affecting roots. Plants demonstrate certain
symptoms under oxygen deficiency, such as the closing of stomata and a reduction in the
water conductivity and growth of roots. Plants develop different morphological functions
to cope with oxygen/flood stress, such as increases in gas diffusion in the roots, the
accumulation of lignin and suberin at the cellular level, and the promotion of aerenchyma
and adventitious roots [229]. Aerenchyma are specialized tissues that transport gases (O2)
from aerial parts of the plant to the roots under oxygen deficit environments [240]. The
aerenchyma are well developed in plants of aquatic and humid environments. Aerenchyma
are developed in species of high economic importance, including plants such as sugarcane
(Saccharum spp.), rice (Oryza sativa), barley (Hordeum vulgare), corn (Zea mays), wheat
(Triticum aestivum), and soybeans (Glycine max) [240–244].

Plants undergo several metabolic alterations under flood stress, such as increased
ethylene production and the signaling of stress hormones, which negatively interferes with
plant morphology [222]. Flood stress causes anaerobic conditions that could reduce the
microbial activity and enzymatic activity of plants in the rhizosphere [245]. Flood stress
causes alterations in the structure of microbiota [246], which thus has consequences on the
terrestrial biota and can enhance the role of bacteria and fungi in the decomposition of
residues and nutrient cycling for the better performance of plants [247]. Understanding the
behavior of potential soil microbiota in relation to flooding is one of the crucial discoveries
that may confer stress tolerance in plants [240]. Several bacteria modulate the production of
ethylene by plants through 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which
is the immediate precursor for ethylene synthesis. Plant growth-promoting bacteria reduce
ethylene production, which can lead to the reduction of plant damage [248], as shown
by Grichko and Glick [249] who reported that the inoculation of tomato (Lycopersicon
esculentum) seeds with different bacterial strains (Enterobacter cloacae UW4, E. cloacae CAL2,
and Pseudomonas putida ATCC17399/pRKACC or P. putida ATCC17399/pRK415) produced
ACC deaminase. Plants at the vegetative growth stage were exposed to flooding stress
for nine consecutive days, which produced AAC, chlorophyll a and b, and adventitious
roots, as well as develop stem aerenchyma of the host plants to withstand under flood
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stress. Barnawal et al. [219] and Ravanbakhsh et al. [222] indicated that the inoculation
of different plants with ACC deaminase-producing bacteria under flooded conditions
increased plant growth by reducing ethylene production. The inoculation of Cucumis
sativus with Pseudomonas putida UW4 under low available oxygen altered protein synthesis,
nutritional metabolism, and antioxidant activity and promoted plant growth and defenses
against stresses [220].

Beneficial microbes such as fungi prominently increase the tolerance of host plants
under different environmental stresses [229]. Arbuscular mycorrhizal fungi applied to
the roots of tomato plants under flooded and non-flooded conditions increased water
relation and conductivity. It was also reported that indole-3-acetic acid (IAA) is one of
the major phytohormones involved in the water conductivity of roots under low oxygen
availability [229].

Several PGPBs and transgenic plants were studied under multiple stresses in field
conditions. Farwell et al. [250] inoculated canola with Pseudomonas putida UW4 under nickel
and flood stress and reported that Pseudomonas putida UW4 increased canola growth and
biomass under flooding and heavy metal stresses. Cao et al. [239] indicated that flooding
increased enzymatic activity in copper (Cu)-contaminated soil. In addition, the presence
of Cu is inversely proportional to soil microbiota (bacteria and fungi), which could affect
microbial communities and cause the immobilization of microelements under flooded and
non-flooded conditions. The influence of beneficial microorganisms in improving tolerance
to abiotic stresses (high and cold temperature and flooding) and regulating sustainable
agricultural productivity under climatic extremes is summarized in Table 3.

8. Light Stress

Sunlight is one the major factors of photosynthesis that provides the necessary energy
for plant growth and development. Despite this, intense light, especially its ultraviolet
(UV) part, causes serious damage to DNA, proteins, and other cellular components of
plants [251]. Sunlight damages photosynthetic machinery, primarily photosystem II (PSII),
increases ROS production, and causes photo-inhibition that can hinder plant photosynthetic
activity, growth, and productivity [252]. Excess light accelerates ROS production in PSI
and PSII of chloroplasts, which may balance photo-inhibition and the repair of plant
cells [252]. Light-triggered plant responses depend on the fluency, exposure time, and
acclimation of plants before light exposure [251]. Reductions in the quantity and quality of
light could signal plants to activate defensive systems by enhancing adaptive alterations in
stem morphology [252]. The signaling pathways of light can balance the constructive and
destructive impact of light on plant defense and growth mechanisms.

Microbes are less studied in the mitigation of light stress compared to other abiotic
conditions. Some PGPBs have shown great potential by enhancing photosynthesis, chloro-
phyll content, and photosynthetic pigments that can reduce light damage [253]. The impact
of light on the composition of rhizosphere communities, such as prokaryotes and fungi, can
be increased or decreased under climatic extremes. There are several bacterial species, in-
cluding Pseudomonas sp., Massilia sp., Burkholderia sp., and Acidobacteria, that are classified
as beneficial microorganisms in the context of high light intensity. In addition, some fungal
species, including Geminibasidium sp. and Oidiodendron sp., were also described as the most
abundant species under intense light. The microorganism communities derived from soil
under the influence of high light intensity are different in taxonomy and physiological
characterizations. The impact of light on the soil rhizosphere includes the detection of
Pseudomonas sp. that could consequently increase photosynthesis and carbon and nutrient
assimilation [254]. Stefan et al. [255] verified that seed inoculation with Bacillus pumilus and
Bacillus mycoides increased photosynthetic activity, water use efficiency, and chlorophyll
content in runner bean (Phaseolus coccineus L.). Suzuki et al. [256] reported that Acinetobacter
calcoaceticus could increase the chlorophyll content of lettuce (Lactuca sativa L.).
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9. Conclusions

This review elaborated the importance of plant growth-promoting microorganisms
(especially bacteria and fungi) that can mitigate the damage caused by environmentally
induced stresses (drought, salinity, heavy metals, flooding, extreme temperatures, and
intense light). This review determined the potential, prospective, and biotechnological
approaches of plant growth-promoting bacteria and fungi for the alleviation of plants
in response to environmental stresses. Some bacteria and fungi under abiotic stress con-
ditions can improve physiological and biochemical processes, such as nutrient uptake,
photosynthesis, source–sink relationships, metabolism and the regulation of homeostasis,
osmotic potential, protein function, phytohormone production (indole-3-acetic acid and
1-aminocyclopropane-1-carboxylic acid deaminase), enzymatic activity, nutrient solubiliza-
tion, and plant nutrition. Therefore, the use of plant growth-promoting bacteria (PGPBs)
and fungi contributes positively to agricultural production in abiotic stress conditions.

Despite several studies demonstrating the benefits of beneficial microorganisms, there
are still research gaps and restrictions on the molecular mechanisms of crops. A mechanistic
understanding of the interactions of plants and microorganisms under abiotic stress should
be developed to address agricultural difficulties and resolve the nutritional and production
concerns that are brought by climatic extremes. Therefore, further studies involving mi-
croorganisms are recommended to enhance sustainable crop production and food security
in the light of potentially unstable climatic conditions.

Author Contributions: Conceptualization, A.J. and M.C.M.T.F.; methodology, A.J. and C.E.d.S.O.;
validation, A.J., F.S.G. and C.E.d.S.O.; formal analysis: A.J.; resources, M.C.M.T.F.; data cura-
tion, A.J., C.E.d.S.O. and P.A.L.R.; writing—original draft preparation, A.J., F.S.G. and C.E.d.S.O.;
writing—review and editing, M.C.M.T.F., A.J. and F.S.G.; supervision, M.C.M.T.F.; project administra-
tion, A.J. and M.C.M.T.F.; funding acquisition, A.J. and M.C.M.T.F. All authors have read and agreed
to the published version of the manuscript.

Funding: This review received funding from The World Academy of Science (TWAS) and Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the first author’s doctoral fel-
lowship (CNPq/TWAS grant number: 166331/2018-0) and the productivity research grant (award
number 311308/2020-1) of the corresponding author.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank São Paulo State University (UNESP) for providing technology
and support as well as CNPq for financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, S.; Zuo, T.; Ni, W. Important roles of glycinebetaine in stabilizing the structure and function of the photosystem II complex

under abiotic stresses. Planta 2020, 251, 36. [CrossRef] [PubMed]
2. Alagna, F.; Balestrini, R.; Chitarra, W.; Marsico, A.D.; Nerva, L. Getting ready with the priming: Innovative weapons against

biotic and abiotic crop enemies in a global changing scenario. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants;
Academic Press: Cambridge, MA, USA, 2020; pp. 35–56. [CrossRef]

3. Ali, S.; Eum, H.; Cho, J.; Dan, L.; Khan, F.; Dairaku, K.; Shrestha, M.L.; Hwang, S.; Nasim, W.; Khan, I.A.; et al. Assessment of
climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmos. Res. 2019,
222, 114–133. [CrossRef]

4. Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies
to tackle its outcome: A review. Plants 2019, 8, 34. [CrossRef]

5. Pérez-Bueno, M.L.; Pineda, M.; Barón, M. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Front.
Plant Sci. 2019, 10, 1135. [CrossRef] [PubMed]

6. Pawłowicz, I.; Masajada, K. Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance
in plants. Gene 2019, 687, 166–172. [CrossRef] [PubMed]

https://doi.org/10.1007/s00425-019-03330-z
https://www.ncbi.nlm.nih.gov/pubmed/31903497
https://doi.org/10.1016/B978-0-12-817892-8.00003-9
https://doi.org/10.1016/j.atmosres.2019.02.009
https://doi.org/10.3390/plants8020034
https://doi.org/10.3389/fpls.2019.01135
https://www.ncbi.nlm.nih.gov/pubmed/31620158
https://doi.org/10.1016/j.gene.2018.11.031
https://www.ncbi.nlm.nih.gov/pubmed/30445023


Life 2023, 13, 1102 14 of 23

7. Da Silva Oliveira, C.E.; Zoz, T.; Jalal, A.; Vendruscolo, E.P.; Nogueira, T.A.R.; Jani, A.D.; Teixeira Filho, M.C.M. Tolerance and
Adaptability of Tomato Genotypes to Saline Irrigation. Crops 2022, 2, 306–322. [CrossRef]

8. Tunçtürk, M.; Rezaee Danesh, Y.; Tunçtürk, R.; Oral, E.; Najafi, S.; Nohutçu, L.; Jalal, A.; da Silva Oliveira, C.E.; Filho, M.C.M.T.
Safflower (Carthamus tinctorius L.) response to cadmium stress: Morpho-physiological traits and mineral concentrations. Life 2023,
13, 135. [CrossRef]

9. Ullah, R.; Muhammad, S. Heavy metals contamination in soils and plants along with the mafic-ultramafic complex (Ophiolites),
Baluchistan, Pakistan: Evaluation for risk and phytoremediation potential. Environ. Technol. Innov. 2020, 19, 100931. [CrossRef]

10. Zhou, W.; Chen, F.; Meng, Y.; Chandrasekaran, U.; Luo, X.; Yang, W.; Shu, K. Plant waterlogging/flooding stress responses: From
seed germination to maturation. Plant Physiol. Biochem. 2020, 148, 228–236. [CrossRef] [PubMed]

11. Do Nascimento, L.R.; Souza, V.T.; Campos, R.A.; Rüther, R. Extreme solar overirradiance events: Occurrence and impacts on
utility-scale photovoltaic power plants in Brazil. Solar Energy 2019, 186, 370–381. [CrossRef]

12. Gobbett, D.L.; Nidumolu, U.; Crimp, S. Modelling frost generates insights for managing risk of minimum temperature extremes.
Weather Clim. Extrem. 2020, 27, 100176. [CrossRef]

13. Tavakol, A.; Rahmani, V.; Harrington Junior, J. Evaluation of hot temperature extremes and heat waves in the Mississippi River
Basin. Atmos. Res. 2020, 239, 104907. [CrossRef]

14. Balestrini, R.; Chitarra, W.; Fotopoulos, V.; Ruocco, M. Potential role of beneficial soil microorganisms in plant tolerance to abiotic
stress factors. In Soil Biological Communities and Ecosystem Resilience; Springer: Cham, Switzerland, 2017; pp. 191–207.

15. Ma, Y.; Vosátka, M.; Freitas, H. Editorial: Beneficial Microbes Alleviate Climatic Stresses in Plants. Front. Plant Sci. 2019, 10, 595.
[CrossRef] [PubMed]

16. Mohanty, S.; Swain, C.K. Role of Microbes in Climate Smart Agriculture. In Microorganisms for Green Revolution. Microorganisms
for Sustainability; Panpatte, D., Jhala, Y., Shelat, H., Vyas, R., Eds.; Springer: Singapore, 2018; p. 7. [CrossRef]

17. Saghafi, D.; Delangiz, N.; Lajayer, B.A.; Ghorbanpour, M. An overview on improvement of crop productivity in saline soils by
halotolerant and halophilic PGPRs. J. Biotechnol. 2019, 9, 261. [CrossRef] [PubMed]

18. Ab Rahman, S.F.S.; Singh, E.; Pieterse, C.M.; Schenk, P.M. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci.
2018, 267, 102–111. [CrossRef]

19. Arif, I.; Batool, M.; Schenk, P.M. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience.
Trends Biotechnol. 2020, 38, 1385–1396. [CrossRef]

20. Dogra, N.; Yadav, R.; Kaur, M.; Adhikary, A.; Kumar, S.; Ramakrishna, W. Nutrient enhancement of chickpea grown with plant
growth promoting bacteria in local soil of Bathinda, Northwestern India. Physiol. Mol. Biol. Plants 2019, 25, 1251–1259. [CrossRef]

21. Khare, E.; Mishra, J.; Arora, N.K. Multifaceted interactions between endophytes and plant: Developments and prospects. Front.
Microbiol. 2018, 9, 2732. [CrossRef]

22. Jalal, A.; da Silva Oliveira, C.E.; Galindo, F.S.; Rosa, P.A.L.; Gato, I.M.B.; de Lima, B.H.; Teixeira Filho, M.C.M. Regulatory
Mechanisms of Plant Growth-Promoting Rhizobacteria and Plant Nutrition against Abiotic Stresses in Brassicaceae Family. Life
2023, 13, 211. [CrossRef]

23. Greetatorn, T.; Hashimoto, S.; Sarapat, S.; Tittabutr, P.; Boonkerd, N.; Uchiumi, T.; Teaumroong, N. Empowering rice seedling
growth by endophytic Bradyrhizobium sp. SUTN 9-2. Lett. Appl. Microbiol. 2019, 68, 258–266. [CrossRef]

24. Da Silveira, A.P.D.; Iório, R.D.P.F.; Marcos, F.C.C.; Fernandes, A.O.; de Souza, S.A.C.D.; Kuramae, E.E.; Cipriano, M.A.P.
Exploitation of new endophytic bacteria and their ability to promote sugarcane growth and nitrogen nutrition. Antonie Van
Leeuwenhoek 2019, 112, 283–295. [CrossRef] [PubMed]

25. Kushwaha, P.; Kashyap, P.L.; Kuppusamy, P.; Srivastava, A.K.; Tiwari, R.K. Functional characterization of endophytic bacilli from
pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol.
2019, 154, 503–514. [CrossRef]

26. Khan, M.A.; Asaf, S.; Khan, A.L.; Ullah, I.; Ali, S.; Kang, S.M.; Lee, I.J. Alleviation of salt stress response in soybean plants with
the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann. Microbiol. 2019, 69, 797–808. [CrossRef]

27. Konkolewska, A.; Piechalak, A.; Ciszewska, L.; Antos-Krzemińska, N.; Skrzypczak, T.; Hanć, A.; Sitko, K.; Małkowski, E.;
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