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Abstract: The seeds of dissected hogweed (Heracleum dissectum Ledeb., Apiaceae) are the source
of hogweed oil (HSO), which is still underexplored and requires careful chemical and biological
studies. The performed physico–chemical analysis of HSO elucidated basic physical characteris-
tics and revealed the presence of fatty acids, essential oil components, pigments, and coumarins.
High-performance liquid chromatography with photodiode array detection and electrospray ion-
ization triple quadrupole mass spectrometric detection (HPLC–PDA–ESI–tQ–MS/MS) identified
38 coumarins that were characterized and quantified. Various furanocoumarins were the major
components of HSO polyphenolics, including imperatorin, phellopterin, and isoimperatorin, and
the total coumarin content in HSO varied from 181.14 to 238.42 mg/mL. The analysis of storage
stability of the selected compounds in HSO indicated their good preservation after 3-year storage
at cold and freezing temperatures. The application of the CO2-assisted effervescence method al-
lowed the production of an HSO nanosuspension, which was used in a brain ischemia model of
rats. The HSO nanosuspension enhanced cerebral hemodynamics and decreased the frequency of
necrotic processes in the brain tissue. Thus, H. dissectum seeds are a good source of coumarins, and
HSO nanosuspension promotes neuroprotection of the brain after lesions, which supports earlier
ethnopharmacological data.

Keywords: hogweed oil; coumarins; mass spectrometry; quantification; storage stability; CO2-assisted
effervescence; brain ischemia

1. Introduction

The Apiaceae family, which contains 446 accepted genera and approximately
4000 species, is a source of useful plants that grow throughout the world [1]. The members
of the Apiaceae family are valuable crops with nutraceutical significance [2] and bioactive
medicinal plants [3]. Asia has the greatest variety of apiaceous species numbering approxi-
mately 300 species [4], including a widely distributed genus Heracleum (hogweed), which
counts 90 species [5]. Various hogweeds have a long history of use by humans as medicinal
and food plants [6]. Dissected hogweed (Heracleum dissectum Ledeb.) is a large Asian plant;
it grows in coniferous, coniferous-broad-leaved, and broad-leaved valley and mountain
large-grass forests, thickets of shrubs, on the edges, glades, and tall grass meadows of
Western, Middle, and Eastern Siberia, the Far East of Russia, Kyrgyzstan, Kazakhstan,
Mongolia, China, Korea, and Japan [7].

Dissected hogweed is a perennial polycarpic plant that is 70–160 cm in height (up to
2 m). Caudexes are unbranched, and taproots are branching. Stems are solitary, hollow,
deeply furrowed, protruding pubescent, and corymbose branching in upper parts. Basal
leaves are on long petioles. Petioles of basal leaves are hollow or dense, and leaf blades are
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20–50 cm long and 15–35 cm in size, trifoliate, less often sessile, deeply palmate-lobed, and
serrated along the edge. Central umbels are 13–25 cm in diameter, with 20–40 protruding,
softly pubescent rays up to 10 cm long. The petals of the flower are white; the outer petals
of the marginal flowers are greatly enlarged, up to 10 mm elongated. Seeds (fruits) are
6–16 mm long, ovoid, or obovate in outline. Carpophore is bifid. Mericarps are compressed
dorsally, rounded oval or ovate, glabrous, or covered with sparse hairs. The commissure is
wide. The hollow secretory tubules are solitary, thin, and slightly widened at the bottom to
0.3 mm. The endosperm is flat on the commissural side. The weight of 1000 seeds is 8–10 g,
and dry seed productivity can reach values of 120–150 g/plant [8].

The roots and seeds of H. dissectum, which are known as balchirgana (Buryat, Mongo-
lian, and Manchurian names), istii ot or puchka (Yakutian name), spru ma (Tibetan name),
and gao ben’ (Chinese name), have a bitter and pungent taste and are used in Asian
medicines as drugs [9]. Buryat lamas cure furunculus, ulcers, bleedings, anemia, and
wounds by hogweed decoctions [10], and the oil of hogweed seeds is used as a remedy
against noise in ears, vertigo, and headache [11]. Yakutian healers use hogweed as an
appetizer, spasmolytic, and antiseptic drug, as well as a component of the nervous system
and skin disease treatments [12]. In Chinese Traditional Medicine, the plant is used for dis-
pelling wind, eliminating dampness, and curing rheumatoid diseases, waist or knee pain,
and headaches [13].

The known phytocomponents [13–23] found in the roots and herb of H. dissectum
include aliphatic compounds [14,15], terpenes [14,16,21], and phenolics [13,14,17–23]
(Table 1).

Table 1. Synopsis of known hogweed (Heracleum dissectum Ledeb.) metabolites.

Compound a Organ (Origin b) [Ref.]

Alkyl glycosides
n-Butyl-O-Frcp Roots (CHI) [14]

Polyynes
Falcarindiol Roots (CHI) [15]

4,6-Decadiyne 1-O-(2′-O-(6′′-O-Glcp)-Glcp)-Glcp Roots (CHI) [15]
(8Z)-Decaene-4,6-diyn 1-O-(2′-O-(6′′-O-Glcp)-Glcp)-Glcp Roots (CHI) [15]
(8E)-Decaene-4,6-diyn 1-O-(2′-O-(6′′-O-Glcp)-Glcp)-Glcp Roots (CHI) [15]

Semiterpene glycosides
Butane-2,3-diol 2-O-Glcp Roots (CHI) [14]

2-Methyl-1-butanol 1-O-Glcp Roots (CHI) [14]
3-Methyl-1-butanol 1-O-Glcp Roots (CHI) [14]

3-Methylbutan-1,3-diol 1-O-Glcp Roots (CHI) [14]
Monoterpene glycosides

3,7-Dimethyl-8-(Glcp)-1,6-octadiene-3-ol (betulalbuside A) Roots (CHI) [14]
Vervenone 10-O-Glcp Roots (CHI) [16]

Norsesquiterpene glycosides
(9S)-Drummondol-9-O-Glcp Roots (CHI) [14]

Phenols
Catechol Roots (CHI) [17]

Benzoic acids
Isovanillic acid Roots (CHI) [17]

Benzyl glycosides
Benzyl O-Glcp Roots (CHI) [16]

3-Methoxy-4-hydroxy-propiophenone 4-O-Glcp (praeroside) Roots (CHI) [18]
Tachioside Roots (CHI) [18]

Isotachioside Roots (CHI) [17]
Allyl benzenes

2-Phenylethyl O-Glcp Roots (CHI) [14]
4-Hydroxy-1-allylbenzene 3-O-(6′′-O-Xylp)-Glcp Roots (CHI) [13]
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Table 1. Cont.

Compound a Organ (Origin b) [Ref.]

Phenylpropanoids
Tyrosol Roots (CHI) [17]

Coniferin Roots (CHI) [18]
Drupanin 4-O-(6′′-O-Glcp)-Glcp (dissectumoside) Roots (CHI) [17]

Ferulic acid Roots (CHI) [16]
(E)-4-(3-Methoxy-prop-1-en-1-yl)-phenol Roots (CHI) [16]

(E)-3-(4-Hydroxy-3-methoxyphenyl)-2-propenoic acid 2-(4-hydroxyphenyl) ethyl ester Roots (CHI) [16]
Benzofurans

6-Carboxylethyl-benzofuran 5-O-(2′′-O-Xylp)-Glcp Roots (CHI) [14]
6-Methoxycarbonylethyl-benzofuran 5-O-(2′′-O-Xylp)-Glcp Roots (CHI) [19]

Neolignans
(7S,8R)-Dehydrodiconiferyl alcohol 4-O-Glcp Roots (CHI) [13]

(7S,8R)-Dehydrodiconiferyl alcohol 4-O-Glcp-9′-n-butanol ether Roots (CHI) [13]
(2S,3S,1′S,2′R)-2,3-Dihydro-5-(1′,2′-dihydroxypropyl)-2-(4-hydroxy-3-methoxyphenyl)-7-

methoxy-3-methylbenzofuran Roots (CHI) [13]

Simple coumarins
Umbelliferone Roots (TJK) [20]

Herb (CHI) [21]
7-Isopentyloxycoumarin Roots (MON) [22]

Scopoletin Roots (CHI) [18]
Herb (CHI) [21]

Isoscopoletin 6-O-Glcp Roots (CHI) [23]
Isofraxidin 6-O-Glcp (eleutheroside B1) Roots (CHI) [23]

Furanocoumarins linear
Bergaptene Roots (CHI) [13], (TJK) [20]

Isopimpinellin Roots (CHI) [13], (TJK) [20],
(MON) [22]

Herb (CHI) [21]
Phellopterin Herb (CHI) [21]

Byakangelicin Herb (CHI) [21]
Xanthotoxin Roots (CHI) [13]
Xanthotoxol Roots (CHI) [18]
Imperatorin Roots (CHI) [13]
Heraclenol Roots (CHI) [15]

Heraclenol 3′′-O-methyl ester Roots (CHI) [16]
Heraclenol 3′′-O-Glcp Roots (CHI) [23]
Heraclenol 2′′-O-Fer Roots (CHI) [23]

Pabularinone Roots (CHI) [15]
Isogosferol Roots (CHI) [15]

Furanocoumarins linear dimeric
Candinol C Roots (CHI) [16]

Rivulobirin C Roots (CHI) [16]
Rivulobirin D Roots (CHI) [16]

Furanocoumarins angular
Angelicin Roots (CHI) [13], (TJK) [20]

Isobergaptene Roots (CHI) [18], (MON) [22]
Herb (CHI) [21]

Heramotol 6-O-Glcp Roots (CHI) [18]
Sphondin Roots (TJK) [20]

Herb (CHI) [21]
Pimpinellin Roots (TJK) [20], (MON) [22]

Herb (CHI) [21]
Dihydrofuranocoumarins linear

(9R,10R)-9,10-Dihydro-10-hydroxy-9-methoxy-bergapten (dissectumol) Roots (CHI) [16]
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Table 1. Cont.

Compound a Organ (Origin b) [Ref.]

Dihydrofuranocoumarins angular
Apterin Roots (CHI) [13]

Apterin 6′′-O-Glcp Roots (CHI) [19]
Hermandiol 5′-O-Glcp (yunngnoside B) Roots (CHI) [15]

Dihydropyranocoumarins angular
5,6-Dihydropyranocoumarin Roots (CHI) [16]

Sterols
β-Sitosterol Herb (CHI) [21]
Daucosterol Herb (CHI) [21]

a Abbreviations: Fer—feruloyl; Frcp—fructopyranose; Glcp—glucopyranose; Xylp—xylopyranose. b Origin:
CHI—China; MON—Mongolia; TJK—Tajikistan.

The basic phenolic group of H. dissectum is coumarins, including simple
coumarins [18,20–23], linear and angular furanocoumarins, dihydrofuranocoumarins, and
dihydropyranocoumarins [13,15,16,18–22]. The analysis of essential oils of herbs [24], lam-
ina, and petiole [25] has shown the presence of monoterpenes, sesquiterpenes, aliphatic
alcohols, and esters. To date, there is no information on metabolites in H. dissectum seeds.

The most diverse metabolites found in H. dissectum are coumarins, which are a group
of phytocompounds with anti-inflammatory [26], anti-HIV [27], antimicrobial [28], an-
ticancer [29], and antiviral properties [30]. A distinctive feature of coumarins is their
lipophilicity [31], which makes it difficult to dissolve or disperse them in safe and water-
based solvents that could be used in experiments on living organisms. To solve the problem
of insolubility of coumarins in water, the use of nanosuspensions has been proposed
and recently studied as the most promising strategy to enhance the oral bioavailabil-
ity of these types of drugs [32,33]. Nanosuspensions have been used to enhance the
bioavailability of curcumin [34], cannabidiol [35], naringenin [36], daidzein [37], and other
bioactive molecules as well as plant-derived fatty materials such as olive leaf extract [38],
Rauwolfia serpentina extract [39], and fennel seed extract [40].

The aim of this study is the investigation of the seed oil of H. dissectum (HSO) by the
physico–chemical methods, high-performance liquid chromatography with photodiode
array detection, and electrospray ionization triple quadrupole mass spectrometric detection
(HPLC–PDA–ESI–tQ–MS/MS) profiling and quantification as well as investigation of
neuroprotective potential of the nanosuspension of HSO obtained using CO2-assisted
effervescence method in brain ischemia model of rats.

2. Materials and Methods
2.1. Plant Material and Chemicals

Ripe seeds of Heracleum dissectum were collected in the Mukhorshibir vicinity (Mukhor-
shibirskii District, Buryatia Republic, Russia; Figure 1a,b; 51◦03′58.2′′ N 107◦55′00.2′′ E,
790 m a.s.l.; sample 1, collection date 29 August 2019, voucher No BUR/API-0819/59-365;
sample 2, collection date 28 August 2020, voucher No BUR/API-0820/63-211; sample 3,
collection date 30 August 2021, voucher No BUR/API-0821/83-407; sample 4, collection
date 29 August 2022, voucher No BUR/API-0820/76-416). Samples were authenticated by
Prof. N.I. Kashchenko (IGEB SB RAS, Ulan-Ude, Russia). The fresh seeds were conditioned
in plastic boxes and transported to the laboratory within 3–4 h, where they were dried in
the ventilated heat oven at 35 ◦C within 5–7 days and stored at 4–6 ◦C before manipulations.
The reference standards were purchased from AbMole BioScience (Houston, TX, USA);
AOBIOUS Inc. (Gloucester, MA, USA); BenchChem (Austin, TX, USA); BioCrick (Chengdu,
Sichuan, China); MCE Med Chem Express (Monmouth, NJ, USA); Sigma-Aldrich (St. Louis,
MO, USA); and Selleck Chemicals (Houston, TX, USA) (Table S1).
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Figure 1. (a) Dissected hogweed (Heracleum dissectum Ledeb.) in the natural habitat (Kharashibir
vicinity, Mukhorshibir District, Buryatia Republic, Russia). (b) Hogweed seeds (b1: inner side; b2:
outer side). (c) Hogweed seed oil raw (c1) and diluted with olive oil (1:10; c2).

2.2. Seed Oil Preparation

Dry and milled seeds (1 kg; sample 1) were exhausted extracted in Soxhlet extractor
(internal volume 2 L; Borosil® Extraction Apparatus, Foxx Life Sciences, Salem, NH, USA)
with petroleum ether (boiling point 30–40 ◦C; Sigma-Aldrich; cat. No 77399). The organic
extract was concentrated in a vacuum at 30 ◦C to give colored viscous oil with a specific
odor (yield 105.2 g) stored under nitrogen at 0 ◦C before manipulations.

2.3. Seed Oil Physico–Chemical Analysis

The following physical parameters of H. dissectum seed oil were determined: viscosity—
viscosimetric method [41] at 20 ◦C using Cannon-Fenske Routine Viscometer (Cannon
Instrument Company, State College, PA, USA); specific gravity—picnometric method [42]
at 20 ◦C using PZh2-5-KSh 7/16 picnometer (MiniMed Ltd., Suponevo, Russia); refrac-
tive index—refractometric method AOAC 921.08 (Refractive Index of Edible Oils and
Fats) [43] at 20 ◦C using Atago 3454 PR-butyro digital butyro refractometer (Atago, Tokyo,
Japan); pH—potentiometric method [44] at 20 ◦C using Thermo Scientific Orion Versa
Star Multi-parameter Benchtop Meter (Thermo Fisher Scientific Inc, Waltham, MA, USA);
melting point—differential scanning calorimetric method [45] using STA 449C C/4/G
Jupiter thermo gravimetric analyzer (Netzsch, Selb, Germany). The chemical parameters
were determined using AOAC assays [43] as peroxide value (AOAC 965.33), acid value
(AOAC 940.28), saponification value (AOAC 41.1.18), iodine value (AOAC 41.1.15), and
unsaponifiable matter (AOAC 975.13). Spectrophotometric assays were used to determine
content of chlorophylls and carotenoids [46], and coumarins [47]. Essential oil content in
H. dissectum seed oil was determined after the hydrodistillation procedure in the Clevenger
apparatus with a 10 g-sample of the oil [48]. The composition of fatty acids and essential
oil was analyzed by gas chromatography-mass spectrometric procedure described previ-
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ously [49] using Agilent 6890 N gas chromatograph and an Agilent Technologies 5973 N
mass selective/quadrupole detector (Agilent Technologies Inc., Santa Clara, CA, USA).

2.4. Ultraviolet Spectroscopy of Seed Oil

The seed oil of H. dissectum (250 mg) was transferred to the volumetric flask (25 mL),
diluted in acetonitrile, and the total volume was filled to 25 mL (solution A; 10 mg/mL).
An aliquot of solution A (100 µL) was diluted in the volumetric flask (25 mL) by acetonitrile
(solution B; 40 µg/mL). Ultraviolet spectra of solutions A and B were studied using an
SF-2000 spectrophotometer (Specter, St. Petersburg, Russia) in 1 cm-quartz cells and pure
acetonitrile as a blank [50]. Imperatorin solution in acetonitrile was used as a reference
standard with the final concentration of 10 µg/mL.

2.5. Fourier-Transform Infrared Spectroscopy (FTIR) of Seed Oil

FTIR spectra of H. dissectum seed oil were studied using FT-801 Fourier-transform
infrared spectrometer (Simex, Novosibirsk, Russia; frequency 600–4000 cm−1, 200 scans,
2-cm−1 resolution) coupled with attenuated total reflection device (ATR) [51].

2.6. High-Performance Liquid Chromatography with Photodiode Array Detection and Electrospray
Ionization Triple Quadrupole Mass Spectrometric Detection (HPLC-PDA-ESI-TQ-MS) Metabolite
Profiling of Seed Oil

To profile coumarins in H. dissectum seed oil, the HPLC-PDA-ESI-TQ-MS method was
performed using the liquid chromatograph LC-20 Prominence coupled with photodiode
array detector SPD-M30A, triple-quadrupole mass spectrometer LCMS 8050, and GLC
Mastro column (2.1 mm × 150 mm × 3 µm; all Shimadzu, Kyoto, Japan). Separation was
provided in the gradient mode by means of eluent A (1% formic acid in water) and B (1%
formic acid in acetonitrile) and the gradient program (%B): 0–2 min 5–15%, 2–8 min 15–27%,
8–20 min 27–80%, and 20–29 min 80–100%, 29–35 min 100–5%. The parameters of injection
volume, flow rate, and column temperature were 1 µL, 200 µL/min, and 27 ◦C, respectively.
A spectral range of 200–600 nm was used to record ultraviolet spectra. Temperature levels
of electrospray ionization triple quadrupole mass spectrometric detection ESI interface,
desolvation line, and heat block were 300 ◦C, 250 ◦C, and 400 ◦C, respectively, and the
values of nebulizing gas (N2) flow, heating gas (air) flow, and collision-induced dissociation
gas (Ar) glow were 3 L/min, 10 L/min, and 0.3 mL/min, respectively. Electrospray
ionization was done with scanning range m/z 80–1900, source voltage 3 kV, and collision
energy +25 eV (positive ionization). To manage the LC-MS system, the preinstalled software
LabSolutions LCMS ver. 5.6 [52] was used. Metabolite identification was realized after
integrated analysis of chromatographic parameters (retention time) and spectral data
(ultraviolet pattern, mass spectra) after comparison with the inner LC-MS library, reference
standards, and the literature data. To prepare the sample solution, H. dissectum seed oil
(25 mg) was dissolved in acetonitrile in a measuring flask (5 mL), followed by filtering
through 0.22 µm syringe filters.

2.7. HPLC-ESI-TQ-MS Quantification of Coumarins in Seed Oil

Six coumarins (heraclenin, oxypeucedanin, imperatorin, phellopterin, isoimperatorin,
and ostruthin) were quantified using HPLC-ESI-TQ-MS conditions described in Section 2.6.
Separately weighed reference standards (10 mg) were dissolved in acetonitrile in volumetric
flasks (10 mL), and the stock solutions (1000 µg/mL) were applied for preparation of the
calibration solutions (1–100 µg/mL) and creation of correlations ‘concentration–mass
spectral peak area’. The values of correlation coefficient (r2), standard deviation (SYX), the
limit of detection (LOD), limit of quantification (LOQ), and linear range were calculated
in Advanced Grapher 2.2 (Alentum Software Inc., Ramat-Gan, Israel) using calibration
curve data [53] and the results of three sufficient HPLC runs (Table 2). Iintra-day, inter-day
precisions, and recovery of spiked samples were studied using the known assay [54]. The
results were expressed as mean values ± standard deviation (S.D.).



Life 2023, 13, 1112 7 of 21

Table 2. Regression equations, correlation coefficients (r2), standard deviation (SYX), limits of de-
tection (LOD), limits of quantification (LOQ), linear ranges, relative standard deviations (RSD) for
intra-day and inter-day precisions, and recovery of spiked samples (REC) for six reference standards.

Compound a a b a
Correlation
Coefficient

(r2)
SYX

LOD/LOQ
(µg/mL)

Linear
Range

(µg/mL)
RSD%

(Intra-Day)
RSD%

(Inter-Day)

Recovery
of Spiked

Sample
REC%

Heraclenin 3.4511 −0.9526 0.9896 0.36·10−2 0.003/0.010 0–250 0.96 1.43 99.63
Oxypeucedanin 2.5481 −0.5231 0.9963 0.22·10−2 0.002/0.009 0–250 0.99 1.28 100.70

Imperatorin 4.6210 −0.8694 0.9906 0.42·10−2 0.003/0.009 0–250 1.03 1.52 98.94
Phellopterin 3.8637 −0.9005 0.9922 0.28·10−2 0.002/0.007 0–250 0.97 1.11 99.52

Isoimperatorin 2.8631 −0.2634 0.9850 0.14·10−2 0.002/0.005 0–250 1.06 1.27 100.93
Ostruthin 2.5387 −0.2622 0.9899 0.10·10−2 0.001/0.004 0–250 0.99 1.14 100.52

a Calibration equation parameter: y = a × x + b.

2.8. Heracleum dissectum Seed Oil Storage Experiment

Three aliquots of H. dissectum seed oil (sample 1; 10 mL) were placed in the individual
polystyrene tubes and thermostated at (1) 20 ◦C, 1 ◦C, and −20 ◦C for three years using
a ventilated MK 53 thermostat (BINDER GmbH, Tuttlingen, Germany) [55]. One stored
sample was taken out for analysis every year and studied by the preparation/analysis
procedure described in Section 2.6.

2.9. Nanosuspension of H. dissectum Seed Oil Preparation

The early recommendations were used to prepare H. dissectum seed oil nanosus-
pension [40] based on the CO2-assisted effervescence technique [56]. The mixture of H.
dissectum seed oil (20 mg), citric acid (30 mg), and tocopheryl polyethylene glycol succinate
(20 mg) was dissolved in 50 mL of ethyl acetate, and the organic solvent was evaporated in
a vacuum. The residue was mixed with 50 mL of NaHCO3 solution (0.08%) and vigorously
stirred for 20 min.

2.10. Characterization of H. dissectum Seed Oil Nanosuspension

Particle size, polydispersity index distribution, and zeta potential were studied using
Dynamic Light Scattering Zetasizer Nano ZS (Malvern Instruments, Malvern, UK) at 20 ◦C
(laser wavelength 633 nm) [57]. All measurements were performed three times.

2.11. Neuroprotective Activity

An animal model of brain ischemia was used to study the neuroprotective activity
of H. dissectum seed oil nanosuspension performed as described early [58]. In brief, per-
manent focal cerebral ischemia of rats was reproduced by right-sided thermocoagulation
of the middle cerebral artery in six animal groups (n = 15), including (1) sham-operated
animals; (2) negative control group with animals after focal cerebral ischemia without
pharmacological support; (3) EGB761 group with animals after focal cerebral ischemia
treated with a reference drug EGB761 (Ginkgo biloba extract, Hunan Warrant Pharmaceuti-
cals, Changsha, China; 35 mg/kg [59]; (4, 5, 6) HSO 0.1, 0.5, 1.0 mL/kg groups of animals
after focal cerebral ischemia treated with H. dissectum seed oil nanosuspension in doses 0.1,
0.5, 1.0 mL/kg. After the 4-day-treatment, an average systolic velocity of cerebral blood
flow was determined using an ultrasound Doppler device, a sensor USOP-010-01 with a
working frequency of 25 MHz, and an MM-D-K-Minimax Doppler v.1.7. (Saint Petersburg,
Russia) [60] followed by the animal’s decapitation, brain extraction, and measuring the
area of necrosis zone. All measurements were performed once for each animal and in total
15 times for one experimental group.

2.12. Statistical Analysis

All quantitative analyses were performed five times, and the data were expressed as
the mean value ± standard deviation (S.D.). Statistical analyses were performed by one-
way analysis of variance, and the significance of the mean difference was determined by
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Duncan’s multiple-range test. Differences at p < 0.05 were considered statistically significant.
The linear regression analysis and generation of calibration graphs were conducted using
Advanced Grapher 2.2 (Alentum Software, Inc., Ramat-Gan, Israel).

3. Results and Discussion
3.1. Physico–Chemical and Spectral Characteristics of Heracleum dissectum Seed Oil

The oil from Heracleum dissectum seeds (HSO) was obtained with a yield of 10.52%
(Table 3); it is a mobile liquid, yellow to green–yellow in color, with specific hogweed
fragrance (Figure 1c).

Table 3. Physico–chemical characteristics of Heracleum dissectum seed oil.

Parameter Value

Yield (% dry seed weight) 10.52 ± 0.15
Viscosity (cP) 62.1 ± 1.2

Specific gravity (g/mL) 0.929 ± 0.018
Refractive index 1.472 ± 0.044

pH 6.20 ± 0.05
Peroxide value (mEq. peroxide/kg) 6.28 ± 0.18

Acid value (mg KOH/g) 0.52 ± 0.01
Saponification value (mg KOH/g) 173.82 ± 3.47

Iodine value (g of I2/100 g) 105.37 ± 2.10
Unsaponifiable matter (% w/w) 0.92 ± 0.02

Melting point (◦C) −25.3 ± −0.3
Chlorophyll a content (mg/L) 297.38 ± 5.94
Chlorophyll b content (mg/L) 66.70 ± 1.42

Carotenoid content (mg/L) 233.94 ± 4.67
Essential oil content (% v/v) 32.31 ± 0.62
Coumarin content (% w/w) 24.52 ± 0.51

Fatty acids (% of total FA content)
Lauric acid (C12:0) 0.1 ± 0.0

Myristic acid (C14:0) 0.1 ± 0.0
Pentadecanoic acid (C15:0) 0.1 ± 0.0

Palmitic acid (C16:0) 5.2 ± 0.1
Palmitoleic acid (C16:1n7c) 0.1 ± 0.0
Heptadecanoic acid (C17:0) 0.1 ± 0.0

Stearic acid (C18:0) 1.2 ± 0.0
Petroselinic acid (C18:1n12c) 48.3 ± 0.9

Oleic acid (C18:1n9c) 10.2 ± 0.2
cis-Vaccenic acid (C18:1n7c) 0.8 ± 0.0

Linoleic acid (C18:2n6c) 28.3 ± 0.6
α-Linolenic acid (C18:3n3) 0.9 ± 0.0

Arachidic acid (C20:0) 0.4 ± 0.0
Behenic acid (C22:0) 0.1 ± 0.0

Lignoceric acid (C24:0) 0.1 ± 0.0

The values of specific gravity and refractive index are 0.929 g/mL and 1.472, respec-
tively, and are similar to those of carrot seed oil (0.981 g/mL, 1.473) [61], Momordica charantia
seed oil (0.998 g/mL, 1.500) [62], and pumpkin seed oil (0.96 g/mL, 1.47) [63]. The level
of pH is 6.20, which indicates the neutrality of oil, which is similar to those of seed oils
of sesame (pH 6.12), melon (pH 6.42), or morinda (pH 6.78) [64]. The peroxide value
of HSO is 6.28 mEq. peroxide/kg, which is considerably below that of carrot seed oil
(16.0 mEq./kg) [61], higher than that of jatropha seed oil (0.8–1.9 mEq./kg) [65], and
similar to that of sunflower seed oil (6.8–7.2 mEq./kg) [66]. The acid value of HSO is
0.52 mg KOH/g, and the saponification value is 173.82 mg KOH/g, which is similar to
those of pumpkin seed oil (0.57–0.64 mg KOH/g; 189–190 mg KOH/g) [63]. However, the
iodine value of HSO is 105.37 g I2/100 g, which indicates the high level of unsaturation that
is typical for sunflower oil (118–141 g I2/100 g), sesame oil (103–120 g I2/100 g), and rice
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bran oil (90–115 g I2/100 g) [67]. Unsaponifiable matter level (0.92%) was similar to those
of apiaceous seed oils from the carrot (0.9%), dill (1.2%), coriander (2.2%), and caraway
(2.5%) [68]. The low melting point (−25.3 ◦C) allows HSO to remain a liquid even at
low temperatures.

The seeds of H. dissectum are weakly pigmented, which results in the dark color of the
oil. The absorption spectrum of HSO demonstrated the presence of long-wave bands at
600–700 and 450–550 nm, which are caused by chlorophylls and carotenoids from seed
coats [69] (Figure 2). The concentration of chlorophylls and carotenoids in HSO is 364.08 and
233.94 mg/L, respectively. The known plant oil composition data indicate a lower pigment
content in olive oil (4.9–24.4 mg/L of chlorophylls and 3.1–13.4 mg/L of carotenoids [70])
or in grape seed oil (1.0–3.8 mg/L of chlorophylls and 2.6–4.8 mg/L of carotenoids [71]).
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The main fatty acid components of HSO are petroselinic acid (cis-6-octadecenoic acid;
48.3%), linoleic acid (cis,cis-9,12-octadecadienoic acid; 28.3%), oleic acid (cis-9-octadecenoic
acid; 10.2%), and palmitic acid (hexadecanoic acid; 5.2%); their total content reaches 92%.
The domination of these compounds in seed oils is a distinctive feature of the Heracleum
genus. European species (such as H. montanum, H. orphanidis, H. pyrenaicum subsp. orsinii, H.
pyrenaicum subsp. pollinianum, H. sibiricum, H. sphondylium, H. ternatum, and H. verticillatum)
demonstrate the prevalence of petroselinic acid in the range of 42.8–56.5% [72]. The content
of linoleic and oleic acids in the specified plants is 20.3–33.3% and 12.3–13.7%, respectively.

The intense fragrance of HSO indicates the presence of volatile components whose
content after hydrodistillation is 32.31% of HSO weight. The results of GC–MS analysis
of essential oil revealed the presence of 21 compounds, including octyl acetate (67.8%),
octyl 2-methyl isobutyrate (9.6%), and hexyl 2-methylbutyrate (8.5%) as basic components
(Table 4). Octyl acetate has a fruity, slightly fatty, waxy, floral odor [73]; these characteristics
best describe the HSO odor. The main components of the essential oils distilled from the
seeds of other Heracleum species are octyl acetate (39.5%), hexyl 2-methylbutyrate (14.4%),
octanol (8.6%), and hexyl 2-methylpropanoate (6.0%) in H. sosnowskyi [74]; hexyl butyrate
(20.9–44.7%) and octyl acetate (11.2–27%) in H. persicum [75,76]; octyl acetate (69.4–76.5%)
and hexyl butyrate (3.2–6.2%) in H. anisactis [77]; 1-octanol (50.3%), octyl butyrate (24.6%),
and octyl acetate (7.3%) in H. sphondylium subsp. ternatum [78]. It is possible that octanol
and hexanol and its esters are typical for the genus Heracleum.
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Table 4. Volatile components of H. dissectum seed oil.

Compound RI a Content, % Identification b

Octanal 1003 1.2 i, ii, iii
Limonene 1027 0.4 i, ii, iii

Benzyl alcohol 1033 0.7 i, ii, iii
Octanol 1071 1.4 i, ii, iii

Hexyl butyrate 1192 3.0 i, ii
Decanal 1205 0.6 i, ii, iii

Octyl acetate 1214 67.8 i, ii, iii
Hexyl 2-methylbutyrate 1237 8.5 i, ii

Bornyl acetate 1286 0.1 i, ii, iii
Octyl isobutyrate 1345 1.4 i, ii

Octyl 2-methyl isobutyrate 1354 9.6 i, ii
Hexyl hexanoate 1387 0.5 i, ii, iii

Octyl butyrate 1391 0.6 i, ii
Decyl acetate 1411 0.2 i, ii, iii

Octyl 2-methylbutyrate 1437 0.9 i, ii
Germacrene D 1485 0.2 i, ii, iii
δ-Cadinene 1525 0.1 i, ii, iii
E-Nerolidol 1564 0.1 i, ii, iii

Octyl hexanoate 1585 1.1 i, ii, iii
Nonyl pentanoate 1588 0.1 i, ii

Octyl octanoate 1778 1.2 i, ii, iii
Total 99.7

a RI: Retention index determined on a HP-5 column relative to a series of n-alkanes (C9–C29). b Methods of
identification: i, retention index; ii, mass spectrum; iii, co-injection with an authentic sample.

The dilution of HSO led to the formation of a specific spectral pattern in the UV region,
which was similar to those of 8-O-substituted furanocoumarins [79] and indicated the
presence of these phytocomponents (Figure 2). The spectrophotometric assay allowed us to
determine that the total content of coumarins in HSO was approximately 24.52%, which is
characterized as a high level.

For the further study of HSO, Fourier-transform infrared spectroscopy was applied,
which is a commonly used method for the analysis and authentication of edible oils [80].
The spectral pattern of HSO is complex and characterized by various bands, which were as-
signed to three groups of phytocompounds after comparison with the reference compounds
such as petroselinic acid (fatty acid example), octyl acetate (essential oil component), and
imperatorin (furanocoumarin example) (Figure 3 and Figure S1). The most intense bands
were attributed to the fatty acids, specifically C-H stretching of H-C=C at 2921 cm−1, C-
H symmetric stretching at 2851 cm−1, C=O stretching at 1736 cm−1, and C-H bending
at 1463 cm−1 [81]. The alkyl fragment of octyl acetate gave the bands from the same
“fatty” regions together with specific bands caused by acetate and octyl fragments at 1378,
1211, 1066, 1029, 938, and 721 cm−1 [82]. Bands of furanocoumarins clearly appeared at
700–1800 cm−1, more specifically at 1713 (lactonic C=O), 1621 (furanic C=C), 1586, 1440 (aro-
matic C=C, 8-O-substituted furanocoumarins), 1324 (aryl-O of methoxylated coumarins),
1144, 1093 (furan ring), 997, 874, 825, and 748 cm−1 (deformation vibrations of C-H) [83].
The FTIR spectrum of HSO allows for elucidating the general composition of seed oil
because it contains the bands of all dominant phytocomponents.

3.2. Coumarin Profile of Heracleum dissectum Seed Oil

The high coumarin content in HSO allowed us to realize profiling by HPLC–PDA–
ESI–tQ–MS/MS. This led to the discovery of 38 compounds, which were identified on
the basis of retention times as well as UV and mass spectrometric data after comparison
with reference substances and literature data [84–87] (Figure 4, Table 4). The structures of
thirty-two coumarins were accurately identified, and the structures were predicted for six
compounds (Figure 5).
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Table 5. Chromatographic (t) and ultraviolet (UV) and mass-spectrometric (ESI-MS) data of com-
pounds 1–38 found in H. dissectum seed oil.

No. t, min UV, λmax, nm
ESI-MS, m/z (I, %)

Compound [Ref.] IL *
[M + H]+ [M + Na]+ [M + K]+

1 6.22 211, 229, 344 209 (11) 231 (100) 247 (54) Isofraxetin [84] 1
2 6.93 230, 259, 302, 345 179 (9) 201 (100) 217 (63) Esculetin [85] 1
3 8.19 216, 324 163 (22) 185 (100) 201 (58) Umbelliferone [86] 1
4 9.92 228, 230, 300, 342 193 (4) 215 (100) 231 (69) Scopoletin [84] 1
5 10.05 230, 261, 345 209 (10) 231 (100) 247 (82) Fraxetin [85] 1

6 10.72 217, 248, 265, 300 305 (8) 327 (100) 343 (42) Heraclenol (prangenin hydrate,
komaline) [84] 1

7 11.29 222, 250, 265, 308 305 (11) 327 (100) 343 (38) Oxypeucedanin hydrate
(prangol) [84] 1

8 11.62 222, 249, 267, 311 335 (26) 357 (100) 373 (73) Byakangelicin [84] 1
9 11.88 272, 310 147 (4) 169 (100) 185 (56) Coumarin [84] 1

10 12.28 214, 300, 318 177 (11) 199 (100) 215 (36) Herniarin [84] 1
11 12.82 244, 292, 330 187 (12) 209 (100) 225 (49) Psoralen [87] 1
12 13.11 200, 216, 258, 302 187 (3) 209 (100) 225 (72) Angelicin [87] 1
13 13.72 217, 247, 265, 301 217 (8) 239 (100) 255 (53) Xanthotoxin [87] 1
14 14.15 222, 248, 268, 312 217 (5) 239 (100) 255 (42) Bergapten [87] 1
15 14.63 215, 250, 265, 305 287 (18) 309 (100) 325 (56) Heraclenin (prangenine) [84] 1
16 14.92 217, 247, 265, 300 247 (26) 269 (100) 285 (73) Pimpinellin [87] 1
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Table 5. Cont.

No. t, min UV, λmax, nm
ESI-MS, m/z (I, %)

Compound [Ref.] IL *
[M + H]+ [M + Na]+ [M + K]+

17 15.34 221, 247, 267, 310 317 (5) 339 (100) 355 (42) Byakangelicol [84] 1
18 15.37 220, 251, 266, 304 289 (2) 311 (100) 327 (39) Pranferol [85] 1
19 16.03 220, 248, 268, 311 271 (15) 293 (100) 309 (73) Alloimperatorin (prangenidin) [84] 1
20 16.14 220, 251, 265, 304 287 (12) 309 (100) 325 (31) Isooxypeucedanin [84] 1
21 16.42 220, 248, 267, 312 319 (9) 341 (100) 357 (39) Heracol [84] 2
22 16.82 217, 248, 266, 301 287 (5) 309 (100) 325 (63) Oxypeucedanin (prangolarlin) [84] 1
23 17.22 217, 248, 267, 300 287 (3) 309 (100) 325 (40) Oxypeucedanin isomer [84] 2

24 17.73 217, 248, 265, 300 271 (11) 293 (100) 309 (70) Imperatorin (ammidin,
marmelosin) [84] 1

25 18.51 221, 248, 268, 311 301 (26) 323 (100) 339 (72) Phellopterin [85] 1
26 19.12 220, 250, 265, 305 271 (7) 293 (100) 309 (65) Isoimperatorin [87] 1
27 20.27 221, 249, 267, 312 301 (14) 323 (100) 339 (51) Cnidilin (isophellopterin) [87] 1
28 21.18 224, 326 383 (6) 405 (100) 421 (63) Farnesiferol C [85] 1
29 21.80 220, 248, 267, 312 355 (8) 377 (100) 393 (52) Cnidicin [84] 1
30 22.09 216, 247, 265, 301 299 (10) 321 (100) 337 (45) Auraptene isomer [84] 2
31 22.53 220, 247, 267, 311 339 (7) 361 (100) 377 (83) Bergamottin isomer [84] 2
32 22.82 216, 247, 265, 301 339 (12) 361 (100) 377 (46) 8-Geranyloxypsoralen [84] 1
33 23.22 220, 325 299 (8) 321 (100) 337 (40) Auraptene [84] 1
34 25.71 220, 247, 267, 311 339 (5) 361 (100) 377 (80) Bergamottin [84] 1
35 26.64 220, 324 299 (12) 321 (100) 337 (63) Ostruthin [85] 1

36 27.28 219, 267, 325 313 (10) 335 (100) 351 (61) 5-Geranyloxy-7-
methoxycoumarin [84] 1

37 27.91 220, 324 299 (14) 321 (100) 337 (60) Ostruthin isomer [85] 2

38 28.47 219, 267, 325 313 (11) 335 (100) 351 (53) 5-Geranyloxy-7-methoxycoumarin
isomer [84] 2

* Identification level: (1) identified compounds after comparison of UV, mass-spectral data, and retention time
with reference standards; (2) putatively annotated compounds after comparison of UV and mass-spectral data
with literature data.

Eleven identified compounds are simple coumarins that are based on the benzopyran-
2-one substituted at C-5, C-6, C-7, and C-8 positions including unsubstituted coumarin (9)
and its derivatives with simple substituents (hydroxyl and methoxyl) such as umbelliferone
(3) and scopoletin (4), which have been previously detected in H. dissectum roots [18,20]
and herb [21], and new hogweed coumarins herniarin (10), esculetin (2), isofraxetin (1), and
fraxetin (5). Compounds 28 and 33 are derivatives of umbelliferone (7-hydroxycoumarin,
3); farnesiferol C (28) is a sesquiterpene coumarin found in Ferula genus [88], and auraptene
(33) or 7-geranyloxycoumarin is typical for Ferula and Citrus species [89].

Esculetin derivative ostruthin (35) or 6-geranyloxy-7-hydroxycoumarin has been pre-
viously identified in Peucedanum genus [90], and 5-geranyloxy-7-methoxycoumarin is a
component of bergamot essential oil [91]. Compounds 28, 33, 35, and 36 are the new Hera-
cleum genus metabolites. The mass spectral patterns of coumarins 30, 37, and 38 are similar
to those of auraptene, ostruthin, and 5-geranyloxy-7-methoxycoumarin, respectively, and
the compounds are isomers.

The remaining compounds are furanocoumarins with linear and angular molecular
geometry. Linear furanocoumarins in H. dissectum seed oil are derivatives of psoralen
(11) and are divided into three types of substitution, including 5-O-, 8-O-, and 5,8-di-O-
substitution. Coumarins with a functional group only at the C-5 position are bergaptol
esters (5-hydroxypsoralen) and identified as oxypeucedanin hydrate (prangol, 7), bergapten
(14), pranferol (18), isooxypeucedanin (20), oxypeucedanin (prangolarlin, 22), isoimpera-
torin (26), and bergamottin (34). Bergapten has been previously found only in the roots of H.
dissectum [13,20], isoimperatorin has been identified in the fruits of H. leskowii [92], while 7,
18, 20, 22, and 34 have been detected for the first time for these species and genus. Among
the 8-O-substituted furanocoumarins are: a) esters of xanthotoxol (8-hydroxypsoralen),
which has been previously isolated from the roots of H. dissectum; the identified esters
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include heraclenol (prangenin hydrate, komaline, 6) [15,16,23], xanthotoxin (13) [13], and
imperatorin (24) [13]; b) heraclenin (prangenin, 15), which has been detected in H. candi-
cans [93], H. canescens [94], and H. sibiricum [95]; and c) 8-geranyloxypsoralen (32), which
has been found in H. candicans [93].

Seven 5,8-di-substituted furanocoumarins are known herb coumarins of H. dissectum
including byakangelicin (8) [21] and phellopterin (25) [21] in addition to alloimperatorin
(prangenidin, 19), which has been detected in H. canescens [94], and heracol, which has
been isolated from the roots of H. leskowii [96] and H. pastinacifolium [97]. Byakangelicol
(17), cnidilin (isophellopterin, 27), and cnidicin (29) have not been previously detected
in the Heracleum genus. Two known Heracleum furanocoumarins with angular skeletons
of angelicin (12) and pimpinellin (16) have been detected in H. dissectum roots [13,20,22]
and herb [21] and in other hogweeds such as H. leskowii [92], H. mantegazzianum [98], and
H. maximum [99].

The obtained data allow us to conclude that H. dissectum seed oil is a source of
coumarins that are typical for the Heracleum genus [6] and Apiaceae family as a whole [100],
and some simple coumarins and furanocoumarins have been newly detected.

3.3. Quantification of Six Coumarins in Heracleum dissectum Seed Oil before and after Storage

To further characterize coumarins in HSO, quantification of six dominant compounds
was performed by HPLC-ESI-TQ-MS, which allowed to determine the concentrations
of heraclenin, oxypeucedanin, imperatorin, phellopterin, isoimperatorin, and ostruthin
(Table 6).

Table 6. Content of six coumarins in H. dissectum seed oil during storage, mg/mL ± S.D.

Storage
Duration Heraclenin Oxypeucedanin Imperatorin Phellopterin Isoimperatorin Ostruthin Total

Before storage (control samples)
Sample 1 10.48 ± 0.21 3.23 ± 0.06 153.05 ± 3.06 37.12 ± 0.74 29.52 ± 0.59 5.02 ± 0.11 238.42
Sample 2 9.53 ± 0.19 1.18 ± 0.02 126.11 ± 2.53 42.10 ± 0.84 25.86 ± 0.52 4.59 ± 0.09 209.37
Sample 3 10.26 ± 0.21 5.76 ± 0.11 108.83 ± 2.19 30.83 ± 0.63 20.82 ± 0.40 4.64 ± 0.08 181.14
Sample 4 5.14 ± 0.11 0.93 ± 0.02 128.41 ± 2.57 32.63 ± 0.66 11.67 ± 0.23 5.09 ± 0.10 183.87

Room storage (20 ◦C; treated sample 1)
1 year 9.43 ± 0.19 * 2.93 ± 0.04 * 140.81 ± 2.85 * 33.04 ± 0.67 * 26.56 ± 0.54 * 4.41 ± 0.08 * 217.18
2 years 8.91 ± 0.17 * 2.77 ± 0.04 * 128.52 ± 2.59 * 31.12 ± 0.61 * 24.21 ± 0.47 * 4.16 ± 0.07 * 199.69
3 years 8.17 ± 0.16 * 2.42 ± 0.03 * 110.19 ± 2.26 * 26.76 ± 0.52 * 20.66 ± 0.40 * 3.81 ± 0.05 * 172.01

Cold storage (1 ◦C; treated sample 1)
1 year 10.37 ± 0.20 3.18 ± 0.06 149.99 ± 3.00 36.75 ± 0.74 29.20 ± 0.58 4.97 ± 0.09 234.46
2 years 10.15 ± 0.19 3.10 ± 0.06 148.45 ± 2.96 36.37 ± 0.71 28.38 ± 0.54 4.86 ± 0.09 231.31
3 years 9.85 ± 0.18 * 3.04 ± 0.06 * 143.87 ± 2.85 * 32.26 ± 0.63 * 27.75 ± 0.52 * 4.76 ± 0.08 * 221.53

Freeze storage (−20 ◦C; treated sample 1)
1 year 10.45 ± 0.21 3.21 ± 0.06 152.80 ± 3.05 37.04 ± 0.73 29.06 ± 0.60 4.92 ± 0.11 237.48
2 years 10.37 ± 0.20 3.17 ± 0.06 151.48 ± 3.01 36.70 ± 0.72 29.14 ± 0.58 4.90 ± 0.11 235.79
3 years 10.16 ± 0.19 3.10 ± 0.06 149.90 ± 2.99 36.10 ± 0.70 28.82 ± 0.56 4.84 ± 0.11 232.92

Asterisk indicates a significant difference (p < 0.05) vs. before storage level.

The variation of coumarin content in four samples of HSO was 5.14–10.48 mg/mL
for heraclenin, 0.93–5.76 mg/mL for oxypeucedanin, 108.83–153.05 mg/mL for im-
peratorin, 30.83–42.10 mg/mL for phellopterin, 11.67–29.52 mg/mL for isoimpera-
torin, and 4.59–5.09 mg/mL for ostruthin. The total coumarin content in samples was
181.14–238.42 mg/mL. Imperatorin is a dominant coumarin in H. dissectum seed oil
and, as has been shown earlier, in H. leskowii seed lipophilic fractions [101] and
H. verticillatum seed extract [102].

Owing to the lipophilic nature of H. dissectum seed oil, the storage of HSO may lead to
a loss of quality parameters, including coumarin content. Therefore, it is helpful to study
the stability of marker compounds under various storage conditions, i.e., room, cold, and
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freezing temperatures (Table 6). The 3-year room temperature storage of HSO resulted
in the greatest loss of total coumarin content, i.e., 8.9% after 1-year storage, 16.2% after
2-year storage, and 27.9% after 3-year storage. A decrease in storage temperature helped
to preserve coumarins in HSO; specifically, after 3-year storage at 1 ◦C and at −20 ◦C, the
total coumarin recovery was 92.9% and 97.7% of the initial content, respectively. This is a
clear indication of the value of storage temperature on the quality of seed oil.

3.4. Nanosuspension of Heracleum dissectum Seed Oil and Its Neuroprotective Activity

Among the many existing methods of nanosuspension preparation, the CO2-assisted
effervescence method was successfully applied to H. dissectum seed oil [103]. Prepared
HSO nanosuspension has small particles (82.36 nm, polydispersity index 0.208), and zeta
potential showed surface charge values of −25.3 mV (Figure 6), which indicates that this
formulation is characterized by nanometer-scale particles and homogenous dispersion [104].
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Permanent focal cerebral ischemia caused by the right-sided thermocoagulation of the
middle cerebral artery in rats reduces cerebral blood flow (1.25 sm/s vs. 4.10 sm/s in the
sham-operated group; p < 0.05) and increases necrosis zone area to 41.52% (Table 7). The
application of a standardized extract of Ginkgo biloba (EGB761) demonstrated a positive
effect characterized by increased cerebral blood flow (2.63 sm/s; p < 0.05) and reduction of
necrosis zone area down to 21.60% (p < 0.05), which is typical for the plant extracts with
neuroprotective effects such as Ginkgo biloba [105], Rhaponticum uniflorum [106], Serratula
centauroides [107], and Nepeta multifida [108]. The nanosuspension of HSO in doses of
0.1–1 mL/kg demonstrated a positive dose-dependent effect, which increased with dose.
The most pronounced neuroprotective activity was found for the dose of 1 mL/kg, which
increased cerebral blood flow to 3.11 sm/s (p < 0.05) and decreased necrosis zone area to
18.56% (p < 0.05); this result indicates the greater therapeutic effect of HSO compared to
that of the EGB761 reference drug.

The know literature data indicate that the selected components of H. dissectum seed
oil have a great influence on the ischemic brain tissues. The basic coumarin of the plant,
imperatorin, protects the brain against extreme oxidative stress induced by cerebral is-
chemia/reperfusion in rats through activation of the Nrf2 signaling pathway [109] and/or
anti-apoptosis function [110]. Imperatorin reduces neuronal apoptosis and boosts synaptic
plasticity in a vascular dementia model of rats developed by the modified ligation of perpet-
ual two-vessel occlusion [111]. Imperatorin performed an anti-inflammatory role through
the downregulation of MAPK and NF-κB signaling pathways in ischemic stroke-induced
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to microglia-mediated neuroinflammation and was determined to be a potential anti-stroke
agent [112]. Imperatorin demonstrates a significant vasorelaxant activity (which is higher
than that of acetylcholine), radical scavenging [113], and antidepressant potential [114].
Geranylated coumarin ostruthin, owing to its TREK-1 channel activator activity, showed
antidepressant and anxiolytic effects in mice evaluated by the open-field, elevated plus
maze, and light/dark box tests [115]. Unsaturated fatty acids can protect the brain against
ischemic injury by activating Nrf2 and upregulating heme oxygenase 1 [116]. Perhaps other
phytocomponents of H. dissectum seed oil may have positive effects on the ischemic brain;
however, this question will be addressed in future studies.

Table 7. Effect of H. dissectum seed oil nanosuspension on the cerebral hemodynamics and the
necrosis zone in rats with cerebral ischemia.

Parameter

Experimental Group (n = 15 For All Groups)

Sham-Operated
Group

Negative
Control EGB761 HSO,

0.1 mL/kg
HSO,

0.5 mL/kg
HSO,

1 mL/kg

Cerebral Blood
Flow, sm/sec 4.10 ± 0.25 1.25 ± 0.10 a 2.63 ± 0.21 ab 1.45 ± 0.11 ac 2.28 ± 0.22 ab 3.11 ± 0.26 abc

Necrosis Zone
Area, % - 41.52 ± 3.73 21.60 ± 1.95 b 42.62 ± 4.69 c 30.38 ± 2.78 bc 18.56 ± 1.69 bc

Letters (a–c) indicates a significant difference (p < 0.05) vs. sham-operated animals’ group (a), negative control
group (b), and EGB761 reference group (c).

4. Conclusions

This study demonstrated for the first time that H. dissectum seeds are a source of
valuable oil. Physico–chemical parameters and phytocompounds present in seed oil (HSO)
were characterized by various methods, including high-performance liquid chromatogra-
phy with photodiode array detection and electrospray ionization triple quadrupole mass
spectrometric detection. Fatty acids, volatile components, coumarins, and photosynthetic
pigments were found in HSO and quantified. Coumarins were separated by the LC–MS
technique, and HSO was determined to be a source of furanocoumarins among which
heraclenin, oxypeucedanin, imperatorin, phellopterin, isoimperatorin, and ostruthin were
predominant with the total content of 18.1–23.8%. Stability study showed that cold and
freezing storage resulted in the best preservation of coumarins in HSO. Our findings sug-
gest that it is possible to obtain HSO nanosuspensions with neuroprotective activity, as
determined using the model of cerebral ischemia in rats. Thus, H. dissectum is a bioactive
plant. These results will help create new nanotherapeutic remedies.
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the qualitative and quantitative analysis by HPLC-DAD-ESI-tQ-MS assays.
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