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Abstract: Genome editing aims to revolutionise plant breeding and could assist in safeguarding the
global food supply. The inclusion of a 12–40 bp recognition site makes mega nucleases the first tools
utilized for genome editing and first generation gene-editing tools. Zinc finger nucleases (ZFNs) are
the second gene-editing technique, and because they create double-stranded breaks, they are more
dependable and effective. ZFNs were the original designed nuclease-based approach of genome
editing. The Cys2-His2 zinc finger domain’s discovery made this technique possible. Clustered
regularly interspaced short palindromic repeats (CRISPR) are utilized to improve genetics, boost
biomass production, increase nutrient usage efficiency, and develop disease resistance. Plant genomes
can be effectively modified using genome-editing technologies to enhance characteristics without
introducing foreign DNA into the genome. Next-generation plant breeding will soon be defined by
these exact breeding methods. There is abroad promise that genome-edited crops will be essential
in the years to come for improving the sustainability and climate-change resilience of food systems.
This method also has great potential for enhancing crops’ resistance to various abiotic stressors. In
this review paper, we summarize the most recent findings about the mechanism of abiotic stress
response in crop plants and the use of the CRISPR/Cas mediated gene-editing systems to improve
tolerance to stresses including drought, salinity, cold, heat, and heavy metals.

Keywords: abiotic and biotic stress; CRISPR; mega nucleases; TALEN; ZFN

1. Introduction

By the end of the year 2050, the world population is anticipated to reach up to
10 billion [1]. In this situation, increasing food crop production by 60% over the com-
ing decades is necessary to ensure global food security [1,2]. To sustainably increased food
production, additional integration of all developed relevant techniques, such as genomics,
genome editing (GE), artificial intelligence, and deep learning, will be necessary [3,4]. Crop
modification methods have a long history and have been used ever since the first agricul-
tural plants were domesticated. Since then, other new methods have been created and are
being developed to boost crop production and economic value even more. Traditional crop
breeding techniques in the 20th century either relied on naturally occurring mutations or
on mutagenesis that was created artificially [5]. Genetic research has traditionally focused
on the identification and assessment of spontaneous mutations. Scientists were reliant
on each other and showed that radiation or chemical treatment could increase the rate of
mutagenesis [6,7]. Later approaches, suchas radiation and chemical mutagenesis, altered
the genome at random sites by inserting transposon motifs that may be induced in some
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animals. However, a fundamental disadvantage of conventional breeding methods is the
length of time needed to breed new varieties of any crops with the required agronomic
characteristics. The duration of the growing season and the maturity level of the plants
(particularly long-period growers, such as trees), as well as various stages of crossing,
selection, and testing during the breeding process, all have an impact on this [8]. The
plant genome cannot be targeted using conventional techniques for chemical and physical
mutagenesis or natural mutations. Using genetic engineering, better plants and animals
may be developed more quickly [5].

The first genetically modified (GM) crops were released for sale in 1996 [9]. Genera-
tions of GM crops up to now have relied on the genome’s random insertion of new DNA
sequences. The possibility that the inserted gene may affect or impede the activity of other
crucial nearby genes has been raised as a concern regarding this approach. In addition,
public anxiety regarding GM crops is increased when talking about the introduction of
‘alien’ genes from distantly related organisms, which is thought to be ‘unnatural’ despite
mounting evidence to the contrary [10,11].

The creation and use of DNA-based markers at the turn of the twenty-first century has
made it possible to reduce significantly the time needed to generate new lines and varieties
of agricultural crops [10–13]. All these factors have greatly helped the development of
focused GE methods [14–17]. In yeast and mice, the first targeted genetic alterations were
created in the 1970s and 1980s [6,8]. This gene targeting was based on the homologous
recombination process, which was extremely accurate.

RNA interference (RNAi) was one of the first GE technologies [5,18,19]. Even though
this technology has been successfully used in functional genomics and plant breeding [20–22],
it has several drawbacks, including the unlimited insertion site of an RNAi construction
into the genome and partial gene function suppression [5].

This is a marvelous time for genetics, due to advances in genetic analysis and genetic
manipulation. Genome editing, the most recent crop-enhancement method, allows precise
changes of the plant genome by deleting undesired genes or enabling genes to acquire
new functions [23]. Numerous crops’ genomes have been sequenced, and improvements
in genome-editing techniques have made it possible to breed for desired features. To
sustainably increase food production, additional integration of all developed relevant
techniques, such as genomics, genome editing (GE), artificial intelligence, and deep learning,
is necessary [24].

Advanced biotechnological methods are made possible by genome-editing tools, al-
lowing for precise and effective targeted modification of an organism’s genome. Several
novel tools for genome or gene editing are available to enable researchers to modify ge-
nomic sequences precisely [25]. These techniques facilitate novel insights into the functional
genomics of an organism and enable us to alter the regulation of gene expression patterns
in a pre-determined region. Because of accurate DNA manipulation, genome-editing tech-
nologies, for instance, CRISPR/Cas9 (clustered regularly interspaced short palindromic
repeats/CRISPR-associated systems), TALENs (transcription activator-like effector nucle-
ases), CRISPR/Cas12a (Cpf1, CRISPR from Prevotella and Francisella1), and Cas9-derived
DNA base editors, provide unprecedented advancements in genome engineering. As a
result, this technology is a powerful tool that can be employed to secure the global food
supply [26].

Genome editing was first proposed by Capecchi [27] in the 1980s. This method allows
for the removal, modification, or addition of genetic material at specified genomic locations.
Even though current GE technologies are substantially more accurate than traditional
mutagenesis [28,29], the biggest barrier here is still the legitimacy of GE crops. Assessing
the biosafety of such crops is a unique difficulty because it is impossible to predict the
effects of single base alterations following the application of ODM and BEs [30,31].

The primary elements that affect plant growth and reduce agricultural productivity
are biotic stressors [32,33] such as disease and insect pests, along with abiotic stressors [13]
including cold, drought, and saline–alkali stress (Figure 1). Many crop plants that can
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withstand abiotic stress have previously been created via traditional marker-assisted breed-
ing. However, due to extensive screening [34,35] and backcrossing procedures, it takes
this tactic about a decade to generate abiotic stress-resilient crops effectively [36]. Al-
though genetically modified, stress-tolerant plants have disclosed encouraging results,
several barriers still stand in the way of their widespread commercialization. In many
ways, crops with genome editing differ from genetically engineered species [37]. Consid-
ering this, genome editing seems to be a sophisticated strategy to create crops that are
resistant to different abiotic stress in the future, because it allows precise manipulation of
different gene loci in comparably less time, which lowers the cost of crop-improvement
programmes [38]. Gene-editing technology based on CRISPR/Cas might successfully target
complex quantitative genes linked either directly or indirectly to abiotic stressors. The use
of CRISPR-Castechnology has been linked in recent years to the establishment of disease
resistance in plants by modifying gene regulation [39–42]. Currently, CRISPR/Cas-based
genome editing has been efficaciously utilized to investigate tolerance against multiple
abiotic stresses, including heat, drought, salt, and nutritional values in several critical
agricultural plants [43,44]. In this review article, we summarize the most likely uses of the
CRISPR/Cas9-mediated genome editing technique in crop plants for dealing with diverse
abiotic stresses such as heat, drought, salinity, cold, herbicide etc., and we predict the tools
for future advancements in the creation of crop varieties that can withstand stresses.
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2. Genome-Editing Strategy

Genome editing is one of the most promising approaches to understand the genome
and to improve crop plants. The fundamental mechanisms involved in genetic modifica-
tion by programmable nucleases (NHEJ) are the recognition of target genomic loci and
binding of effector DNA-binding domain (DBD), double-stranded breaks (DSBs) in target
DNA caused by restriction endonucleases (FokI and Cas), and repair of DSBs through
homology-directed recombination (HDR) or non-homologous end joining [45]. While the
well-organized and error-prone NHEJ results in the deletion or insertion of nucleotides, the
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less efficient and more accurate HDR results in the replacement of nucleotides. Genome-
editing methods such as ZFN, TALEN, and CRISPR/Cas are being utilized to add the
desired trait(s) and remove the undesirable ones. Numerous techniques are available for
genome editing using either a site-specific recombinase (SSR) system or a site-specific
nuclease (SSN) system. Both systems must be able to find a known sequence. The SSN
system causes single or double strand DNA breaks and activates endogenous DNA repair
systems. Depending on how the sites (loxP, FLP, etc.) are oriented, SSR technology, such
as Cre/loxP- and Flp/FRT-mediated systems, can knockdown or knock in genes in the
eukaryotic genome around the area of the target [46].

Plant genome-editing techniques have been classified into four major types based on
onsite-specific endonucleases (Table 1). Those are ZFNs, meganucleases, TALENs, and
CRISPR-Cas9 along with DSB-free genome editing, base editing, prime editing, and mobile
CRISPR. These techniques are all discussed in detail below.

2.1. Zinc-Finger Nucleases

ZFNs are assemblages of DNA recognition modules based on zinc fingers and the
DNA cleavage domain of the FokI restriction enzyme. With their use, the target genome can
be altered to introduce a variety of genetic changes, such as deletions, insertions, inversions,
translocations, and point mutations [47]. They have two domains, the first of which is a
nuclease domain and the second of which is a DNA-binding domain. The DNA-binding
domain’s 3- to 6-zinc finger repeats may recognize nucleotide sequences that are 9 to
18 bases long. The second domain is made up of the restriction enzyme Flavobacterium
okeanokoites I (FokI), which is necessary for DNA cleavage [48].This method involves
three artificial restriction enzymes, specifically ZFN-1, ZFN-2, and ZFN-3 [49]. ZFN-1:
At this point, ZFN is transferred to the plant genome devoid of taking a repair template.
Once it arrives at the plant genome, it makes double-stranded breaks (DSB) to the host
DNA leading to non-homologous end joining (NHEJ) of DNA [50], which either produces
site-specific arbitrary mutations or a small deletion or insertion. ZFN-2: Distinct from
ZFN-I, a homology-directed repair (HDR) alongside a short repair template is delivered to
the crop genome next to the ZFN enzyme [51]. The template DNA is homologous to the
target DNA, which attaches to a specific sequence causing a double-stranded rupture. The
template commences repairing with an endogenous repair mechanism which is directed to
site-specific point mutations throughout homologous recombination (HR). ZFN-3: As soon
as the ZFN transcribing gene is transferred to the plant genome next to the large repair
template, it is called ZFN3 [51,52].

ZFN has been effectively implemented in Arabidopsis, tobacco, soybean, and maize [53–56].
In one example of the use of ZFNs in crop breeding, the insertion of PAT gene cassettes
disrupted the endogenous ZmIPK1 gene in maize, which altered the inositol phosphate
profile of growing maize seeds and improved herbicide resistance [53].ZFNs can be created
utilizing various protein-engineering techniques to target essentially any unique DNA
stretch [57]. ZFNs with enhanced specificity and activity have been developed to produce
knockouts, which disable the gene’s function, as well as gain-of-function alterations [58].

2.2. Meganucleases

Longer DNA sequences (more than 12 bp) can be selectively detected and cut by
meganucleases, which are endonucleases. This approach has been discovered in a wide
variety of organisms, including archaebacteria, bacteria, algae, fungi, yeast, and many
plant species. Meganucleases at the target region can sustain mild polymorphisms [59].
Meganucleases have been divided into five groups based on their sequence and struc-
tural features. These consist of His-Cys box, GIY-YIG, LAGLIDADG, PD-(D/E) XK, and
HNH [60,61].Genome editing has mostly used members of the LAGLIDADG meganuclease
(LMN) family. According to Silvaet al. [60], the name of this protein family is taken from
the sequence of the main motif found in its structure. LMNs are typically expressed in the
chloroplast and mitochondria of unicellular eukaryotes. The bulk of these endonucleases
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are dimeric proteins that have two separate functions: they splice their own introns as
RNA maturases and cleave exon sequences as specialized endonucleases [62]. I-SceI and
I-CreI’s genomes can be edited employing the rRNA gene of the mitochondrial DNA of
Saccharomyces cerevisiae. The 21S contains the I-SceI gene’s location. The chloroplast of
Chlamydomonas reinhardtii, a unicellular alga, was found to contain I-CreI, which is found in
the 23S rRNA gene. However, due to the difficulties in reengineering meganucleases to
target specific DNA areas, their utility in genome editing is limited [63].

2.3. Transcription Activator-like Effector Nucleases (TALENs)

Restriction enzymes called TALENs, or transcription activator-like effector nucleases,
are designed to cleave specific DNA sequences. TALENs are made up of a nuclease that can
cleave DNA in cells and a TALE domain that is intended to mimic the natural transcription
activator-like effector proteins. Currently, a huge number of researchers are studying
transcription activator-like effector nucleases (TALENs), which are composed of a free
designable DNA-binding domain and a nuclease [64], in a variety of organisms. TALENs
have recently emerged as a cutting-edge method for genome editing in a variety of species
and cell types. It was discovered that TALENs may alter the genome in a variety of plants,
including Arabidopsis, Nicotiana, Brachypodium, barley, potatoes, tomatoes, sugarcane,
flax, rapeseed, soybean, rice, maize, and wheat [65,66]. According to a report, rice was
the first crop in which TALENs technology was employed for enhancement. According
to Li et al. [67], the main pathogen of blight disease (Xanthomonas oryzae) significantly
reduces global rice production each year. By disrupting the genes for fatty acid desaturase
(FAD), soybeans with high oleic acid and low linoleic acid levels were produced, improving
the shelf life and heat stability of soybean oil [68,69]. TALENs are naturally occurring
type III effector proteins created by Xanthomonas species that change the host plant’s gene
expression. The TALENs proteins comprise a nuclear localization signal, a transcriptional
activation domain, and a core DNA-binding domain [70]. The nuclear localization signal
helps TALENs enter the nucleus, whilst the activation domain activates the transcriptional
machinery to start expressing genes [71].

2.4. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-Associated
Protein 9 (Cas9)

Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) are short,
repetitive genetic variations that are present in most bacterial and archaeal species. CRISPR/
Cas9 and its associated proteins produce a very strong defensive system that works as a
safeguard for plants against foreign agents including bacteria, viruses, and other elements.
The first application of CRISPR/Cas9 in an adaptive immune system was documented in a
2007 experiment [72]. The CRISPR/Cas9 gene-editing system has revolutionized research
in animal and plant biology since its usage in genome editing was first demonstrated in
mammalian cells in 2012 [73]. According to Rathore et al. [23] first-generation CRISPR/Cas9
genome editing involves simple manipulationand cloning techniques that can be applied
to a variety of guide RNAs to edit different locations in the targeted organism’s genome
(Figure 2). With the use of CRISPR/Cas, crop species can be precisely edited, opening the
door to the generation of favorable germplasm and new, more sustainable agricultural
systems. The genetic modification of crops can now be targeted and precise due to recent
developments in CRISPR/Cas9 technology, hastening the advancement of agriculture [42].
To date, only a few species have been studied using this methodology [74].The yield, quality,
disease resistance, and climatic adaptability of monocots and dicots have all been improved
by the CRISPR/Cas9 system [75]. The genomes of cereal crops including wheat, maize,
rice, and cotton as well as fruits and vegetables such as tomatoes and potatoes have all
been altered using the CRISPR/Cas9 technique [76,77].
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According to Makarova et al. [78], the CRISPR/Cas system can be divided into three
types: type I, type II, and type III. Bacteria and archaea both have type I CRISPR/Cas mech-
anisms based on the exact signature of the Cas protein. The Cas3 protein’s endonuclease
activity is used to connect to the DNA sequence [78]. In bacteria, the type II CRISPR/Cas
system has been developed. The four protein pairs Cas1, Cas2, Cas4/Csn2 proteins, cou-
pled with Cas9, make up the simplest system. The type III CRISPR/Cas system hunts for
DNA and RNA in archaea, as well as infrequently in bacteria. Cas6, Cas10, and repeat asso-
ciated mysterious proteins (RAMP) are markers for its presence. Cas10 protein’s processing
of crRNA ultimately aims to cleave DNA [78]. The Streptococcus pyogenes (SpCas9)-derived
type II CRISPR system mostly targets the negatively regulating genes [79].

The CRISPR/Cas technique is straightforward, stable, and enables effective change
compared withthe first two generations of genome-editing systems. These traits allowed
CRISPR/Cas to quickly replace the traditional genome-editing methods ZFN and TALEN.
The techniquewas adapted from the bacterial defense mechanism. The CRISPR/Cas mech-
anism is used by a variety of bacterial and archaeal species to protect themselves against
invading viruses [80]. Many studies are now being conducted to improve the CRISPR/Cas
system and increase the tool’s ability to target the genome. For instance, non-canonical
NGA and NG PAM sites in plants may be found using xCas9, SpCas9-VRQR, and Cas9-NG
variants [81,82]. SpCas9 orthologues have been recognized from Streptococcus thermophiles
(St1Cas9), Staphylococcus aureus (SaCas9), Streptococcus canis (ScCas9), and Brevibacillus
laterosporus (BlatCas9).They have been demonstrated to amend plant genomic loci with
PAM sequences of NNGRRT, NNG, NNAG AAW, and NNNCND, respectively [83,84].
Additionally, the type V Cas12a and Cas12b extracted from different bacterialsystems have
been demonstrated with AT-rich PAM specifications and employed in genome editing of
selected plants [85,86].
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The CRISPR/Cas9 gene-editing approach has so far been used on more than 20 crop
species to increase yields and reduce biotic and abiotic stress [87]. Genome-editing tech-
niques based on CRISPR/Cas9 have been utilized to enhance agricultural disease resistance
and tolerance to severe abiotic environments including salinity and drought. Three rice
genes involved in regulating responses to various abiotic stress stimuli, including phytoene
desaturase (OsPDS), betaine aldehyde dehydrogenase (OsBADH2), and mitogen-activated
protein kinase (OsMPK2), have undergone sequence-specific CRISPR/Cas9-mediated ge-
nomic modification. CRISPR/Cas9 technology was successfully used by Shan et al. [88]
to insert the TaMLO gene (mildew resistance locus O) into wheat protoplasts. It was also
discovered that Blumeria graminis f. sp. Tritici, the agent of powdery mildew illness, is resis-
tant to the CRISPR TaMLO knockdown (Btg). Wheat ethylene responsive factor3 (TaERF3)
and wheat dehydration response element binding protein 2 (TaDREB2) are two abiotic
stress-related genes that were targeted by the CRISPR/Cas9 genome-editing technology in
wheat protoplasts, according to Kim et al. [89]. The CRISPR/Cas9 technology can be used
in conjunction with current and upcoming breeding techniques such as speed breeding and
omics-assisted breeding to boost agricultural production and ensure food security (Table 2).

Table 1. Comparison of different types of plant genome-editing techniques.

Feature ZFNs Meganucleases TALENs CRISPR/Cas References

Length of target
sequence (bp) 18–36 bp 12–40 bp 28–40 bp 20–22 bp [90,91]

Nuclease protein FokI I-SceI FokI Cas9 proteins [91–93]

Dimerization Required Not required Not required Not required [90–92]

Mode of action
Double-stranded

break in target
DNA

Direct conversions
in targeted regions

Double-stranded
break in target

DNA

Double-stranded breaks or
single-stranded nicks in

target DNA
[94–96]

Repair events NHEJ HDR HDR NHEJ [92,93,97]

Mutagenesis High Middle Middle Lower [94]

Cloning Necessary Not necessary Necessary Not necessary [91,98,99]

Creation of
libraries and
multiplexing

Challenging Challenging Challenging Possible [91,96,99]

Cost Higher Higher Higher Low [100]

Types One One One Many [101]

Specificity Moderate High High Low [90,91]

Crop improvement Low Low Low High [100]

Future use Medium Medium Medium High [100]

Table 2. List of reported targeted gene(s) via ZFNs, TALEN, and MNs gene-editing tool technologies
in different plant species to develop resistant/tolerant genotypes.

Crop Gene Trait Technique References

Rice

OsQQR Detection of safe harbor loci herbicide ZFNs [102]

OsBADH2, OsDEP1, OsSD1,
OsCKX2 Fragrance TALEN [103]

Os11N3 Bacterial blight resistance TALEN [67]

OsCSA Photoperiod sensitive male sterility TALEN [104]

OsDERF1 Drought tolerance TALEN [104]
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Table 2. Cont.

Crop Gene Trait Technique References

Wheat TaMLO-A1, TaMLO-B1, TaMLO-D1 Resistance to powdery mildew TALEN [105]

Maize

PAT Herbicide resistance ZFNs [106]

ZmIPK1 Herbicide tolerant and phytate reduced
maize ZFNs [53]

ZmTLP Trait stacking ZFNs [107]

ZmPDS, ZmIPK1A, ZmIPK,
ZmMRP4 Biosynthesis of phytic acid TALEN [108]

MS26 Independent lines of male sterile plants MNs [109]

Barley HvPAPhy Phytase reduction and seed development TALEN [110]

Soybean
DCL Herbicide transmission ZFNs [111]

FAD2-1A, FAD2-1B Low polyunsaturated fats TALEN [68,69]

Tobacco
GUS: NPTII Chromosome breaks ZFNs [112]

Endochitinase-50 gene (CHN50) Emergence of resistance to herbicides ZFNs [113]

Tomato L1L4/NF-YB6 Reduced contents of the anti-nutrient’s
oxalic acid ZFNs [114]

Cotton
EPSPS Herbicide tolerance MNs [115]

Hppd Herbicide tolerance MNs [115]

Potato VInv Sugar metabolism TALEN [116]

2.5. DSB-Free Genome Editing

A sole histidine residue at site 840 of the HNH domain of SpCas9 cuts the PAM strand,
while the aspartate at site 10 in the RuvC domain cuts the opposite strand3. Mutating both
amino acids to alanines (D10A and H840A) resulted in nuclease-dead Cas9 (dCas9). dCas9
still identifies its target site and frees up the DNA in an R-loop without including DSBs.
The binding of dCas9 to its solitary target site can work as a repressor of transcription and
is called CRISPR interference (CRISPRi). Alternately, dCas9 can be utilized as a tool for
localization of DNA effector proteins to the genome. Examples of this approach are CRISPR–
DNMT3 fusion proteins and CRISPR activators (CRISPRa) for targeted methylation. DNA-
alteration enzymes are combined with dCas9 to induce genetic variants for overcoming the
limitations linked with DSB initiation in genome engineering [117].

2.6. Base Editing

The first base editor combines dCas9 to the cytidine deaminase apolipoprotein B
mRNA editing catalytic polypeptide-like (rAPOBEC1), which catalyzes the alteration from
cytidine to uracil. The cell mends this uracil into thymidine, resultingin an assembly
(BE1) replacing a C•G by a T•A base pair, entitled a cytosine base editor (CBE) [118].
First-generation CBEs were suppressed by uracil glycosylation. So, second-generation
base editors (BE2) were invented by combining an uracil glycosylase inhibitor (UGI) with
the dCas9–rAPOBEC1 combination [119].For increasing editing efficiency, dCas9 can be
changed into a nickase SpCas9-D10A (BE3). The strand not altered by rAPOBEC1 is cleaved.
The cell identifies this nick and starts DNA repair to solve the damage. The strand withthe
base modification is used as a template for repairing the nick to yield stable integration.
The BE3 architecture was furthermore ameliorated by combining an additional UGI in
fusion with linker optimization to result in a fourth-generation cytosine base editor (BE4).
BE4s have improved editing efficiency by approximately50%, with two-fold decline of
unintended byproduct formation such as point mutations and indels [118]. Subsequent
ancestral reconstitution and codon optimization led to a CBE architecture that enables the
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most powerful base editing in organoids, 2D cell lines, and in vivo by improving nuclear
localization and expression of the proteins [120].

2.7. Prime Editing

The logic behind prime editing is to escort exogenous DNA with the modification of in-
terest close to the Cas9 binding site. Areverse transcription (RT) domain obtained from the
Moloney murine leukaemia virus was combinedwith nickase SpCas9- H840Atodevelopthe
first generation of prime editors (PE1). The RT domain changes RNA into DNA tofind
its template in the 3′ extension of the specially designed sgRNA, entitledthe primeediting
guide RNA (pegRNA).Itguides the Cas9 in PE1 to the target site. After targetrecogination,
the PAM-consistingstrand is nicked by the active HNH domain of Cas9-H840A. Then, the
pegRNA extension combineswiththe nicked strand of the primer-binding site (PBS).Then,
the RT domain of PE1 uses the restpegRNA(RT template) to synthesize a 3′-DNA flap
containingthe edit of interest. This DNAflap is solved by cellular DNA repair procedure
combining the edit of interest [121]. Theprime editing requires optimizing PE3guides
andpegRNA, limiting its implementationin organoids. Threemodifications have been made
forovercoming this issue. First, the utilizationof two pegRNAs in trans alongwith over-
layingRT domains enhancesprime-editing competencein plants [121]. Second, engineered
pegRNAs can have tmpknot or evopreqdomains combinedatthe 3′ end. These domains en-
hancethe stability of the pegRNA [122]. Finally, including the N394Kand R221K amino acid
alterationincreases the nuclease workof SpCas9, resulting in a more efficient PE2Max [123].

2.8. Mobile CRISPR

A breakthrough in the CRISPR tool, “genetic scissors” was announced by scientists
of the Max Planck Institute of Molecular Plant Physiology to edit plant genomes. The
discovery could speed up and simplify development of novel and genetically stable crop
varieties by fusing grafting with a ‘mobile’ CRISPR tool. The drawing of the CRISPR/Cas9
gene scissors is transferred as RNA from the rootstock of a genetically modified plant to
the grafted shoot of a normal plant. The gene scissors protein is made with the aid of the
RNA. This gene scissor protein edits specific genes in flowers. Plants carry the desired
gene modification in the next generation. A normal shoot is grafted onto roots containing
a mobile CRISPR/Cas9, which allows the genetic scissor to move from the root into the
shoot. It edits the plant DNA without leaving a trace of itself in the subsequent generations
of plants. This ground-breaking turn can save cost and time and evade current limitations
of plant breeding.

3. Genome Editing Related to Abiotic Stresses

Abiotic stresses that impact plant growth and development, such as salt, drought,
extremely high temperatures, cold, and heavy metals, can reduce agricultural production
by approximately 50% [124].Numerous biochemical, morphological, and physiological
factors important for plant development are influenced by stress. Stresses from the envi-
ronment can modify how plants behave as they develop. Most changes in plant growth
and development caused by different abiotic stresses are associated with poorer yields [13].
By 2050, the rapid growth in the human population is predicted to reach 9.7 billion. The
global temperature is also set to increase significantly. As plant scientists, it is hard for
us to manage the food requirements of the increasing population. However, we own the
capability to develop climate-flexible crop varieties that can flourish under such challenging
circumstances. These varieties must be maintained in ruthless climatic conditions such as
heat, drought, heavy metals, cold, or flood stresses. This requires a continuous search for
newer and diverse germplasm [125,126], which was traditionally performed either entirely
through development of natural variations [127,128] or by selective breeding [129,130].
Another possibility is the construction of mutant populations that are evaluated to hunt for
new resources among variations that might be novel valuable mutations that in turn are
included in breeding programmes. Modern genome-editing system tools such as CRISPR
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facilitate the user to commence desirable genomic modifications accurately, illustrating
great promise as a tool for producing novel climate-resistant plants [131]. In over 20 agro-
nomically important crops, CRISPR/Cas mediated gene editing is widely utilized and
accepted for crop improvement against different abiotic stresses [79].

Ordinarily, plants are equipped with numerous defense schemes against abiotic
stresses. Among numerous defense mechanisms of abiotic stresses, the five broad-spectrum
protections are regulated utilized in a complicated managing network consisting of nu-
merous mediators and gene regulatory constituents in response to abiotic stresses [132].
During the procedure, stress hormones, particularly nitrogen oxides (NO), abscisic acid
(ABA), polyamines (PAs), calcium ions (Ca2+), hydrogen sulfide (H2S), reactive oxygen
species (ROS), and phytochrome B (PHYB), interact with others, either synergistically or
antagonistically. The transcription factors (TFs) could alter the expression of genes and
enzyme activity in a regulatory way, triggering a suitable reaction. The regulatory con-
stituents open a lot of potential for developing multiple stress tolerance/resistance. Five
main plant defenses to abiotic stresses are ROS scavengers, molecular chaperones, cuticle
as the outer shield, oxylipin precursors, and osmoprotectants, along with unsaturated fatty
acids, and compatible solutes [132].

3.1. Drought Stress

Drought is becoming a challenge to sustainable agriculture due to the consequences of
climate change, including erratic rainfall patterns and rising temperatures in many regions
of the world. The greatest danger to global food security is drought stress, which is the
primary factor in the catastrophic loss of agricultural production and productivity [133].
Drought alone can reduce yield by 50–70% in different crops [134]. For example, 40%
yield losses due to drought stress have been reported in maize [35,135], 50% in rice [136],
21% in wheat [126,135], 27–40% in chickpea [125,137], 68% in cowpea [138] and 42% in
soybean [34,139]. After the discovery of genome editing, efforts are being planned to alter
the genes involved in pathways enabling drought tolerance, in order to increase farmers’
acceptance of crops using these technologies. In recent years, in-depth research has helped
to adapt and overcome drought stress using CRISPR-Cas9 technology (Table 3).

In many crop plants, H2O2 and abscisic acid (ABA) are frequently produced in
situations of salinity or drought stress. The discovery was reported of ABA-induced
transcription repressors (AITRs) as a novel transcription factor family that plays a sig-
nificant role as feedback regulators of ABA signaling. Alternation in the expression of
AITR genes resulted in abiotic stress tolerance, including drought and salinity in Arabidop-
sis [140,141]. A CRISPR/Cas9-induced mutation in the Arabidopsis OST2 structural gene ex-
hibited drought resistance [142]. Another study found that knockout of Arabidopsis plants’
genemiR169athrough CRISPR/Cas9 led to significantly improved drought tolerance [143].
Similarly, Arabidopsis’ drought tolerance increased after the vacuolar H+-pyrophosphate
(AVP1) regulating gene was expressed using CRISPR/Cas9 [144]. Similar results were
shown when the abscisic acid-responsive element binding gene (AREB1) was activated
in Arabidopsis through CRISPR/Cas9a [145]. Recently, drought tolerance in Arabidopsis
thaliana was demonstrated via the CRISPR/Cas9 gene silencing of the trehalose (TRE1)
gene [146].

Numerous studies have documented how CRISPR confers drought resistance in many
plants. For instance, it has been demonstrated that increasing rice’s ability to withstand
drought can be attained by reducing the expression of the regulatory genes DERF1, PMS3,
MSH1, MYB5, and SPP [147]. In rice plants, drought stress tolerance increased after OsERA1
was modified using CRISPR/Cas9 [148]. CRISPR/Cas9 has been employed to improve
drought resistance in rice by knocking out the SRL1, SRL2, and ERA1 genes [148,149]. A
CRISPR/Cas9-created ospyl9 mutant might increase rice yield and drought tolerance [150].
Indica mega rice cultivar MTU1010 with broader leaves, a decreased stomatal density, and
improved leaf water retention under drought stress was developed using CRISPR/Cas9
to modify the OsDST gene [151]. The OsOREB1, OsRab21, OsRab16b, OsLEA3, OsbZIP23,
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OsSLAC1, and OsSLAC7 genes, which act downstream of SAPK2, were modulated in
expression in the loss-of-function sapk2 mutant of rice plants developed using CRISPR/Cas,
increasing their tolerance to drought stress [131].

Two genes, RVE7 and 4CL, have been found to be associated with drought tolerance
in chickpeas. The first report of CRISPR/Cas9-mediatedediting of the chickpea protoplast
was made by Badhan et al. [152]. They described knockouts of the genes 4CL and RVE7,
which are linked to pathways for drought tolerance. That study established a framework
for potential future chickpea-genome-editing approaches [153]. Another gene, namely
ARGOS8, responding to drought stress has been altered through genome editing. The
expression of the ARGOS8 gene increased as a result of negative regulators of ethylene
signaling pathways, providing drought tolerance [154,155]. To increase the production of
maize under drought stress under field conditions, the GOS2 promoter region was replaced
with an ARGOS8 promoter sequence using the CRISPR/Cas system [156].

CRISPR/Cas9 altered the GID1 gene in tomato plants, which exhibit high leaf water
content under drought conditions [157]. Additionally, SlLBD40 gene mutation caused by
CRISPR/Cas9 significantly improved drought tolerance in tomato [158]. Furthermore, use
of the CRISPR/Cas technique to alter mitogen-activated protein kinases (MAPKs) revealed
SlMAPK3 to be a drought stress modulator [159]. Knockout of the SINPR1 gene resulted in
increased drought tolerance and down-regulation of drought-related genes [160].

Drought resistance of wheat was improved by CRISPR/Cas editing of wheat TaDREB2
and TaERF3 [89]. In wheat, a multiplex CRISPR/Cas9 assay was used to alter the SAL1 gene,
a negative regulator of drought tolerance, to increase drought tolerance at the seedling
stage [161]. CRISPR/Cas genome editing of the HB12 gene can increase cotton’s resistance
to drought [162]. CRISPR/Cas9 was used to modify the BnaA6.RGA gene in oil seed crops,
which significantly improved rapeseed’s ability to withstand drought [163].

3.2. Heat/Temperature Stress

Plants have a preferred temperature, any rise or fall in that temperature can signifi-
cantly impede their development and productivity. The third most important abiotic factor
is heating stress, which may decrease crop production considerably. For instance, every
1 ◦C augmentation in atmospheric temperature diminishes wheat yield by 6%, rice yield
by 10–20%, and corn yield by 21–31% [164–166]. Significant yield losses were caused by
high heat stress, which is now recognized as a severe problem that will simply become
worse in the future. All phases of plant growth, from germination to harvest, are severely
harmed by heat stress [167,168]. Heat stress not only increases plant mortality rates but
also reduces plant quality [169,170].

In severe cases, a bad alteration in temperature results in plant mortality because
plants are more susceptible to temperature changes. The ideal temperature would normally
be better for crop growth and development; conditions below and above the optimum
temperature have a harmful effect on productivity. For every 10 ◦C rise, followed by 20 ◦C
and 30 ◦C, mostbiochemical and enzymatic procedures double in speed [171]. Abiotic
stressors, predominantly high and low heat, have a harmful effect on the premature stage of
the male gametophyte in a range of agricultural crops, including maize, rice, barley, wheat,
sorghum, and chickpea [172]. Due to temperature stress, the functions of tapetal cells are
diminishedduring the reproductive growth period, and the anther is dysplastic. Pollen
discharge is insufficient and indehiscence happens as a result of increased heat preventing
pollen grains from escalating. Plants have developed precise physiological and chemical
reactions to manage temperature stress [173].

The presence of genes that are responsive to heat stress, signal transduction, and the
synthesis of metabolites are only a few of the complex molecular systems that plants activate
in response to heat stress. Different temperature-stress-related genes have been identified
and characterized to improve plants’ ability to withstand heat as a result of developments
in structural and functional genomics technologies in plants. The heat stress reaction, which
is connected to the accumulation of ROS, is mediated by the heat shock transcription factors



Life 2023, 13, 1456 12 of 28

(HSFs) and the heat shock proteins (HSPs) [174].Therefore, by enhancing plants’ ability to
resist ROS components, temperature stress tolerance can be improved [175]. This indicated
that higher tolerance might increase the antioxidant properties of crops. Plant temperature
tolerance was significantly increased via metabolite production and temperature-induced
gene expression. To explore the molecular processes associated with temperature stress
and improve plant heat tolerance, CRISPR-Cas9 is a cutting-edge technology among all
genome-editing techniques [176] (Table 3).

A cultivable HS-inducible rice mutant was created using CRISPR/Cas9 technol-
ogy [177]. The orthologs of mitogen-activated protein kinase 3 and agamous-like 6 were
modified using CRISPR to increase tomato sensitivity to heat stress, whereas ADP-ribosylation
factor 4 enhanced tomato sensitivity to salinity shocks. According to Bouzroud et al. [178],
these CRISPR-edited mutant plants had improved agronomic characteristics and were
resilient to abiotic stresses. As a component for heat tolerance, BRZ1 positively regu-
lates the formation of ROS in the tomato apoplastic area. This was confirmed by the
CRISPR-Cas9-based bzr1 mutants, which showed reduced temperature tolerance and
respiratory burst oxidase homolog 1 (RBOH1) with diminished hydrogen peroxide gen-
eration in the apoplast [179]. In comparison to wild-type crops, the development of
CRISPR/Cas-mediated heat-stress-sensitive albino 1 (HSA1) mutants of tomato showed
greater sensitivity to temperature stress [180].

The thermosensitive genic male sterile gene was altered by CRISPR in maize to
promote thermo susceptible male-sterile plants [181]. In lettuce, knockouts of NCED4, a
crucial regulating enzyme in abscisic acid production, allowed the seeds to germinate at a
higher temperature. As a result, LsNCED4 mutants may have commercial significance in
manufacturing environments with high temperatures [182]. In order to make a plant more
resistant to heat, the hsps gene, which increases osmolyte levels and prevents cell protein
damage, can be overexpressed [183]. The protein kinase SAPK6 and the transcription factor
OsbZIP46CA1 in rice also increase the capacity for responding to heat stress [184].

3.3. Cold Stress

Cold stress, which includes chilling (20 ◦C) and freezing (0 ◦C) temperatures, hinders
plant growth and development and severely limits plant geographic expansion and agricul-
tural productivity [185]. Plants are directly inhibited from responding metabolically to low
temperatures, which results in osmotic stress, oxidative stress, and other types of stress.
Due to mechanical damage and metabolic dysfunction caused by extreme cold tempera-
tures, plant growth and development are halted [186]. The physiological, biochemical, and
molecular behavior of plants during their growth and expansion is adversely affected by
cold stressors. The photosynthetic capacity and crop anatomy are brutally impacted by cold
exposure, especially throughout the winter [187,188].Cold stress during the seedling stage
may cause impaired germination and emergence. Long-term exposure impairs source–sink
relationships, growth, nutrient localization, and leaf chlorosis [189]. Membrane formation,
which amplifies other cold-stress-related downstream processes, is the main consequence
of cold stress on crops [190]. In-generic or inter-specific hybridization has been successful
in boosting the cold tolerance of significant crops using conventional breeding methods.
For creating non-transgenic genome-edited crops to combat climate change and ensure
future food security, CRISPR/Cas9 is a clever and practical approach [191,192] (Table 4).

To increase the plant’s resistance to cold, genome editing is employed to target a
few of the depressant regulator transcription factors in rice. A transcription factor called
OsMYB30 attaches to the amylase gene promoter and negatively affects cold tolerance.
According to Lv et al. [193], under conditions of cold stress, OsMYB30 forms a compound
with OsJAZ9 and slows down the expression of the amylase gene, which may contribute
to increasing cold sensitivity by causing maltose buildup and starch breakdown. In order
to determine the specific function of the TIFY1a, TIFY1b, and Ann3 genes in rice’s ability
to withstand cold stress, CRISPR/Cas9 technology has also been applied to these genes.
The mutant outperformed the natural variation in terms of yield, temperature tolerance,
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and amount of germination prior to harvest [194]. Using CRISPR base editing, suppression
of photosynthetic genes in rice plants under cold stress has been shown to cause the
white-striped leaves phenotype in the white stripe leaf 5 (wsl5) mutant line [195,196].

PRPs are proline-rich proteins that not only aid in dealing with low temperatures but
also reduce nutrient loss, boost antioxidant activity, and aid in the production of chlorophyll.
Rice capacity for cold tolerance was improved by the CRISPR/Cas9 deletion of OsPRP1,
which encodes a proline-rich protein [197]. In a recent work using CRISPR/Cas9, three rice
genes, viz., OsPIN5b, GS3, and OsMYB30were altered to increase spike length, grain size,
and resilience to cold stress [198]. The CRISPR/Cas9 technology altered the G-complex-
related genes i.e., OsRGA1, OsGS3, OsDEP1, and OsPXLG4 to make rice more resistant to
chilling stress [199].Because tomato plants are prone to chilling stress, their fruits are more
vulnerable to damage from the cold. C-repeat binding factor 1 (CBF1) was shown using
CRISPR-Cas9-based cbf1 mutants to protect the tomato plant next to it from cold/chilling
damage and decrease electrolyte leakage [200]. These plants also demonstrated excellent
addition of hydrogen peroxide and indole acetic acid, resulting in tomato plants tolerant of
chilling stress.

Table 3. List of reported targeted gene(s) via CRISPR/Cas9 technology in different plant species for
development of tolerant genotypes against drought and heat stresses.

Crops Gene Trait Technique References

Rice OsDERF1 Drought CRISPR/Cas9 [147]

Rice SRL1, SRL2 Drought CRISPR/Cas9 [149]

Rice OsAAA-1, OsAAA-2 Drought CRISPR/Cas9 [201]

Rice OsNAC006 (transcription factor) Drought and heat sensitivity CRISPR/Cas9 [202]

Rice OsAOX1a Drought resistance CRISPR/Cas9 [147]

Rice OsDST Drought and salinity CRISPR/Cas9 [151]

Rice OsERA1, OsPYL9 Drought CRISPR/Cas9 [148,150]

Rice SAPK2 Tolerance to salinity and drought CRISPR/Cas9 [131]

Rice OsPMS3 Photoperiod-sensitive male-sterile CRISPR/Cas9 [147]

Rice Csa Photosensitive-genic male-sterile CRISPR/Cas9 [203,204]

Rice TMS5 Thermo-sensitive genic
male-sterile CRISPR/Cas9 [205]

Rice OsNAC14 Drought tolerance CRISPR/Cas9 [206]

Rice OsPUB67 Drought tolerance CRISPR/Cas9 [207]

Wheat TaDREB2, TaERF3 Tolerance to drought CRISPR/Cas9 [89]

Maize ZmARGOS8 Drought CRISPR/Cas9 [156]

Maize ZmTMS5 Creation of thermosensitive maize
lines CRISPR/Cas9 [181]

Mustard BnaA6.RGA Drought tolerance CRISPR/Cas9 [163]

Soybean Drb2a, Drb2b Tolerance to drought and salinity
stress CRISPR/Cas9 [208]

Soybean GmMYB118 Drought tolerance CRISPR/Cas9 [209]

Chickpea 4CL, RVE7 Drought tolerance CRISPR/Cas9 [152]

Tomato SIMAPK3 and SlNPR1 Drought CRISPR/Cas9 [159,160]

Tomato SlARF4 Drought CRISPR/Cas9 [140]

Tomato SIAGL6 Heat stress CRISPR/Cas9 [210]
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Table 4. List of reported targeted gene(s) via CRISPR/Cas9 technology in different plant species for
development of tolerant genotypes against cold stresses.

Crops Gene Trait Technique References

Rice OsMYB30 Cold tolerance CRISPR/Cas9 [198]

Rice OsAnn3 Cold tolerance CRISPR/Cas9 [211]

Rice OsAnn5 Cold tolerance CRISPR/Cas9 [211]

Rice OsPRP1 Cold tolerance CRISPR/Cas9 [212]

Tomato SlCBF1 Cold tolerance CRISPR/Cas9 [200]

Arabidopsis thaliana AtCBF1, AtCBF2 Cold tolerance CRISPR/Cas9 [213]

3.4. Salinity Stress

Owing to the negative consequences of climate change, salinity stress has recently
become much worse [214]. Salinity stress is the second most severe abiotic danger that
affects fertile lands as well as crop productivity [215]. According to Morton et al. [216]
and Van Zelm et al. [217], severe salts have an impact on about one-fifth of the irrigated
agricultural area. Lack of good irrigation water, a changing climate, and excessive use of
chemicals such as fertilizers and pesticides prolong the process of adding more land to the
salinity stress zone. According to estimates made by Jamil et al. [218], 50% of cultivable
lands will be saline by 2050 due to the overuse of chemicals including fertilizers and
pesticides. One of the most important and harmful factors that has a negative impact on
soil quality and agricultural output is salt stress. When too many soluble salts accumulate
in the crop root zone, it causes salinization of the soil because roots are unable to absorb
water. Thus, osmotic stress and nutritional imbalance in plants have a negative impact on
their morphology, biochemistry, and biomass, which ultimately causes irreparable plant
damage [219–221].

Reactive oxygen species (ROS) are intensified by salt stress, which has a detrimental
effect on crops’ cellular and metabolic processes [222,223]. Lipid peroxidation, which
causes membrane deterioration as well as protein and DNA damage, is a harmful effect
of ROS [224]. By diminishing chlorophyll content and stomatal conductance, salt stress
hinders the development of the photosystem II and the transpiratory apparatus [225].
Additionally, it decreases the water potential of the soil and leaves, which lowers plant
turgor pressure by affecting water relations and causing osmotic stress [226]. Plants suffer
from decreased leaf area, lower photosynthetic rate, poor seed germination, decreased
biomass production, and crop yield as a result [227–229]. Salinity tolerance is the ability of a
plant to maintain the equilibrium of biomass and/or output under conditions of salt stress.
In order to tolerate salt, plants have several molecular and physiological mechanisms [230].

Genome editing has the capacity to improve crops; there are yet few studies on its
effective application in breeding plants that can withstand saline stress (Table 5). In one
such work, rice was modified to impart salt stress tolerance by editing the OsRR22 gene,
which encodes for a transcription factor (TF) involved in the control of signaling and
the metabolism of cytokinins in plants [231,232]. Using CRISPR/Cas9 technology, the
OsRR22 gene was altered, and two homologous T2 generations revealed improved salt
tolerance with no discernible difference between the modified and wild-type lines [232].
Using CRISPR/Cas9 technology, the paraquat tolerance-3 mutations (OsPQT3) gave rice
a high level of salt tolerance [233]. The function of OsmiR535 in salt stress tolerance was
investigated using genome-editing techniques, and it was proposed that OsmiR535 might
be knocked out using CRISPR/Cas9 to enhance salinity tolerance in rice. Additionally,
a homozygous 5bp deletion in the OsmiR535 coding region might be a valid target for
raising rice’s salt tolerance [234]. Furthermore, some other genes increase the ability of rice
to tolerate salt, using CRISPR/Cas9 technology by eliminating the OsbHLH024 gene and
increasing the expression of the ion transporter genes including OsHKT1;3, OsHAK7, and
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OsSOS1 [235]. When the rice OsRAV2 gene was altered using CRISPR-Cas, the rice plants
were able to survive under high salt conditions [236].

Table 5. List of reported targeted gene(s) via CRISPR/Cas9 technology in different plant species for
developing salinity tolerance.

Crops Gene Trait Technique References

Rice OsbHLH024 Salinity CRISPR/Cas9 [235]

Rice OsRR22 Salinity CRISPR/Cas9 [232,237]

Rice OsRAV2, OsNAC041,
OsmiR535 Salinity CRISPR/Cas9 [234,236,238]

Rice OsRR9, OsRR10 Salinity CRISPR/Cas9 [239]

Rice OsNAC041 Salinity CRISPR/Cas9 [240]

Rice OsOTS1 Salinity CRISPR/Cas9 [241,242]

Rice OsDST Drought and salinity CRISPR/Cas9 [151]

Rice SAPK2 Tolerance to salinity CRISPR/Cas9 [131]

Wheat TaHAG1 Salt tolerance CRISPR/Cas9 [243]

Maize ZmHKTI Tolerance to salinity CRISPR/Cas9 [244]

Soybean GmAITR Salt tolerance CRISPR/Cas9 [245]

Soybean Drb2a, Drb2b Tolerance to droughtand
salinity stress CRISPR/Cas9 [208]

Barley HvITPK1 salinity CRISPR/Cas9 [246]

Tomato SlHyPRP1, SlARF4 salinity CRISPR/Cas9 [247,248]

Improvements in salt stress tolerance were seen in tomatoes after changes were made
to the 8CM and PRD domains of the hybrid proline-rich protein1 (HyPRP1) [247]. Addition-
ally, the capability of crops to tolerate salt stress may be significantly increased by employing
CRISPR/Cas9 technology to eliminate the OsDST genes for rice [151], OsNAC041 [238],
and HvITPK1 [246] for barley.

3.5. Heavy Metals Stress

An important issue for sustainable agricultural development is heavy metals, which
seriously impair plant growth and productivity [249]. Heavy metals (HMs) including
Mn, Cu, Ni, Co, Cd, Fe, Zn, and Hg, among others, have accumulated in soils as a
result of various human activities such the application of fertilizer, incorrect disposal
of industrial waste, and unauthorized sewage disposal [250,251], or the hasty disposal of
vehicle waste. They are either collected on the soil surface or leached from the soil into the
groundwater [252,253]. Additionally, heavy metals cause oxidative stress by promoting
the generation of hydroxyl radicals (OH), superoxide radicals, and hydrogen peroxide
(H2O2) [250,254]. Plant physio-morphological activities are hampered by the accumulation
of HMs, especially in the roots where they are blocked by Casparian strips or trapped by
root cell walls, which eventually reduces crop output [255]. When consumed, heavy metals
accumulated in plants canseriously impair human health [256].

To combat heavy metal stress in plants, CRISPR-Cas9-induced plant mutants may
prove useful (Table 6). In contrast to WT Co10 plants, the oxp1/CRISPR mutant of Ara-
bidopsis plants exhibits resistance to Cd, indicating an increased capacity for heavy metal
detoxification in mutant crops [257]. Accordingly, study showed how indel mutations
using gene-editing techniques could provide tolerance to heavy metals and xenobiotics
in plants [257]. Increased plant tolerance to heavy metals is influenced by a variety of
genes [258]. Several transporter genes in rice, including OsLCT1 and OsNramp5, are
implicated in Cd absorption by the roots [259]. The amount of Cd in rice has been reduced
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by CRISPR/Cas9-enabled gene-expression manipulation. Rice grains with OsNRAMP1
knocked out by CRISPR/Cas9 have decreased levels of Cd and lead (Pb) [260,261]. Elimi-
nating an R2R3 MYB transcription factor called OsARM1 using CRISPR/Cas9 prevents rice
from absorbing and transporting arsenic [262].Cesium (Cs+) absorption and translocation
in rice are regulated by the OsHAK1 gene. Using the CRISPR-Cas9 technique, the cesium
permeable potassium transporter OsHAK1 was turned inactive [263].

3.6. Herbicide Stress

In order to increase crop productivity, there is a need to manage weed growth with
application of herbicides. Herbicides destroy non-target plants while also causing stress
to the target plants and weed plants by interfering with or changing their metabolic
processes. They also leave soil residues that are hazardous to the environment [264,265].The
morphological, physiological, and biochemical traits of agricultural plants have been
negatively impacted by the inappropriate application of herbicides. Herbicide toxicity
reduces photosynthetic activity, which has a detrimental impact on the ability of crop
plants to produce yield. One of the main goals for raising agricultural productivity is
the development of herbicide tolerance in crop plants. To improve herbicide resistance
in plants, genome editing including ZFNs, TALENs, and CRISPR/Cas technologies is an
excellent tool (Table 6).

Leucine, isoleucine, and valine are branched amino acids whose biosynthesis is cat-
alyzed by the enzyme acetolactate synthase, which is encoded by the ACETOLACTATE
SYNTHASE (ALS) gene [266,267]. It is a potential target of many herbicide improvement
programmes. The recombination of acetolactate synthase using CRISPR/Cas9 produces
herbicide resistance in rice [268] and in watermelons [269]. Additionally, using the same
strategy and emphasizing the ALS1 and ALS2 genes, herbicide-resistant maize plants were
produced [270]. CRISPR-based editing in the OsALS1 gene has been used to introduce her-
bicide tolerance characteristics into rice [271,272]. Glyphosate is one of the most imperative
and quickly adopted herbicides for function in resistant crops such as soybean, maize, sugar
beet, and chili pepper. The advancement of glyphosate-resistant plants requires changes in
the machinery of some genes [203]. 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)
enzyme is implicated in the formation of aromatic compounds in crops with the transfer
of phosphoenolpyruvate (PEP) enzyme for activating the reaction [203,273]. Glyphosate
hinders the act of the EPSPS enzyme by inhibiting the add-on of glyphosate to the PEP
enzyme binding sites, eventually blocking the formation of aromatic products and causing
crop death [203]. The endogenous EPSPS gene of rice was targeted with CRISPR/Cas9 to
produce site-specific gene incorporation and substitution, which were fully transferred to
the next generation with crops 100% resistant to the glyphosate [203]. CRISPR/Cas9 was
also utilized toproduce a mutation in the promoter of the EPSPS gene of chili to state this
gene beneath the action of glyphosate [274]. The resulting crops were reasonably resistant
to glyphosate, and additional studies advised that selecting a diverse promoter may assist
in the development of entirely resistant chili [274].The modified genotypes of rice and flax
now have enhanced tolerance to glyphosate as a result of the CRISPR/Cas9 change of two
nucleic acid residues in the binding site of glyphosate–EPSPS [91,203]. Recently, herbicide
resistance was developed in tomato plants by CRISPR-Cas9-based targeted mutations in
EPSPS, PDS (phytoene desaturase), and ALS [92].

Table 6. List of reported targeted gene(s) via CRISPR/Cas9 technology in different plant species for
tailoring herbicide and metal stress tolerance.

Crops Gene Trait Technique References

Rice C287T Herbicide resistance CRISPR/Cas9 [274]

Rice BEL Herbicide resistance CRISPR/Cas9 [71]

Rice OsALS1 Herbicide tolerance CRISPR/Cas9 [271]
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Table 6. Cont.

Crops Gene Trait Technique References

Rice EPSPS Herbicide resistance CRISPR/Cas9 [203]

Rice SF3B1 Herbicide resistance CRISPR/Cas9 [72]

Wheat ALS Herbicide resistance CRISPR/Cas9 [275,276]

Maize ALS1 and ALS2 Herbicide resistance CRISPR/Cas9 [270]

Maize MS26 Herbicide resistance CRISPR/Cas9 [270]

Soybean ALS1 Resistant to Chlorsulfuron CRISPR/Cas9 [277]

Tomato ALS Resistant to Chlorsulfuron CRISPR/Cas9 [278]

Tomato SlEPSPS Herbicide resistance CRISPR/Cas9 [92]

Tomato SlALS1, SlALS2 Herbicide resistance CRISPR/Cas9 [92]

Tomato Slpds1 Herbicide resistance CRISPR/Cas9 [92]

Rice OsTubA2 Base editing CRISPR/Cas9 [279]

Rice OsHAK1 Low cesium accumulation CRISPR/Cas9 [263]

Rice OsPRX2 Potassium deficiency tolerance CRISPR/Cas9 [280]

Rice OsARM1 Increase tolerance to
higharsenic CRISPR/Cas9 [260]

Rice OsLCT1 Less cadmium accumulation CRISPR/Cas9 [259]

4. Conclusions and Prospects

Plants serve as sources of food, fiber, medicine, biofuels, and other goods. Farmers
need new, superior cultivars in order to increase crop output and feed both the nation and
the world. Plant breeders need a variety of tools for this purpose, including genomics
and marker-assisted molecular breeding. Scientists can now implant desired traits more
precisely and faster than in the past. Meganucleases (MNs), zinc finger nucleases (ZFNs),
transcription activator-like effector nucleases (TALENs), and the clustered regularly in-
terspaced short palindromic repeats (CRISPR) system are genome-editing tools that have
been used with greater accuracy and efficiency than conventional breeding to enhance the
quality of staple, oilseed, and horticultural crops. Today, there are several successful cases
of “genome editing.” In order to edit genes accurately in the genomes of model and crop
plants as well as a range of other organisms, genome editing employs designed nucleases as
potent tools that target certain DNA sequences. A study of the literature on transcriptomics,
biotechnology, genomics, and phonemics has shown that this novel approach to crop
development is effective. CRISPR/Cas9-based genome editing is a genuinely innovative
strategy. With genome editing, crops can effectively incorporate a variety of genetic traits.
When these precise and powerful methods are applied to expedite plant breeding, they
create certain outcomes. In order to accomplish a second Green Revolution and meet the
escalating food demands of a quickly growing global population under constantly changing
climatic conditions, plant breeding will advance with the help of this multidisciplinary
approach. By overcoming the limitations of current transgenic techniques, genome-editing
technology ushers in a new era of improved plant genetics. This information may be proved
useful to plant breeders and researchers in their thorough evaluation of the use of various
gene-editing tools to improve crops by focusing on the targeted gene. We believe that
CRISPR/Cas9 technology islikely to bridge the GMO and societal divide in upcoming days.
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