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Abstract: Objective: For several years, computer technology has been utilized to diagnose lung
nodules. When compared to traditional machine learning methods for image processing, deep-
learning methods can improve the accuracy of lung nodule diagnosis by avoiding the laborious
pre-processing step of the picture (extraction of fake features, etc.). Our goal is to investigate
how well deep-learning approaches classify lung nodule malignancy. Method: We evaluated the
performance of deep-learning methods on lung nodule malignancy classification via a systematic
literature search. We conducted searches for appropriate articles in the PubMed and ISI Web of
Science databases and chose those that employed deep learning to classify or predict lung nodule
malignancy for our investigation. The figures were plotted, and the data were extracted using SAS
version 9.4 and Microsoft Excel 2010, respectively. Results: Sixteen studies that met the criteria were
included in this study. The articles classified or predicted pulmonary nodule malignancy using
classification and summarization, using convolutional neural network (CNN), autoencoder (AE),
and deep belief network (DBN). The AUC of deep-learning models is typically greater than 90%
in articles. It demonstrated that deep learning performed well in the diagnosis and forecasting of
lung nodules. Conclusion: It is a thorough analysis of the most recent advancements in lung nodule
deep-learning technologies. The advancement of image processing techniques, traditional machine
learning techniques, deep-learning techniques, and other techniques have all been applied to the
technology for pulmonary nodule diagnosis. Although the deep-learning model has demonstrated
distinct advantages in the detection of pulmonary nodules, it also carries significant drawbacks that
warrant additional research.

Keywords: lung nodules; deep learning; convolutional neural network; low-dose CT

1. Background

Lung cancer is the most commonly diagnosed cancer and a leading cause of cancer
mortality worldwide, accounting for 11.6% of total new cases of cancer and 18.4% of total
cancer deaths [1]. Despite significant advances in lung cancer diagnosis and treatment,
many cases continue to be diagnosed at a late stage, which carries a dismal prognosis: a
five-year relative survival of 28.6% for cases with regional spread and 4.2% for those with
distant metastasis [2]. The detection of lung cancer at an early and treatable stage is a
key factor for improved outcomes and can be realized through screening. Lung cancer
screening with low-dose computed tomography (LDCT) has been demonstrated to be
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effective in reducing lung cancer mortality by 20% compared to chest radiography [3] and
has been recommended to high-risk populations for annual screening [4,5].

The widespread use of CT examinations, however, generates a large amount of image
data that needs to be reviewed and interpreted by radiologists, considerably increasing their
workload. The current assessment of pulmonary nodule changes mainly relies on visual
comparisons and diameter measurements based on baseline and follow-up axial images.
Additionally, a significant number of ambiguous pulmonary nodules, of which more than
95% are non-cancerous, are found during lung cancer screening [3]. The necessary follow-
up diagnostic evaluations provide a major burden to the healthcare system and, at the same
time, raise possibilities for machine learning solutions to enhance nodule detection and
malignancy classification.

Long-term research on computerized systems for lung lesion detection has focused on
recognizing nodules reliably, especially tiny nodules, and lowering false-positive rates [6].
Finding the nodule was once the primary concern of many researchers, but recently, that fo-
cus has shifted to determining the nodule’s malignancy status. From a technical standpoint,
computer-aided diagnosis has progressed from traditional machine learning approaches,
which mostly include manually generated feature extraction and feature categorization, to
deep learning. In comparison to traditional approaches, deep learning has a greater ability
to represent varied lung nodule shapes, margins, and compositions. This is carried out by
allowing the machine to learn from limited annotated LDCT data and automatically derive
features. Deep learning may hold promise in improving the classification of these nodules
and predicting malignancy in the era of population-based lung cancer screening. How to
effectively manage a large number of screen-detected nodules, especially indeterminate
pulmonary nodules (IPD), needs to be carefully addressed. Therefore, in this study, we
aimed to summarize the performance of existing deep-learning solutions on lung nodule
malignancy classification in LDCT.

2. Methods
2.1. Data Sources and Search Strategy

A systematic literature review was performed to identify studies that evaluated the per-
formance of deep-learning solutions on lung nodule malignancy classification. Databases
of PubMed and ISI Web of Science were searched for eligible articles from inception to
31 December 2021. The search phrase utilized was an LDCT, Al, and lung nodule com-
bination, as described in Appendix A. Additional pertinent studies were checked for in
the bibliographies of qualified papers. The PRISMA recommendations were followed in
conducting and reporting this review [7].

2.2. Study Selection

Published studies were eligible for inclusion if they reported the indicators reflecting
the performance of a deep-learning system in classifying lung nodules as malignant or
benign on LDCT in the general population. This review was restricted to original articles
published in English. We excluded studies if they did not address lung nodules or cancer,
were not related to the diagnosis or screening of lung nodules, did not use artificial intelli-
gence, or were not based on LDCT. Studies that only introduced the technical methods used
in the artificial intelligence system or the performance was merely evaluated in a phantom
study were also excluded. Additionally, studies in which the goal was nodule identification
rather than cancer classification or in which deep learning was used to perform cancer
classification were eliminated. Studies that described their objective as “cancer diagnosis”,
“malignancy prediction”, or other similar terms were reviewed as long as they were able to
determine the status of malignancy. We included articles from the same research group, if
they were found, that used various technological approaches.
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2.3. Data Extraction and Synthesis

Two investigators (HL and LY) independently extracted data from the included studies
into a standardized form. First, we gathered and summarized data on each article’s
author, publication year, and country of origin. Secondly, the deep-learning system'’s
properties; and thirdly, the dataset’s characteristics, including the cohort’s name and
location, the number of patients with benign and malignant nodules, and the size of the
nodules. Area under the curve (AUC), accuracy, sensitivity, and specificity are the final
performance metrics. The investigators discussed and reviewed the data again in order to
settle any discrepancies.

As this review focuses on the differences in system/algorithm used and the corre-
sponding performance, no specific scoring system was developed to rate the quality of the
articles included. Instead, we presented and summarized the detailed information about
the system/algorithm and the dataset the performance was tested on.

Microsoft Excel 2010 (Microsoft Corporation, Albuquerque, NM, USA) and SAS ver-
sion 9.4 (SAS Institute Inc., Cary, NC, USA) were used for data extraction and to plot
the figures.

3. Results
3.1. Literature Search Results

The initial search yielded a total of 1634 articles, 606 from PubMed and 1028 from Web
of Science. After removing the duplicates and scanning the title and abstract, 58 articles
and five additional articles identified from cross-referencing were selected for a full-text
review. Of these, 16 studies met the selection criteria and were included in our analysis.
The study selection process is summarized in Figure 1.

| PubMed: 606 } { I1SI Web of Science:
| Total: 1634 |

2| 464: Duplicates

Articles requiring title or abstract review:

78: Non-original articles

235: Not reporting lung nodule/cancer
401: Not reporting diagnosis/screening
158: Not Al related

31: Not in general population

111: Reporting only techniques

9: Not with low-dose CT

89: Only reporting nodule detection (no

Articles requiring full text review: 58

(—I 5 additional articles from cross-referencing

Articles requiring full text review including
articles from cross-referencing: 63

26: Not exploring the specific research question
19: Using only conventional machine learning
methods

Included in the review: 16

Figure 1. Flow diagram of systematic literature search. Al = artificial intelligence; CT = computed tomography.
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3.2. Deep-Learning Solutions on Lung Nodule Malignancy Classification

The application of a CAD system in the early diagnosis of lung cancer usually includes
the following steps: data preprocessing, lung region segmentation, candidate nodule detec-
tion and segmentation, and nodule diagnosis [8]. Our study was mainly concerned with
the last step that the performance of deep-learning solutions on lung nodule malignancy
classification. Machine learning from end to end is known as deep learning. This model
does a one-step nodule detection and direct image processing. Deep-learning-based CAD
systems can successfully address key issues in the early diagnosis of lung cancer, such
as feature extraction, lung nodule recognition, and the decrease in false-positive rates [9].
Deep-learning models are historically divided into supervised learning and unsupervised
learning, in which supervised learning needs to use data with classification labels. Super-
vised learning models include convolutional neural networks (CNNs) and mass-training
artificial neural networks (MTANNS). Unsupervised learning includes an automatic en-
coder (AE) and deep belief network (DBN). The literature we screened included the above
two model types, and the details are included in Table 1.

3.3. Convolutional Neural Network (CNN)

Convolutional neural network (CNN) is the most widely used deep-learning model
in the field of medical imaging and is composed of the input layer, convolution layer,
activation function, pooling layer, full connection layer, and output layer. Machine learning
from end to end is known as deep learning. This model does a one-step nodule detection
and direct image processing. Deep-learning-based CAD systems can successfully address
key issues in the early diagnosis of lung cancer, such as feature extraction, lung nodule
recognition, and the decrease in false-positive rates.

CNN used in the detection and classification of lung nodules mainly includes CNN,
deep CNN, multi-view CNN, multi-crop CNN, multi-level CNN, and so on. Some classical
nodule classification algorithms have been enhanced via deep learning. Using each feature
type, Xie et al. trained an AdaBoosted back propagation neural network (BPNN) and fused
the conclusions reached via three classifiers. The algorithm used a deep convolutional
neural network (DCNN) to automatically learn the feature representation of nodules on a
slice-by-slice basis, a Fourier shape descriptor to describe the heterogeneity of nodules, and
a gray level co-occurrence matrix (GLCM)-based texture descriptor to describe the texture.
This method combines deep CNN feature learning with backpropagation neural networks.
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Table 1. Classification or prediction techniques for lung nodules.
Author . .
(Year) Country  Method (System Structure)  Dimension Data Set Effects Performance Theme
Name Location Size AUC Accuracy Sensitivity Specificity ?’;Zﬁ'c(;r
. 412 benign nodules
Nishio Japan Classi fica]t)i(():rl:nc\llee CNN D I;)I;);};Ectasl Japan 571 primary lung cancers Image of 56,112,224, the best accuracies were ~ Lung nodule
(2018) [10] p oo VG G_f  ONN o P 253 metastatic lung 66.7%, 64.7%, 68.0%. classification
cancers
Ca]rjlsg) i:lir;)lrl:dglgl\(l)l: a 42,290 CT cases from 14,851 End-to-end
. : . o o . .
Ardila Us deep-learning algorithm that 3D NLST Us .. patlen’f)s, . AUC of 94.4% (95% c.onfldence interval, lung cancer
(2019) [11] uses a patient’ training set (70%), tuning 91.1-97.3) in 1 year .
patient’s current and o 15% screening
prior CT volumes set (15%), test set (15%)
Deep-learningalgorithm .. .
Huan Cancer incidence prediction NLST agfclim:r;gtssi'oirlc\)?ZST AUC of 0.968 (SD 0.013) with 1-year Prediction of
& Us at 1-3 years: compare / [OR) P ‘pan AUC of 0.946 (SD 0.013) with 2-year lung cancer
(2019) [12] y P PanCan Validation set:2294 Y &
accuracy of DeepLR scores individuals f ’ AUC of 0.899 (SD 0.017) with 3-year risk
and volume doubling time individuals from PanCan
DCNN and handcrafted
features
Li (2019) . Propose f}lsmn algorithm that LIDC 431 malignant nodules AUC of 0.9303, accuracy of 88.58%, sensitivity Predicting
China combines handcrafted 3D us . o e o Nodule
[13] . IDRI 795 benign nodules of 82.60%, specificity of 91.82% .
features into the features Malignancy
learned at the output layer of
a 3D deep CNN
FPSOCNN
Feature extraction:HoG, .
wavelet transform-based Arthi
Asuntha . Scan . . Accuracy of 94.97%, Sensitivity of 96.68%, Lung cancer
y ty g
India features, / . India 1000 malignant nodules o s o P
(2020) [14] LBP. SIFT. Zernike Moment Hospital Specificity of 95.89% classification
! ! Data

Classification: use 7 methods,
the best if FPSOCNN




Life 2023, 13, 1911 60f 13
Table 1. Cont.
Author . .
(Year) Country  Method (System Structure) = Dimension Data Set Effects Performance Theme
Name Location Size AUC Accuracy Sensitivity Specificity Diag. or
Predc.?
HESAM:classify nodules
through shape and margin
Lei (2020) China Features extraction: SAM to LIDC Us 510 malignant nodules Accuracy of 99.13%, Sensitivity of 0.9705, Lung nodule
[15] enable LNSM feature analysis IDRI 635 benign nodules Specificity of 0.9921 classification
with CNN; HESAM to
localize LNSM features.
LIDC- LUNAT16: 888 patients +
CNN
. e IDRI 1186 annotated nodules
Ozdemir Classification: MIL Lung cancer
Us . . 3D Kaggle Us Kaggle stage-2: AUC of 0.87 . .
(2020) [16] framework to train malignant . Diagnosis
classification network stage-2 153 malignant + 353
LUNA16 benign nodules
CNN ensembles
Malignant prediction made a
Paul (2020) hybrid model using an COCO 82 malignant nodules lung nodule
us ensemble with CNN models 2D us 5! AUC of 0.9, accuracy of 83.12% malignancy
[17] .. . NLST 152 benign nodules .
of clinical and size prediction
information to enhance
malignancy prediction.
MSMT benign and
Zhao (2020) . e . LIDC- 450 malignant nodules AUC of 0.979, Accuracy of 93.92%, Sensitivity of malignant
China Classification: A multi-stream 3D Us . o e o
[18] . IDRI 554 benign nodules 92.60%, Specificity classification
multi-task network
of nodules
. DBN Malignant nodules: classification
Hua[11(92]015) (T(; ig:;) Classification: Deep Belief 2D LIDC UsS 2545 nOdlsl(l:z;:rom 1010 sensitivity of 73.4% of lung
Network and CNN to classify specificity of 82.2% nodules
MV-CNN .
Classification: Multi-view 96 patients Lung
Liu (2017) China Convolutional Neural D LIDC- Us . 3540 AUC of 0.981, Sensitivity of 0.9049, Specificity Nodule Clas-
[20] . . IDRI malignant nodules of 0.9991 e
Networks, it takes multiple . sification
764 benign nodules

views of each entered nodule
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Table 1. Cont.
Author . .
(Year) Country = Method (System Structure)  Dimension Data Set Effects Performance Theme
Name Location Size AUC Accuracy Sensitivity Specificity Diag. or
Predc.?
The first data set contains
Features Extraction: 1324 benign and AUGS of 0.9665, 0.9445, and 0.8124 for three
co-occurrence matrix, 648 malignant; R o
Fourier shape descriptor the second contains data sets, Accuracies of 89.53%, Classification
Xie (2018)  China/ P P LIDC- . 87.74%, 71.93% for three data sets
. and deep CNN 2D us 2021 benign and . e o of lung
[21] Australia e IDRI . Malignant nodules: Sensitivities of 84.19%,
Classification: AdaBoosted 648 malignant; o o e o nodules
. . . 81.11%, and 59.22% with specificity of 92.02%,
back propagation neural the third contains 1324
. 89.67%, and 84.85% for three data sets
network benign and 1345
malignant.
. Lung nodule
Shen (2017) . Classification: multi-crop LIDC- 880 be,n ign nodules 495 AUC of 0.93 malignancy
China/US 2D, 3D Us malignant nodules o .2
[22] CNN IDRI . Accuracy of 87.14% suspiciousness
1243 uncertain nodules e s
classification
MC-CNN Benign-
Classification: Multi-view Malignant
Xie (2019) China/ knowledge-based 3D LIDC- US 644 malignant nodules AUC of 0.957 Lung
[23] Australia  collaborative (MV-KBC) deep IDRI 1301 benign nodules Accuracy of 91.76% Nodule
model to separate malignant Classifica-
from benign nodules tion
DBA and SDAE
e 1018 scans . .
Sun (2017) Classification: LeCun CNN, (41,372 benign AUC of 0.899 + 0.018 via Computerized
[24] China deep belief network, and 2D LIDC Us no duies and 47 576 CNN Lung Cancer
stacked denoising malienant no dL;Ies) 0.852 4+ 0.025 via SDAE Diagnosis
autoencoder (SDAE) &
Lung
. ML-CNN
Lyu (2018) Chma' Classification: use multi-level 2D LIDC- us 1018 cases from 1010 Accuracy 84.81% NOdl.ﬂ.es
[25] Australia . IDRI patients Classifica-
convolutional neural network

tion
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The performance of the Fuse-TSD algorithm was assessed using the area under the
receiver operator curve (AUC). The algorithm achieved an AUC of 96.65%, 94.45%, and
81.24%, respectively, higher than the AUC obtained using the LeNet-5 feature, GLCM-based
texture descriptor, and Fourier shape descriptor, respectively [21].

Some studies explored two-dimensional (2D) CNN for the categorization of lung
nodules with the use of deep learning. Shen et al. used a multi-crop CNN to solve the
lung nodule malignancy classification problem for CT images. They used the LIDC-IDRI
database, which had 1243 indeterminate nodules in addition to 880 benign nodules and
495 malignant nodules. The multi-crop CNN extracted multi-scale features by employing
a multi-crop pooling strategy. Convolutional features obtained from the original image
or pooled features served as the inputs for the multi-crop pooling technique. Then, to
extract the information about the nodules, the study repeatedly applied max-pooling to the
multi-scale characteristics. The accuracy of multi-crop CNN was 87.14%, and the AUC was
0.93 [22].

Liu et al. proposed a multi-view CNN for classifying nodule types in CT images.
Unlike traditional CNNs, an MV-CNN takes multiple views of each entered nodule. Ex-
periments showed that the MV-CNN achieved an AUC of 0.981, sensitivity of 0.9049, and
specificity of 0.9991 [20]. Paul et al. developed a hybrid model for lung nodule malignancy
prediction utilizing convolutional neural network ensembles. This study divided nodules
into large and small nodules based on different clinical guideline thresholds. CNNs were
designed and trained over each of these groups individually. The size of solid nodules
was used to split the database into three groups of 6 and 8 mm. This study also analyzed
clinical features, such as gender, family history of lung cancer, and smoking history [17].

The multi-crop pooling technique used convolutional features extracted from the
original image or pooled features as inputs. The team then repeatedly performed max-
pooling to the multi-scale features to retrieve the information about the nodules.

Lyu et al. proposed a multi-level convolutional neural network (ML-CNN) to investi-
gate the problem of lung nodule malignancy classification. Three CNNs were in ML-CNN
models to extract multi-scale features in lung nodule CT images. This study further flat-
tened the output of the last pooling layer into a one-dimensional vector for every level
and then concatenated them. The methodology assisted in improving model performance.
According to experimental findings, ML-CNN attained 84.81% accuracy without the use of
any additional manual preprocessing algorithms [25].

Nishio et al. used a deep convolutional neural network (DCNN) for CADx of the
ternary classification. The conventional CAD extracted features using a local binary pattern
and then fed the features to SVM for classification tasks. The deep CNN was modified
via VGG-16. ImageNet was used for transfer training. The validation accuracy of CNN
with transfer learning achieved 68.0% better than CNN without transfer learning and
conventional CAD [10]. Three-dimensional (3D) CNN was examined in further literature.
The network depth of 3D CNN is greater than that of 2D CNN. It can extract a number of
different features from the spatial information of pulmonary nodules in CT images, which
significantly increases the recognition accuracy. When categorizing the same data set and
using the same network parameter settings, 3D CNN is more accurate than 2D CNN.

Ardila et al. propose a deep-learning algorithm that uses a patient’s current and prior
computed tomography volumes to predict the risk of lung cancer. First, the study built a
three-dimensional (3D) CNN model that analyzes whole-CT volumes, end to end.

Second, they trained a CNN region-of-interest (ROI) identification model (the “cancer
ROI detection model”) to find 3D cancer candidate regions in the CT volume. To train this
model, more bounding box labels were gathered. Last but not least, the study created a
CNN cancer risk prediction model that uses outputs from both the full-volume model and
the cancer ROI detection model. The model’s AUC for predicting lung cancer was 94.4% in
a year [11].

Li et al. proposed an algorithm fusing the features achieved from handcrafted fea-
tures (HF) and deep convolutional neural network (DCNN) for predicting lung nodule
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malignancy. The study initially extracted twenty-nine handcrafted features based on a
grey-level cooccurrence matrix (GLCM) averaged from five grey levels, four distances,
and thirteen directions. Then, they trained 3D CNNSs to extract the CNN features learned
at the output layer. There are three 3D CNNss in total, modified from 2D CNNs, namely
AlexNet, VGG-16 Net, and Multi-crop Net. For each 3D CNN, the CNN features combined
with the 29 handcrafted features were used as the input for the support vector machine
(SVM) coupled with the sequential forward feature selection (SFS) method to select the
optimal feature subset and construct the classifiers. The fusing algorithm achieved an AUC
of 0.9303, an accuracy of 88.58%, a sensitivity of 82.60%, and a specificity of 91.82% [26].

In the Ozdemir et al. study, an attention-based multiple instance learning (MIL)
framework was used to train their malignancy classification network. The MIL framework
is based on a convolutional neural network shared by all selected candidates, followed
by a combination layer that combines the features of each candidate using an attention
mechanism. The model finally achieved an AUC of 0.87 [16].

Zhao et al. created a CNN model that fuses multi-scale feature fusion with multi-
attribute grading to classify lung nodules as benign or malignant. Building a multi-task
network (MSMT), which for the first time coupled multi-scale features with multi-attribute
classification, was the initial stage. This network was then used to classify benign and
malignant lung nodules. The experimental results showed the AUCs of the model were
0.979, 93.92%, 92.60%, and 96.25%, respectively [18]. Additionally, Xie et al. proposed the
use of restricted chest CT data to distinguish between benign and malignant nodules using
a multi-view knowledge-based collaborative (MV-KBC) deep model.

By splitting a 3D lung nodule into nine fixed images, the model was able to understand
the features of 3D lung nodules. The study built a knowledge-based collaborative (KBC)
submodel for each view, with three different types of image patches intended to fine-tune
three pre-trained ResNet-50 networks that, respectively, represent the nodules” overall
appearance, voxel heterogeneity, and shape heterogeneity.

Xie et al. used the nine KBC submodels to classify lung nodules with an adaptive
weighting scheme learned during the error back propagation, which enables the MV-KBC
model to be trained in an end-to-end manner. The penalty loss function was used for a
better reduction in the false negative rate with a minimal effect on the overall performance
of the MV-KBC model. The results showed that the MV-KBC model achieved an accuracy
of 91.60% for lung nodule classification with an AUC of 95.70% [23].

Huang et al. constructed a deep-learning algorithm (referred to as DeepLR) from
25,097 participants in a National Lung Screening Trial, and the algorithm was proved in
double-blinded trials. The model achieved AUC of 0.968, 0.946, and 0.899, respectively,
indicating the accuracy of DeepLR scores to predict lung cancer incidence at 1 year, 2 years,
and 3 years. [12]. Asuntha et al.’s study used a novel FPSOCNN for lung cancer classi-
fication and considered it to reduce the computational complexity of CNN. The study
also compared FPSOCNN with other methodologies, and the final results showed that
FPSOCNN outperformed them all. The model had 94.97% accuracy, 96.68% sensitivity,
and 95.98% specificity, respectively [14]. Lei et al.’s study first developed a soft activation
mapping (SAM) to enable fine-grained lung nodule shape and margin (LNSM) feature
analysis with a CNN so that it can access rich discrete features. They then further proposed
a high-level feature enhancement scheme (HESAM) to localize LNSM features by com-
bining high-level convolutional features with SAM. The method achieved an accuracy of
99.13%, a sensitivity of 0.9705, and a specificity of 0.9921 [15]. Tajbakhsh et al. compare
the performance of massive-training artificial neural networks (MTANNSs) and CNNss for
distinction in CT images, showing that MTANNSs with limited training data outperform
CNNi s in the experiment. MTANNSs achieved an AUC of 0.8806, which was greater than
the CNN model with an AUC of 0.7755 [27].
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3.4. Autoencoder (AE)

AE is an unsupervised deep-learning model that primarily consists of input, hidden,
and output layers. The encoder and decoder were hidden layers. The coding process
occurs from the input layer to the hidden layer in AE, whereas the decoding process occurs
from the hidden layer to the output layer. In comparison to the conventional manual tag
extraction, feature extraction via coding and decoding is more objective and trustworthy.
At present, the AE used in the CAD system of pulmonary nodules include stack AE [28],
denoising autoencoder (DAE), and stack DAE. A study by Sun et al. used a stacked
denoising autoencoder (SDAE) to extract parameters, and then applied the parameters to a
supervised neural network, with an AUC of 0.852 £ 0.025 higher than using CNN [24].

3.5. Deep Belief Network (DBN)

The concept of DBN was proposed by Hinton and Salakhutdinov [29] in 2006, which
is defined as a probability generation model with multi-layer neurons. The basic structure
of DBN is a Restricted Boltzmann machine, which is characterized by a full connection
between the visible layer and hidden layer but no intra-layer connection between the hidden
layer and visible layer [30]. The connection between the top two layers is undirected and
forms associative memory. All connections between layers point in the direction of the layer
that is closest to the data. Each neuron in the bottom layer represents a certain dimension
of the data vectors, which are represented by the bottom layer.

This connection mode is the basis of its efficiency. Hua et al. proposed a deep belief
network (DBN) for malignant and benign classification in CT images. The DBN was
established by constructing stacked RBMs iteratively with three hidden layers and a visible
layer. Tested on the LIDC data set, DBN (sensitivity of 73.4% with specificity of 82.2%)
and deep CNN (sensitivity of 73.3% with specificity of 78.7%) outperformed k-nearest
neighbors with SIFT and LBP (sensitivity of 75.6 with specificity of 66.8%), and support
vector machine with fractal analysis (sensitivity of 50.2% with specificity of 57.2%) [19]. In
addition, the latest proposed adaptive squeeze-and-shrink (ASAS) denoising technique
optimizes the precision by 18.03% and sensitivity by 7.64% [31].

4. Discussion

With increasing lung tissue sample size and diversity, the Lung Image Database
Consortium and Image Database Resource Initiative, LIDC-IDRI, and other databases
continuously provide a large number of expert-labeled lung CT image data. These factors
address the necessary conditions for the development of CT technology [32]. The examina-
tion of lung nodules and the evaluation of malignant tumors have benefited significantly
from CT technology as a result of the development of computer technology [33]. The image
processing approach, traditional machine learning method, and deep-learning method
of artificial intelligence have all been developed for use in lung nodule detection [34].
Deep learning is now considered the brand-new method in medical image analysis, and it
has been shown to outperform traditional machine learning methods in several domains
with more precise results and better generalizability. But, the limitations of deep learning
may include more data required for training and potential robustness behavior compared
with traditional methods [35]. Due to the experienced performance of CT in accurately
identifying malignant pulmonary nodules, which is crucial to the diagnosis of lung cancer,
patients’ chances of cure are apparently improved. The wide application of deep-learning
methods in computer vision also makes CT play an increasingly prominent role in the
detection of malignant nodules [36].

Through a systematic review, we found that the convolutional neural network (CNN)
has been extensively applied in the diagnosis of pulmonary nodules. Numerous studies
have shown that the use of deep-learning technology in a variety of fields, including the
categorization of lung nodules and the end-to-end detection of lung cancer, is adequate
to improve the AUC, accuracy, sensitivity, and specificity of effects performance. The
spatial three-bit information of pulmonary nodules can be used to anticipate using deep-
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learning technology as a way of multi-level feature learning. CNN has an outstanding
advantage in diagnosis sensitivity and accuracy compared with the traditional computer-
aided detection system (CAD), and its false positive is also controlled [13]. According to
the study, discriminative results may be obtained by integrating deep belief networks and
convolutional neural network models into the standard CAD image analysis pipeline under
the condition of executing the nodule classification of tomographic images [37].

Deep-learning approaches use multi-layer neural networks to process medical data,
increasing the predictive power of several specific applications in different clinical domains.
In addition, the deep-learning algorithm outperforms other approaches in terms of accuracy,
computational efficiency, and extensibility [38]. A deep architecture also has the capacity
to integrate many data sets into heterogeneous data types and offer more generalization
because of its hierarchical learning structure [39]. An additional study has claimed that
combining Inception-V3 and MobileNet classifiers with semantic segmentation and transfer
learning is capable of improving significantly the performance of deep-learning models in
classifying 3D lung CT scan images [40].

5. Conclusions

In conclusion, this paper discussed the detection and classification methods of lung
nodules based on a deep-learning model architecture. Currently, a number of studies have
applied cutting-edge methods of deep-learning algorithms to lung nodule detection and
classification. The efficacy of the models has recently been impacted by various network
architectures. It is difficult to assess directly the superiority of model performance because
the lung CT image databases and datasets used by different researchers frequently vary. For
instance, for CNN networks, the more complex the overall model architecture, the better
results achieved in natural image classification recognition and possibly the better nodule
classification. Despite the great achievements made in the field of lung nodule detection
and classification, it is undeniable that there is still a wide range of research content, such
as unsupervised learning algorithms and CAD systems, requiring in-depth exploration in
the future. However, the following two issues should be addressed in the future. First, a
common limiting factor in most studies is the scarce training data, which negatively affects
the robustness and effectiveness of the model. Second, since most previous studies were
retrospective analyses, it is essential to conduct more prospective large-sample analyses
and rigorous real-world clinical practice in heterogeneous settings in order to verify their
real-world practicality.

Funding: This work was supported by National Natural Science Foundation of China (Grant Number:
71804183 and 72274201).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Search Strategy

(1) (CT or CAT or (computed and tomography)) OR ((CT or CAT or (computed and
tomography)) and (scan or scanning or screen or screening)) OR ((spiral or helix
or helical) and CT or CAT or (computed and tomography)) OR (((spiral or helix or
helical) and CT or CAT or (computed and tomography)) and (scan or scanning or
screen or screening))

(2)  (low and dose) or low-dose or LDCT or (ultralow and dose) or ultralow-dose or ULDCT

(3) (artificial and intelligence) or Al or (computer and assisted) or computer-assisted or
(neural and network) or (machine and learning) or (deep and learning)

(4) ((lung or pulmonary or bronchial) AND (neoplasm or nodule or lesion or cancers or
neoplasms or nodules or lesions or cancer or carcinoma or carcinomas))

(5) land2and3and4

(6) Limit 5 to English language
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