

Correction

Correction: Belchior et al. Repair Kinetics of DSB-Foci Induced by Proton and α -Particle Microbeams of Different Energies. *Life* 2022, 12, 2040

Ana Belchior ^{1,*}, João F. Canhoto ^{1,2}, Ulrich Giesen ³, Frank Langner ³, Hans Rabus ⁴ and Reinhard Schulte ⁵

- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal; joaofcanhoto@tecnico.ulisboa.pt
- Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Physikalisch-Technische Bundesanstalt (PTB), 38116 Braunschweig, Germany; ulrich.giesen@ptb.de (U.G.); frank.langner@ptb.de (F.L.)
- Physikalisch-Technische Bundesanstalt (PTB), 10587 Berlin, Germany; hans.rabus@ptb.de
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA; rschulte@llu.edu
- * Correspondence: anabelchior@tecnico.ulisboa.pt

Error in Table

In the original publication [1], there was a mistake in Table 3 as published. In one of the cells of this table (column 5, row labelled " α —particles 20 MeV"), the same values as in the cell below (column 5, row labelled " α —particles 10 MeV") were shown. The corrected Table 3 appears below.

Table 3. Results of the model parameters obtained by simultaneous non-linear regression of all datasets: Number of radiation-induced foci per track \overline{n}_Q , fraction of persistent radiation-induced foci p_Q , mean number of persistent radiation-induced foci per track \overline{p}_Q , repair rates β_1 and β_2 , and respective standard errors (SE) obtained from the fit of the non-linear model (Equations (1)–(3)) to the ensemble of datasets for all radiation qualities and the sham-irradiated cells. The values are from the regression performed using the GDL MPfit procedure imposing $\beta_0 = \beta_1$. The upper and lower values in the cells in columns 3 through 7 are the fit results obtained by using Equation (4) and Equation (5), respectively, in conjunction with Equations (1)–(3). The values given in italics in columns 4 and 5 have been calculated from the values in the respective other column. The resulting ratio χ^2/f of the weighted sum of squared residuals χ^2 (summed over all datasets) to the degrees of freedom f is about 4.8 in both cases. In columns 6 and 7, only one value is given, since these parameters were kept the same for all radiation qualities in the simultaneous fit.

(2) LET (keV/μm)	(3) Mean Number of Foci Per Track, \overline{n}_Q	(4) Proportion of Persistent Foci, p_Q	(5) Mean Number of Persistent Foci Per Track, \overline{p}_O	(6) Repair Rate $eta_1\left({ t h}^{-1} ight)$	(7) Repair Rate $eta_2\left(\mathrm{h}^{-1}\right)$
19 ± 2	0.37 ± 0.02 0.37 ± 0.02	0.42 ± 0.06 0.38 ± 0.05	$0.15 \pm 0.02 \\ 0.14 \pm 0.02$	- 0.43 ± 0.01 0.41 ± 0.01	0.06 ± 0.01 0.05 ± 0.01
36 ± 1	0.69 ± 0.04 0.69 ± 0.04	0.25 ± 0.06 0.22 ± 0.05	$0.17 \pm 0.04 \\ 0.15 \pm 0.03$		
85 ± 4	$\begin{array}{c} 1.13 \pm 0.06 \\ 1.13 \pm 0.06 \end{array}$	0.33 ± 0.06 0.30 ± 0.05	$0.38 \pm 0.08 \\ 0.34 \pm 0.06$		
170 ± 40	1.68 ± 0.18 1.68 ± 0.18	0.31 ± 0.08 0.27 ± 0.07	$0.52 \pm 0.15 \\ 0.47 \pm 0.10$		
	LET (keV/μm) 19 ± 2 36 ± 1 85 ± 4	(2) LET (keV/μm) Mean Number of Foci Per Track, \overline{n}_Q 19 ± 2 0.37 ± 0.02 36 ± 1 0.69 ± 0.04 85 ± 4 1.13 ± 0.06 170 ± 40 1.68 ± 0.18	LET (keV/μm) Mean Number of Foci Per Track, \bar{n}_Q Proportion of Persistent Foci, p_Q 19 ± 2 0.37 ± 0.02 0.42 ± 0.06 0.37 ± 0.02 0.38 ± 0.05 36 ± 1 0.69 ± 0.04 0.25 ± 0.06 0.69 ± 0.04 0.22 ± 0.05 85 ± 4 1.13 ± 0.06 0.33 ± 0.06 1.13 ± 0.06 0.30 ± 0.05 1.70 ± 40 1.68 ± 0.18 0.31 ± 0.08	(2) LET (keV/μm) (3) Mean Number of Foci Per Track, \bar{n}_Q (4) Proportion of Proportion of Persistent Foci, p_Q Mean Number of Persistent Foci, p_Q Number of Persistent Foci, p_Q 19 ± 2 0.37 ± 0.02 0.42 ± 0.06 0.15 ± 0.02 0.37 ± 0.02 0.38 ± 0.05 0.14 ± 0.02 36 ± 1 0.69 ± 0.04 0.25 ± 0.06 0.17 ± 0.04 0.69 ± 0.04 0.22 ± 0.05 0.15 ± 0.03 85 ± 4 1.13 ± 0.06 0.33 ± 0.06 0.38 ± 0.08 1.13 ± 0.06 0.30 ± 0.05 0.34 ± 0.06 1.70 ± 40 1.68 ± 0.18 0.31 ± 0.08 0.52 ± 0.15	(2) LET (keV/μm) (3) Mean Number of Foci Per Track, \bar{n}_Q (4) Proportion of Persistent Foci, p_Q Mean Number of Persistent Foci, p_Q Mean Number of Persistent Foci Per Track, \bar{p}_Q (6) Repair Rate Persistent Foci Per Track, \bar{p}_Q 19 ± 2 0.37 ± 0.02 0.37 ± 0.02 0.38 ± 0.05 0.15 ± 0.02 0.14 ± 0.02 0.15 ± 0.02 0.14 ± 0.02 36 ± 1 0.69 ± 0.04 0.25 ± 0.06 0.17 ± 0.04 0.22 ± 0.05 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.03 0.15 ± 0.05 0.15 ± 0

Citation: Belchior, A.; Canhoto, J.F.; Giesen, U.; Langner, F.; Rabus, H.; Schulte, R. Correction: Belchior et al. Repair Kinetics of DSB-Foci Induced by Proton and α -Particle Microbeams of Different Energies. *Life* 2022, 12, 2040. *Life* 2024, 14, 36. https://doi.org/10.3390/life14010036

Received: 15 August 2023 Accepted: 20 November 2023 Published: 25 December 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Life **2024**, 14, 36

The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

Reference

1. Belchior, A.; Canhoto, J.F.; Giesen, U.; Langner, F.; Rabus, H.; Schulte, R. Repair Kinetics of DSB-Foci Induced by Proton and α-Particle Microbeams of Different Energies. *Life* **2022**, *12*, 2040. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.