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Abstract: Tumor microenvironment (TME) plays a pivotal role in immuno-oncology, which in-
vestigates the intricate interactions between tumors and the human immune system. Specifically,
tumor-infiltrating lymphocytes (TILs) are crucial biomarkers for evaluating the prognosis of breast
cancer patients and have the potential to refine immunotherapy precision and accurately identify
tumor cells in specific cancer types. In this study, we conducted tissue segmentation and lympho-
cyte detection tasks to predict TIL scores by employing self-supervised learning (SSL) model-based
approaches capable of addressing limited labeling data issues. Our experiments showed a 1.9%
improvement in tissue segmentation and a 2% improvement in lymphocyte detection over the Ima-
geNet pre-training model. Using these SSL-based models, we achieved a TIL score of 0.718 with a
4.4% improvement. In particular, when trained with only 10% of the entire dataset, the SwAV pre-
trained model exhibited a superior performance over other models. Our work highlights improved
tissue segmentation and lymphocyte detection using the SSL model with less labeled data for TIL
score prediction.

Keywords: self-supervised learning; histopathology; breast cancer; tumor-infiltrating lymphocytes;
tissue segmentation and lymphocyte detection

1. Introduction

Breast cancer is a prevalent tumor disease that frequently affects women before and af-
ter menopause, substantially disrupting their daily lives. Thus, multidisciplinary research
is crucial to comprehend the risk factors associated with this form of tumor develop-
ment [1]. Within this context, the tumor microenvironment (TME) plays a pivotal role
in immuno-oncology, focusing on the intricate interplay between tumors and the human
immune system. Notably, utilizing tumor-infiltrating lymphocytes (TILs) [2–4] as prog-
nostic biomarkers in cancer patients can enhance immunotherapy precision, aiding in the
removal of tumor cells in specific cancer types. Furthermore, breast cancer subtypes, such
as Her2-positive and triple-negative breast cancer (TNBC), are focal subjects of extensive
research into prognostic and predictive biomarkers.

This research aims to improve patient care and prognosis, as these subtypes are associ-
ated with the predominant challenges in breast cancer. According to Sheren Loi et al. [3,4],
TILs are significant predictors in clinical TNBC studies. TIL identification and quantifi-
cation can substantially refine treatment strategies, especially regarding immunotherapy
precision, potentially reducing the need for more aggressive interventions like chemother-
apy. To achieve accurate TIL detection, conducting comprehensive tissue segmentation and
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lymphocyte detection is imperative. This process includes identifying tumor regions and
inflamed stroma associated with TILs [5].

Deep learning-based technologies have seen significant recent advancements within
the medical field. These developments have positively impacted various medical domains,
including radiology, histopathology, and genomics, by facilitating diagnoses and other
critical tasks. Among these technologies, convolutional neural networks (CNNs) have
emerged as the most widely adopted approach for medical image analysis [6,7]. However,
despite their effectiveness, deep learning models require substantial amounts of labeled
data for superior performance. Unfortunately, obtaining labeled data is time consuming
and costly, posing practical challenges for training models on large datasets [8].

In response to these limitations, self-supervised learning methods [9–13] are garnering
increasing attention within the research community. Self-supervised learning focuses on
extracting meaningful features from input data through pretext tasks, introducing the
distinct advantage of learning without requiring extensive labeled data. This shift towards
self-supervised learning can potentially revolutionize how we approach deep learning-
based medical applications, making them more accessible and cost effective, ultimately
benefiting researchers and healthcare practitioners.

In this paper, we adopted a self-supervised learning approach by training our model
using a substantial unlabeled pathology image dataset, eschewing ImageNet pre-trained
weights. We leveraged the self-supervised pre-trained model to improve the performance of
tissue segmentation and lymphocyte detection, finally leading to better TIL score prediction.

2. Related Works

Many research investigations have focused on classifying breast cancer images through
various applications. Ayana et al. [14] introduced multistage transfer learning (MSTL),
a breast cancer classification method. This approach utilizes three pre-trained models
(EfficientNetB2, InceptionV3, and ResNet50) with three optimization algorithms (Adam,
Adagrad, and stochastic gradient descent (SGD)) on deep learning techniques. In their
study, the ResNet50-Adagrad setup achieved remarkable test accuracy rates of 99 ± 0.612%
with the Mendeley dataset and 98.7 ± 1.1% with the MT-Small-Dataset. These findings
were consistent across five cross-validation assessments, underlining the reliability of
their approach.

Wang et al. [15] designed an innovative approach for automating cancer diagnosis and
staging via image analysis and machine learning. Their study used the BreakHis dataset and
employed preprocessing steps, including color-to-grayscale conversion, thresholding, and
filtering. Nuclei segmentation was accomplished using distance transform and watershed
algorithms, and they explored two feature extraction methods. The ensemble-tagged
tree classifier achieved the highest binary classification accuracy at 89.7%, distinguishing
between benign and malignant cases. Concerning multiclass classification, the ensemble
subspace discriminant classifier achieved an 88.1% accuracy.

Similarly, Venugopal et al. [16] established a novel hybrid deep-learning approach
employing Inspection-ResNetv2 and EfficientNetV2-S pre-trained models with ImageNet
weights. Their model classified breast cancer histopathology images from the BreakHis and
BACH datasets. The authors assessed their proposed model’s performance by comparing
individual outcomes from Inspection-ResNetv2 and EfficientNetV2 models to the hybrid
model’s output. The last classification layer contained four neurons for the BACH dataset
and eight for the BreakHis dataset. Their results demonstrated the model’s effectiveness,
achieving 98.15 percent precision with the BACH dataset and 99.03 percent with the
BreakHis dataset.

Joshi et al. [17] introduced a deep CNN-based breast cancer detection method, eval-
uating three pre-trained CNN models (EfficientNetB0, ResNet50, and Xception) using
the BreakHis and IDC datasets. Notably, the customized Xception model outperformed
the others, achieving a 93.33% accuracy on 40× magnification images from the BreakHis
dataset. The models were trained on 70% of the BreakHis dataset and validated on the
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remaining 30%, employing data augmentation, dropout, batch normalization, and other
regularization techniques. Fine-tuning the improved Xception model on a subset of the
IDC dataset yielded an 88.08% accuracy when detecting invasive ductal carcinoma. This
study showcases the efficacy of transfer learning for diverse classification tasks on both
datasets. Overall, the studies highlight the significance of image normalization and data
augmentation and demonstrate transfer learning’s potential for increasing the accuracy of
breast cancer classification systems.

Furthermore, we identified gaps in existing research regarding breast cancer for tis-
sue segmentation, tumor detection, and TIL prediction. For instance, Amgad et al. [18]
established a deep learning approach that simultaneously segments TILs at both region
and nucleus levels. They employed fully convolutional neural networks (FCN-8) on top of
the ImageNet pre-trained VGG16 architecture. The dataset used in this study comprised
120 anonymized H&E stained slides obtained from the Cleveland Clinic Foundation. How-
ever, their study had limitations, such as lacking validation on extensive image datasets
and additional exploration of the relationship between spatial TIL features and biologi-
cal data. Employing these techniques for comprehensive TIL analysis with whole slide
images (WSIs) poses a challenge, as representative tumor regions on each slide must be
manually selected.

To address limited training data, another study conducted by Lu et al. [19] developed a
U-net based neural network to detect lymphocytic regions in H&E stained images. Inspired
by its success in object detection, they utilized Resnet18 model’s initial five blocks as
the encoder to enhance model robustness [20,21]. This choice was made to boost model
efficiency and performance. Encoder parameters were initialized using pre-trained weights
from ImageNet. This study utilized two breast cancer datasets: the TCGA-BRCA dataset
and the lymphocyte detection dataset provided by Janowczyk et al. [22]. However, the
trained network was still biased toward the training dataset, and the generalizability
and transferability of the trained model remain in question. Leveraging self-supervised
methods for transfer learning can address these challenges, offering the potential for
automated and more comprehensive tissue segmentation and TIL analysis with whole slide
images. Overall, these techniques ultimately advance the field of breast cancer diagnosis
and treatment.

3. Materials and Methods
3.1. Background

During the TIGER challenge on the fully automated assessment of TILs in H&E stained
breast cancer slides, we benchmarked tissue segmentation and lymphocyte detection per-
formance with three teams among the top 10 ranked in leaderboards. Table 1 summarizes
the methodology and results from teams (TiAger [23], Fda-Cdrh-Osel-Didsr, Xulin Chen)
participating in the TIGER challenge. The goal of this challenge was two-fold: tissue seg-
mentation and lymphocyte detection for computing an automated TIL score (leaderboard1)
and to assess the prognostic value (C-index) of TIL scores (leaderboard2).

Table 1. Summary of certain teams participating in the TIGER challenge.

TiAger [23] Fda-Cdrh-Osel-Didsr Xulin Chen

Network Efficient-U-Net U-Net HRNet-W18
Pre-trained model ImageNet ImageNet ImageNet

Optimizer Adam Adam SGD
Dice score (Tumor) 0.785 0.706 0.525
Dice score (Stroma) 0.790 0.772 0.563

FROC score 0.544 0.321 0.033
C-index 0.588 0.603 0.612

Additional information about the TIGER challenge and datasets can be found at
https://tiger.grand-challenge.org/. The dataset was accessed on 16 January 2022.

https://tiger.grand-challenge.org/
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Table 1 presents a common approach among research teams: the initialization of
pre-trained weights from the ImageNet dataset [24,25] pre-trained models. ImageNet is
an extensive dataset encompassing over 10 million natural images. Models pre-trained on
this dataset have proven valuable in disciplines lacking specific training data. However,
it is essential to note that ImageNet primarily comprises natural rather than pathological
images, which are annotated. Fine-tuning models on natural domain image datasets, such
as ImageNet, for subsequent pathological image analysis can alleviate some challenges
posed by missing labeled data [26].

Rather than depending on only ImageNet pre-trained weights, ours is a groundbreak-
ing approach in addressing limitations from a shortage of labeled data. We achieved more
efficient learning by harnessing pre-trained weights derived from an extensive unlabeled
dataset. This dataset included pathological images, particularly cancer tissue images from
various organs, ensuring that the pre-trained weights were finely tuned to this specialized
domain’s intricacies. We initialized our models using ImageNet pre-trained weights and
trained the network with pathology datasets as the pre-training step.

After pre-training the encoders in a self-supervision-based model, we extracted and
utilized weights from the pre-trained model’s encoders to initialize tissue segmentation and
lymphocyte detection models. Next, we froze these encoders, preserving the knowledge
acquired during pre-training. This technique ensures that the information gathered in the
initial phase is retained and forms the foundation for subsequent analyses and tasks. We
then froze the encoder weights and conducted a comparative analysis between models
initialized with pathology image pre-trained weights, ImageNet pre-trained weights, and
those initialized with random weights to assess their respective performances. Lastly,
we selected the top-performing model for each downstream task and utilized it for TIL
score prediction.

This approach allows us the leverage of domain-specific knowledge from unlabeled
pathological images, offering a more tailored and efficient solution for TIL prediction.

3.2. Overall Pipeline for Til Score Prediction

In this work, we trained a self-supervised learning model using large-scale patho-
logical datasets to obtain pre-trained encoder weights rather than relying on ImageNet
pre-trained weights. We transferred these weights into the encoders of our downstream
models for tissue segmentation and lymphocyte detection. The TIL score was calculated
using the extracted tissue segmentation and lymphocyte detection information. Figure 1
illustrates the overall pipeline of this study.

Figure 1a details the SimCLR and SwAV training processes to pre-train encoders. In
this step, we initialized the models using publicly available ImageNet weights. The weights
of the pre-trained model encoders were transferred to the downstream encoders, and then
the encoders were frozen. Figure 1b illustrates the learning process for downstream analysis
tasks using the TIGER challenge datasets as inputs, encompassing tissue segmentation and
lymphocyte detection. Figure 1c presents the feature maps generated by the models used
as inputs for predicting the TIL score. These feature maps contain essential information
extracted from the TIGER datasets.

3.3. Self-Supervision-Based Pretraining Task

During the initial phase of this study, we conducted pre-training by utilizing large-
scale unlabeled pathological image datasets as input for self-supervised learning models.
Specifically, we employed SimCLR and SwAV models.
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Figure 1. Overall pipeline for TIL prediction: (a) pre-training process using SimCLR and SwAV,
(b) downstream analysis, and (c) TIL prediction.

3.3.1. SimCLR

The Simple Framework for Contrastive Learning of Visual Representations (Sim-
CLR) [27] is a self-supervised learning method designed to acquire meaningful representa-
tions using augmentation strategies as a pretext task. Every image undergoes augmentation
with two distinct transformations in each mini-batch, including color or morphological
changes, each with a specific probability. The encoder module is responsible for learning
features from these augmented images. The encoder’s feature maps are then converted into
embedding values through a projection head employing a multi-layer perceptron (MLP)
neural network. These embedding values are then used with a contrastive loss function.

Concerning SimCLR, the augmented images from a single image are treated as positive
pairs, while all other images are negative. The primary objective of SimCLR is to minimize
the embedding distance between positive pairs while maximizing the distance between
negative pairs, reducing overall loss. This contrastive learning technique proves highly
effective when utilizing unlabeled data as input.

Nonetheless, there are certain limitations to consider. First, achieving optimal perfor-
mance with SimCLR often necessitates a larger batch size, which can impose computational
constraints and increase reliance on negative samples. Furthermore, self-supervised learn-
ing typically employs many datasets, often requiring multi-GPU training, which can
introduce computational cost challenges [28].

3.3.2. SwAV

Swapping Assignments between Views (SwAV) [29] is a self-supervised learning
approach that leverages contrastive methods without computing pairwise comparisons.
SwAV clusters data while ensuring that different augmentations of the same image share
consistent cluster assignments. This process is accomplished through a novel “swapped
prediction” mechanism, where the network predicts the cluster of one view using the
representation of another. By doing so, SwAV eliminates the need for extensive memory
banks [30,31], thus avoiding the computational cost of dissimilar data pair comparisons.

Notably, SwAV introduces a multi-crop augmentation strategy that further enhances
model training efficacy. In traditional self-supervised learning, models typically augment
one image into two, but SwAV incorporates additional multi-crop augmentations. In ad-
dition to the two standard augmented images, low-resolution cropped images undergo
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various augmentation techniques. While the comparison process evaluates the two stan-
dard augmented images against all augmented images, low-resolution cropped images are
exclusively compared with standard augmented images.

This approach boosts performance by enabling comparisons between different views
within a single image and addresses memory constraints, as low-resolution cropped images
are smaller than the two standard augmented images. This strategy has the potential to
enhance the performance of other techniques as well.

3.4. Downstream Analysis Task for Tissue Segmentation and Lymphocyte Detection

At the end of pre-training with a self-supervised learning model, the model weight is
transferred and frozen into a downstream analytical model for tumor lymphocyte (TIL)
prediction, followed by a segmentation and object detection learning process. We used
DeepLabv3 for tissue segmentation and U-Net for lymphocyte detection.

3.4.1. DeepLabv3 for Tissue Segmentation

In this study, DeepLabv3 [32] was applied among the DeepLab [33–35] series for tissue
segmentation. It is a semantic segmentation technique that prominently features the Atrous
Spatial Pyramid Pooling (ASPP) module as a core component.

The ASPP module uses multiple parallel filters by a dilated convolution with different
stride rates. This dilated convolutional layer enlarges the receptive field by adjusting
the stride within the filter of the extracted feature map. As a result, the ASPP module
can capture multi-scale contextual features for each original image. These feature maps,
extracted at various scales, are organized in parallel and are eventually fused into a single
feature map, which is then produced as the output. Then, the output feature map undergoes
bilinear upsampling to match the size of the original image. Utilizing the ASPP module of
DeepLabv3 improves the performance of semantic segmentation.

3.4.2. U-Net for Lymphocyte Detection

U-Net [36] is an encoder–decoder architecture widely used for image segmentation. In
standard encoder–decoder models, encoders reduce input data dimensions, while decoders
increase them, restoring high-dimensional images. However, this dimension encoder
reduction can lead to the loss of detailed information from the original image. Even if
decoders attempt to restore these lost data, they cannot fully recover them. Therefore,
U-Net employs skip connections [37,38] that establish a direct link between the encoder
and decoder layers to overcome this challenge. These connections facilitate data merging
from the encoding and decoding stages, enabling the decoder to harness information from
before and after dimension reduction phases. Consequently, U-Net excels at minimizing
information loss during the encoding process, enhancing its ability to capture fine-grained
details in image segmentation tasks.

3.5. Experiments
3.5.1. Dataset and Data Preprocessing

Our study used three datasets for different tasks: (1) a dataset for pre-training self-
supervised learning (SSL) models, (2) a WSIROIS dataset for tissue segmentation and
lymphocyte detection, and (3) WSITILS for TIL prediction. The WSIROIS, WSITILS and
their ground truths were derived from the TIGER challenge dataset. This dataset, including
whole slide images (WSI), annotation files, and masks, was meticulously prepared and pro-
vided by the organizers of the TIGER challenge. The TIGER challenge itself was organized
by the Diagnostic Image Analysis Group (DIAG) at Radboud University Medical Cen-
ter in Nijmegen, Netherlands, in collaboration with the International Immuno-Oncology
Biomarker Working Group. The annotations within this dataset were created under the
guidance and expertise of qualified staff from these organizations, ensuring the accuracy
and reliability of the ground truths. For detailed information regarding the dataset and
the annotation process, additional insights can be found on the TIGER challenge website:
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https://tiger.grand-challenge.org/. The dataset was accessed on 16 January 2022. Ad-
ditional details about the TIGER challenge datasets are summarized in Table S1 within
Supplementary Materials.

We constructed a large-scale, unlabeled dataset to develop the pretrained model using
self-supervised learning (SSL). This dataset was compiled from 15 publicly available sources.
These sources include a diverse range of organ images, such as the breast, colon, bone,
lung, and prostate, with further details provided in Table S2 of Supplementary Materials.
Each of these datasets contains images of specific organ tissues, encompassing both normal
and tumor regions. All images were uniformly cropped to 256 × 256 pixels for the inputs
of the self-supervised model. The dataset comprised approximately 600,000 cropped
images, which were randomly divided (80% for training and 20% for validation). The
tissue segmentation task incorporated a WSIROIS dataset consisting of two distinct patch
types images, namely ROI-level tissue Breast Cancer Semantic Segmentation (BCSS) and
ROI-level tissue cells. The BCSS dataset consisted of 151 images, while the ROI-level tissue
cell dataset comprised 1879 images, which were both employed for tissue segmentation.
The dataset was originally annotated with masks covering eight classes, including invasive
tumors, tumor-associated stroma, in situ tumors, healthy glands, non-in situ necrosis,
inflamed stroma, rest, and background. However, these regions were merged into three
broad categories for TIL prediction: tumor, stroma, and other.

For example, invasive tumors were grouped into the tumor class, while tumor-
associated and inflamed stroma were merged into the stroma category. The remaining
classes were collectively categorized as others. Similar to the preprocessing of the pre-
training phase, we cropped these sub-WSI images to patch images with a uniform size of
256 × 256 pixels. This process resulted in approximately 19,000 cropped images that can be
utilized as inputs for tissue segmentation. The dataset was partitioned, with 80% allocated
for training and the remaining 20% for validation.

We utilized the ROI-level tissue cell dataset from the TIGER challenge for lymphocyte
detection. This dataset includes annotated lymphocyte detection information stored in the
’tiger-coco.json’ annotation file, which details the bounding box coordinates of lymphocytes.
To train our model for this task, we generated masks based on the provided annotation file,
and these masks consisted of two classes: lymphocytes and background. Each bounding
box within the masks was adjusted to 12 × 12 pixels, and both the input images and masks
were cropped to uniform 256 × 256 pixels, following the same preprocessing procedure as
the segmentation task. Images without lymphocytes were excluded from consideration,
and smaller images were resized to 256 × 256 by adding zero-padding to the edges.
Consequently, our dataset encompassed approximately 3195 images, with 80% allocated
for training and 20% for validation.

3.5.2. Experiment Setup of the Pre-Train Task and the Downstream Task

This paper employed ResNet-18 [38] as the backbone architecture for SimCLR and
SwAV. ResNet [38] is a deep learning network with residual blocks enabling the model to
tackle gradient vanishing/explosion challenges, allowing for the training of profoundly
deep neural networks. Prior to the training process, we initialized encoders for Sim-
CLR and SwAV with pre-trained weights from ImageNet, as this initialization scheme
exhibited a better performance in training SSL models [24,25,39]. We separately trained
the SimCLR and SwAV models for 300 epochs. During training, we selected the model
with the lowest contrastive loss in the validation dataset. Each ResNet encoder from the
best SSL model was frozen and used for downstream tasks. For these tasks, we utilized
DeepLabv3 for tissue segmentation and U-Net for lymphocyte detection. We conducted
5-fold cross-validation for segmentation and detection. Furthermore, we conducted a
series of experiments where we adjusted the learning rate within the range of [1.0 × 10−3,
1.0 × 10−4, 1.0 × 10−5] to determine the optimal learning rate for each downstream task.
Subsequently, the downstream model was trained using the identified optimal learning
rate. The experimental setup for pretraining and downstream tasks are detailed in Tables S3

https://tiger.grand-challenge.org/
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and S4 in Supplementary Materials. The code for our TIL prediction pipeline is available
at https://github.com/sijinkim2/TILs-prediction-pipeline. The website was accessed on
22 December 2023.

3.5.3. Evaluation Metrics for Tissue Segmentation and Lymphocyte Detection

The Dice score [40] is the evaluation metric for tissue segmentation, measuring the
degree of overlap between two images. For segmentation tasks, it assesses the performance
of the model by quantifying the overlap between the ground truth and predicted images.
The Dice score ranges from 0 (no overlap) to 1 (perfect overlap). In this study, we calculated
individual Dice scores of tumor, stroma, and other classes.

In the lymphocyte detection task, we used the Free Response Operating Characteristic
(FROC) curves [41] to assess performance. The FROC curve is the plot of sensitivity against
the average number of false positives per image. The FROC score is calculated by the
average sensitivity at six predefined false positives: [10, 20, 50, 100, 200, 300].

To predict TIL from the predictive mask, we filtered the mask by only retaining areas
with a probability value exceeding 0.1. Next, a non-maximum suppression [42] technique
based on distance was applied to ensure the selection of a single TIL within each bounding
box. Considering that the bounding box size of the lymphocyte detection mask was 12,
the distance threshold was also set to 12 units. Finally, the predicted detection results
were compared with the measured results to calculate sensitivity and false positives. If the
distance between the lymphocyte pixels of the predicted mask and the ground truth mask
was within 8 pixels, it was considered true positive.

3.5.4. Til Score Evaluation

For tumor-infiltrating lymphocyte (TIL) predictions, we employed the WSITILS dataset
comprising 82 Whole Slide Image (WSI) type images. Then, each WSI image was resized
to a uniform size of 256 × 256 pixels to facilitate TIL prediction. We excluded images
with a background ratio exceeding 65%. The preprocessed images were fed into the best-
performing models from tissue segmentation and lymphocyte detection tasks to serve
as the TIL prediction model. We calculated the TIL scores using Equation (1), where
TILs represented the number of lymphocytes within the stroma area. All datasets in
the TIGER challenge comprised Whole Slide Images (WSIs) sampled at a resolution of
0.5 µm/px. Furthermore, the average equivalent diameter of lymphocytes in these images
was established as 8 µm. Given this resolution and the size of lymphocytes, we calculated
the lymphocyte size to be effectively represented in a 16 × 16 pixel area in our study.

TIL score = 100 × ∑(TILs × 16 × 16)
∑ (stroma area)

. (1)

We evaluated performance using Pearson’s correlation coefficient between the pre-
dicted TIL score and the actual score provided in ‘tiger-til-score-wsitils.csv’. The ’tiger-til-
score-wsitils.csv’ file contains the actual TIL score for 82 WSIs within the WSITILS dataset.
Evaluation was conducted by a board-certified breast pathologist in adherence to the guide-
lines of the TIL Working Group. This csv file is included in the TIGER challenge training
dataset. This dataset can be downloaded from https://tiger.grand-challenge.org/Data/.
The dataset was accessed on 16 January 2022.

4. Results
4.1. Pre-Training of Simclr and Swav

In our experiment, we found that both self-supervised learning models exhibited
a consistent trend where training loss decreased by epochs, as did validation loss. This
observation indicates that overfitting did not occur during the learning process of these
two self-supervised models. Detailed plots of the training and validation loss curves for
the self-supervised learning models are available in Figure S2 in Supplementary Materials.

https://github.com/sijinkim2/TILs-prediction-pipeline
https://tiger.grand-challenge.org/Data/
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We selected the models with the lowest validation loss among the 300 epochs and
extracted the encoder weights of ResNet18. The encoder weights were transferred to the
DeepLabv3 encoder for tissue segmentation and to U-Net for lymphocyte detection.

4.2. Tissue Segmentation and Lymphocyte Detection

In this section, we present the results for tissue segmentation and lymphocyte detec-
tion, which are integral to predicting tumor-infiltrating lymphocyte (TIL) scores. Table 2
provides the overall results of these tasks and compares them with those of a randomly
initialized model and an ImageNet pre-trained model. The ’randomly initialized model’
refers to a basic learning process that commences with weights initialized from scratch
without pre-training. Conversely, the ’ImageNet pre-trained model’ incorporates weights
initialized through pre-training on the ImageNet dataset. We obtained the publicly avail-
able ImageNet weights from TorchVision. The publicly available pre-trained weights were
obtained and stored following the methods provided by He et al. [38]. Similar to the
self-supervised pre-trained models in this paper, the weights of these models were frozen
after initializing the encoders of the tissue segmentation and lymphocyte detection models.
All results were averaged from a five-fold cross-validation.

Table 2. Downstream results by a pre-trained model: DeepLabv3 for tissue segmentation and U-Net
for lymphocyte detection. Bold values represent the best scores.

Downstream Tasks

Dice Score of Tissue Segmentation FROC Score of
Tumor Stroma Average Lymphocyte Detection

ImageNet pre-trained 0.861 ± 0.002 0.877 ± 0.003 0.869 0.641 ± 0.015

Random initialized 0.713 ± 0.005 0.746 ± 0.006 0.73 0.598 ± 0.015

SimCLR pre-trained 0.869 ± 0.003 0.883 ± 0.002 0.876 0.661 ± 0.029

SwAV pre-trained 0.882 ± 0.002 0.894 ± 0.003 0.888 0.645 ± 0.013

Dice scores for the tumor and stroma class among the three classes during tissue
segmentation are presented in Table 2. Notably, the random initialized model achieved
the lowest Dice score. In contrast, the average Dice scores for the SimCLR and SwAV
pre-trained models were 0.876 and 0.888, surpassing the ImageNet pre-trained model. The
SwAV pre-trained model had the highest Dice score among all models.

In the lymphocyte detection task, the randomly initialized model’s FROC score re-
mained the lowest, while the SimCLR pre-trained model achieved the highest FROC score
of 0.661 among models. Furthermore, the SimCLR pre-trained model’s FROC score was 2%
higher than the ImageNet pre-trained model. Lastly, the SimCLR model marginally outper-
formed the SwAV model. Figures 2 and 3 present the representative examples predicted by
the best-performing model in each task.

4.3. Til Score Prediction

We utilized the best-performing models to predict tumor-infiltrating lymphocyte (TIL)
scores: the SwAV pre-trained model for tissue segmentation and the SimCLR pre-trained
model for lymphocyte detection (Table 2). Using the predicted lymphocyte map within
the segmented stroma region in Equation (1), we calculated TIL scores for each slide. The
predicted TIL scores against the actual scores yielded a Pearson correlation coefficient
of 0.718, indicating a 4.4% higher value than that of the ImageNet pre-training model
providing 0.674.
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4.4. Performance on Size of Amount of Train Dataset

Table 2 indicates that self-supervised learning models achieved slightly higher per-
formance than the ImageNet pre-trained model. These findings suggest that a substantial
amount of training data positively influences all models, leading to comparable results.

Figure 2. Representative examples of results on tissue segmentation task: (a) raw images, (b) ground
truth masks, and (c) predictive tissue segmentation maps.

Figure 3. Representative examples of results on lymphocyte detection task: (a) raw images, (b) ground
truth masks, and (c) predictive lymphocyte detection maps.

To further investigate the influence of dataset size on the performance of the model,
we conducted experiments by sampling the entire dataset with 10%, 50%, and 100% ratios.
Experiments were conducted on the best folds for each model in Table 2, and the results
can be found in Table 3. In the tissue segmentation task, the SwAV pre-trained model
consistently outperformed the other models, achieving the highest Dice scores across all
dataset sizes (10%, 50%, and 100%). The performance difference from the ImageNet pre-
trained model was 1.9% when the dataset was at 100%, 2.4% at 50%, and 2.7% at 10%. For
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lymphocyte detection, the SimCLR pre-trained model achieved the highest FROC score
when the dataset was set at 100% and 50%. However, when the dataset was reduced to
10%, the SwAV pre-trained model achieved the highest FROC score. Specifically, when the
dataset was at 100%, the SimCLR pre-trained model’s FROC score peaked at 0.682, while
the SwAV pre-trained model peaked at 0.54 when the dataset was 10%. Notably, the SwAV
pre-trained model exhibited relatively good performance, outperforming other models
even when the learning dataset was limited.

Table 3. Downstream task results relative to dataset size. Bold values represent the best scores.

Downstream Tasks

Dice Score of Tissue Segmentation FROC Score of
Fraction of Dataset Tumor Stroma Average Lymphocyte Detection

10% 0.791 0.834 0.812 0.521
ImageNet pre-trained 50% 0.841 0.867 0.854 0.641

100% 0.863 0.880 0.872 0.662

10% 0.634 0.664 0.65 0.421
Random initialized 50% 0.704 0.721 0.713 0.531

100% 0.72 0.751 0.736 0.617

10% 0.817 0.841 0.829 0.523
SimCLR pre-trained 50% 0.846 0.869 0.858 0.653

100% 0.872 0.886 0.879 0.682

10% 0.831 0.848 0.839 0.54
SwAV pre-trained 50% 0.870 0.886 0.878 0.639

100% 0.884 0.898 0.891 0.663

4.5. Performance on Fine-Tuned vs. Frozen Model

Next, we fine-tuned the model with the best performance for each task. The results of
this fine-tuning process are presented in Table 4. In the tissue segmentation tasks, it was
evident that all fine-tuned models outperformed the frozen models. We obtained the best
performing model by fine-tuning the SwAV pre-trained weights, achieving Dice scores
of 0.89 for tumors, 0.903 for stroma, and an average of 0.897. These results demonstrated
that fine-tuning had a significant positive impact on tissue segmentation. However, for
lymphocyte detection, the fine-tuned models, excluding the random initialized model, ex-
hibited relatively lower FROC scores than the frozen models. Among the models presented
in Table 4, the SimCLR pre-trained frozen model achieved the highest FROC score. This
finding suggests that fine-tuning does not significantly improve lymphocyte detection, and
frozen models perform better in this task.

Table 4. Downstream task results comparing frozen and fine-tuned models. Bold values represent
the best scores.

Downstream Tasks

Dice Score of Tissue Segmentation FROC Score of
Tumor Stroma Average Lymphocyte Detection

ImageNet frozen 0.863 0.880 0.872 0.662
pre-trained fine-tuned 0.870 0.890 0.880 0.645

Random frozen 0.72 0.751 0.736 0.617
initialized fine-tuned 0.812 0.843 0.828 0.623

SimCLR frozen 0.872 0.886 0.879 0.682
pre-trained fine-tuned 0.876 0.890 0.883 0.645

SwAV frozen 0.884 0.898 0.891 0.663
pre-trained fine-tuned 0.890 0.903 0.897 0.644
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5. Discussion and Conclusions

Instead of only using pre-trained weights from ImageNet, a large natural image dataset,
we implemented self-supervised learning to improve tissue segmentation, lymphocyte
detection, and tumor-infiltrating lymphocyte (TIL) prediction accuracy. We integrated self-
supervised learning models (SimCLR and SwAV) with tissue segmentation and lymphocyte
detection models (DeepLabv3 and U-Net). After evaluating the models, we consistently
observed that the self-supervised pre-training models outperformed randomly initialized
weight models and ImageNet pre-training models. The SwAV pre-training model achieved
superior performance in tissue segmentation, while the SimCLR pre-training model demon-
strated superior performance in lymphocyte detection. In particular, SwAV’s superior
performance was noticeable with a limited dataset, emphasizing the methodology’s robust-
ness and efficacy.

We used the best performing tissue segmentation and lymphocyte detection models to
predict TIL scores. The predictive model achieved a 0.718 Pearson correlation coefficient, in-
dicating a strong positive correlation with the actual TIL score. Consequently, the approach
proposed in this paper improves the performance of two tasks for TIL prediction, as well as
the performance of TIL score prediction. However, there are some limitations, and they are
described as follows. First, it is important to note that while training the SimCLR model,
our capacities were limited by a 1024 batch size due to memory constraint. To address
this limitation in future studies, we plan to explore alternative self-supervised learning
models less affected by batch size changes, such as BYOL (Bootstrap Your Own Latent) [43]
and Dino [44]. Second, it is important to note that the number of cropped images in the
pathology dataset discussed in this paper is approximately 600,000. This figure is not
particularly large for a comprehensive vision foundation model. The inclusion of more
diverse organs, beyond breast, colon, lung, and bone prostate, for learning purposes, could
have further enhanced the results of tissue segmentation and lymphocyte detection. Such
improvements would potentially make the findings applicable to downstream applications
in other organ contexts beyond breast cancer. Third, all datasets in the TIGER challenge
comprised whole slide images (WSI) that were downsampled to a resolution of 0.5 µm/px.
For lymphocyte detection tasks, we believe that using the original WSI before downscaling
would yield more accurate detection results. In summary, this study underscores the
efficacy of self-supervised learning, improving TIL score predictions and establishing a
foundation for future advancements in medical imaging analysis. The outlined limitations
provide avenues for further research and development in overcoming these challenges.
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SimCLR and SwAV loss curves obtained during pre-training. The red curve depicts SimCLR, and
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1. Kamińska, M.; Ciszewski, T.; Łopacka-Szatan, K.; Miotła, P.; Starosławska, E. Breast cancer risk factors. Menopause Rev.

Menopauzalny 2015, 14, 196–202. [CrossRef] [PubMed]
2. Stanton, S.E.; Disis, M.L. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. Immunother. Cancer 2016, 4, 59.

[CrossRef] [PubMed]
3. Loi, S.; Salgado, R.; BAdams, S.; Pruneri, G.; Francis, P.A.; Lacroix-Triki, M.; Joensuu, H.; Dieci, M.V.; Badve, S.; Demaria, S.; et al.

Tumor infiltrating lymphocyte stratification of prognostic staging of early-stage triple negative breast cancer. NPJ Breast Cancer
2022, 8, 3. [CrossRef] [PubMed]

4. Loi, S.; Drubay, D.; Adams, S.; Pruneri, G.; Francis, P.A.; Lacroix-Triki, M.; Joensuu, H.; Dieci, M.V.; Badve, S.; Demaria, S.; et al.
Tumor-Infiltrating Lymphocytes and Prognosis: A Pooled Individual Patient Analysis of Early-Stage Triple-Negative Breast
Cancers. J. Clin. Oncol. 2019, 37, 559. [CrossRef] [PubMed]

5. Salgado, R.; Denkert, C.; Demaria, S.; Sirtaine, N.; Klauschen, F.; Pruneri, G.; Wienert, S.; Van den Eynden, G.; Baehner, F.L.;
Pénault-Llorca, F.; et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: Recommendations by an
International TILs Working Group 2014. Ann. Oncol. 2015, 26, 259–271. [CrossRef] [PubMed]

6. Bakator, M.; Radosav, D. Deep Learning and Medical Diagnosis: A Review of Literature. Multimodal Technol. Interact. 2018, 2, 47.
[CrossRef]

7. Shen, D.; Wu, G.; Suk, H.I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]
8. Alzubaidi, L.; Al-Amidie, M.; Al-Asadi, A.; Humaidi, A.J.; Al-Shamma, O.; Fadhel, M.A.; Zhang, J.; Santamaría, J.; Duan, Y. Novel

transfer learning approach for medical imaging with limited labeled data. Cancers 2021, 13, 1590. [CrossRef]
9. Krishnan, R.; Rajpurkar, P.; Topol, E.J. Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 2022, 6, 1346–1352.

[CrossRef]
10. Jalswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A Survey on Contrastive Self-Supervised Learning. Technologies

2020, 9, 2. [CrossRef]
11. Ciga, O.; Xu, T.; Martel, A.L. Self supervised contrastive learning for digital histopathology. Mach. Learn. Appl. 2022, 7, 100198.

[CrossRef]
12. Mao, H.H. A Survey on Self-supervised Pre-training for Sequential Transfer Learning in Neural Networks. arXiv 2020,

arXiv:2007.00800.
13. Liu, X.; Zhang, F.; Hou, Z.; Mian, L.; Wang, Z.; Zhang, J.; Tang, J. Self-Supervised Learning: Generative or Contrastive. IEEE Trans.

Knowl. Data Eng. 2021, 35, 857–876. [CrossRef]
14. Ayana, G.; Park, J.H.; Jeong, J.W.; Choe, S.W. A Novel Multistage Transfer Learning for Ultrasound Breast Cancer Image

Classification. Diagnostics 2022, 12, 135. [CrossRef] [PubMed]

https://tiger.grand-challenge.org/
http://doi.org/10.5114/pm.2015.54346
http://www.ncbi.nlm.nih.gov/pubmed/26528110
http://dx.doi.org/10.1186/s40425-016-0165-6
http://www.ncbi.nlm.nih.gov/pubmed/27777769
http://dx.doi.org/10.1038/s41523-021-00362-1
http://www.ncbi.nlm.nih.gov/pubmed/35017545
http://dx.doi.org/10.1200/JCO.18.01010
http://www.ncbi.nlm.nih.gov/pubmed/30650045
http://dx.doi.org/10.1093/annonc/mdu450
http://www.ncbi.nlm.nih.gov/pubmed/25214542
http://dx.doi.org/10.3390/mti2030047
http://dx.doi.org/10.1146/annurev-bioeng-071516-044442
http://dx.doi.org/10.3390/cancers13071590
http://dx.doi.org/10.1038/s41551-022-00914-1
http://dx.doi.org/10.3390/technologies9010002
http://dx.doi.org/10.1016/j.mlwa.2021.100198
http://dx.doi.org/10.1109/TKDE.2021.3090866
http://dx.doi.org/10.3390/diagnostics12010135
http://www.ncbi.nlm.nih.gov/pubmed/35054303


Life 2024, 14, 90 14 of 15

15. Wang, J.; Zhu, T.; Liang, S.; Karthiga, R.; Narasimhan, K.; Elamaran, V. Binary and multiclass classification of histopathological
images using machine learning techniques. J. Med. Imaging Health Inform. 2020, 10, 2252–2258. [CrossRef]

16. Venugopal, A.; Sreelekshmi, V.; Nair, J.J. Ensemble Deep Learning Model for Breast Histopathology Image Classification. In ICT
Infrastructure and Computing: Proceedings of ICT4SD 2022, Goa, India, 29–30 July 2022; Springer: Singapore, 2022; pp. 499–509.

17. Joshi, S.A.; Bongale, A.M.; Olsson, P.O.; Urolagin, S.; Dharrao, D.; Bongale, A. Enhanced Pre-Trained Xception Model Transfer
Learned for Breast Cancer Detection. Computation 2023, 11, 59. [CrossRef]

18. Amgad, M.; Sarkar, A.; Srinivas, C.; Redman, R.; Ratra, S.; Bechert, C.J.; Calhoun, B.C.; Mrazeck, K.; Kurkure, U.;
Cooper, L.A.D.; et al. Joint region and nucleus segmentation for characterization of tumor infiltrating lymphocytes in
breast cancer. In Medical Imaging 2019: Digital Pathology; SPIE: St Bellingham, WA, USA, 2019; Volume 10956, pp. 129–136.

19. Lu, Z.; Xu, S.; Shao, W.; Wu, Y.; Zhang, J.; Han, Z.; Feng, Q.; Huang, K. Deep-Learning–Based Characterization of Tumor-
Infiltrating Lymphocytes in Breast Cancers From Histopathology Images and Multiomics Data. JCO Clin. Cancer Inform. 2020, 4,
480–490. [CrossRef] [PubMed]

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. Adv.
Neural Inf. Process. Syst. 2015, 28. [CrossRef] [PubMed]

21. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27 June–1 July 2016; pp. 779–788.

22. Janowczyk, A.; Madabhushi, A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use
cases. J. Pathol. Inform. 2016, 7, 29. [CrossRef]

23. Shephard, A.; Jahanifar, M.; Wang, R.; Dawood, M.; Graham, S.; Sidlauskas, K.; Khurram, S.; Rajpoot, N.; Raza, S.E.A. TIAger:
Tumor-Infiltrating Lymphocyte Scoring in Breast Cancer for the TiGER Challenge. arXiv 2022, arXiv:2206.11943.

24. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F. ImageNet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

25. Kornblith, S.; Shlens, J.; Le, Q.V. Do Better ImageNet Models Transfer Better? In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2661–2671.

26. Anand, D.; Tank, D.; Tibrewal, H.; Sethi, A. Self-Supervision vs. Transfer Learning: Robust Biomedical Image Analysis against
Adversarial Attacks. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA,
USA, 3–7 April 2020; pp. 1159–1163.

27. Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations. In
Proceedings of the International Conference on Machine Learning, Virtual, 13–18 July 2020 ; Volume 119, pp. 1597–1607.

28. Khan, A.; AlBarri, S.; Manzoor, M.A. Contrastive Self-Supervised Learning: A Survey on Different Architectures. In Proceedings
of the 2022 2nd International Conference on Artificial Intelligence (ICAI), Islamabad, Pakistan, 30–31 March 2022; pp. 1–6.

29. Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; Joulin, A. Unsupervised Learning of Visual Features by Contrasting
Cluster Assignments. Adv. Neural Inf. Process. Syst. 2020, 33, 9912–9924.

30. Wu, Z.; Xiong, Y.; Yu, S.X.; Lin, D. Unsupervised Feature Learning via Non-Parametric Instance Discrimination. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018;
pp. 3733–3742.

31. He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum Contrast for Unsupervised Visual Representation Learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual, 16–18 June 2020 ; pp. 9729–9738.

32. Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2019,
arXiv:1706.05587.

33. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep Convolutional Nets
and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062.

34. Chen, L.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional
Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef]
[PubMed]

35. Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image
Segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

36. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of
the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Proceedings, Part III 18; pp. 234–241.

37. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity Mappings in Deep Residual Networks. In Proceedings of the Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 630–645.

38. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27 June–1 July 2016 ; pp. 770–778.

39. Reed, C.J.; Yue, X.; Nrusimha, A.; Ebrahimi, S.; Vijaykumar, V.; Mao, R.; Li, B.; Zhang, S.; Guillory, D.; Metzger, S.; et al.
Self-Supervised Pretraining Improves Self-Supervised Pretraining. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 2584–2594.

http://dx.doi.org/10.1166/jmihi.2020.3124
http://dx.doi.org/10.3390/computation11030059
http://dx.doi.org/10.1200/CCI.19.00126
http://www.ncbi.nlm.nih.gov/pubmed/32453636
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.4103/2153-3539.186902
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186


Life 2024, 14, 90 15 of 15

40. Milletari, F.; Navab, N.; Ahmadi, S. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In
Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571.

41. Bandos, A.I.; Rockette, H.E.; Song, T.; Gur, D. Area under the Free-Response ROC Curve (FROC) and a Related Summary Index.
Biometrics 2009, 65, 247–256. [CrossRef] [PubMed]

42. Hosang, J.; Benenson, R.; Schiele, B. Learning Non-Maximum Suppression. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 July 2017; pp. 4507–4515.

43. Grill, J.; Strub, F.; Altché, F.; Tallec, C.; Richemond, P.H.; Buchatskaya, E.; Doersch, C.; Pires, B.A.; Guo, Z.D.; Azar, M.G.; et al.
Bootstrap your own latent a new approach to self-supervised learning. Adv. Neural Inf. Process. Syst. 2020, 33, 21271–21284.

44. Caron, M.; Touvron, H.; Misra1, I.; Jegou, H.; Mairal, J.; Bojanowski1, P.; Joulin, A. Emerging Properties in Self-Supervised Vision
Transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Virtual, 11–17 October 2021;
pp. 9650–9660.

45. Aresta, G.; Araújo, T.; Kwok, S.; Chennamsetty, S.S.; Safwan, M.; Alex, V.; Marami, B.; Prastawa, M.; Chan, M.; Donovan, M.; et al.
Bach: Grand challenge on breast cancer histology images. Med. Image Anal. 2019, 33, 122–139. [CrossRef] [PubMed]

46. Spanhol, F.A.; Oliveira, L.S.; Petitjean, C.; Heutte, L. A Dataset for Breast Cancer Histopathological Image Classification. IEEE
Trans. Biomed. Eng. 2015, 63, 1455–1462. [CrossRef] [PubMed]

47. Akbar, S.; Peikari, M.; Salama, S.; Panah, A.Y.; Nofech-Mozes, S.; Martel, A.L. Automated and Manual Quantifcation of Tumour
Cellularity in Digital Slides for Tumour Burden Assessment. Sci. Rep. 2019, 9, 14099. [CrossRef]

48. Graham, S.; Vu, Q.D.; Raza, S.E.A.; Azam, A.; Tsang, Y.W.; Kwak, J.T.; Rajpoot, N. Hover-net: Simultaneous segmentation and
classification of nuclei in multi-tissue histology images. Med. Image Anal. 2019, 58, 101563. [CrossRef]

49. Nir, G.; Hor, S.; Karimi, D.; Fazli, L.; Skinnider, B.F.; Tavassoli, P.; Turbin, D.; Villamil, C.F.; Wang, G.; Wilson, R.S.; et al. Automatic
grading of prostate cancer in digitized histopathology images: Learning from multiple experts. Med. Image Anal. 2018, 50, 167–180.
[CrossRef] [PubMed]

50. Kather, J.N.; Zöllner, F.G.; Bianconi, F.; Melchers, S.M.; Schad, L.R.; Gaiser, T.; Marx, A.; Weis, C.-A. Collection of textures in
colorectal cancer histology. Zenodo 2016, 5281. Available online: https://zenodo.org/records/53169 (accessed on 2 January 2024).

51. Borkowski, A.A.; Bui, M.M.; Thomas, L.B.; Wilson, C.P.; DeLand, L.A.; Mastorides, S.M. Lung and Colon Cancer Histopathological
Image Dataset (LC25000). arXiv 2019, arXiv:1912.12142.

52. Orlov, N.V.; Chen, W.W.; Eckley, D.M.; Macura, T.J.; Shamir, L.; Jaffe, E.S.; Goldberg, I.G. Automatic classification of lymphoma
images with transform-based global features. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 1003–1013. [CrossRef] [PubMed]

53. Gupta, R.; Gupta, A. MiMM_SBILab Dataset: Microscopic images of multiple myeloma. Cancer Imaging Arch. 2019.
54. Kumar, N.; Verma, R.; Anand, D.; Zhou, Y.; Onder, O.F.; Tsougenis, E.; Chen, H.; Heng, P.-A.; Li, J.; Hu, Z.; et al. A multi-organ

nucleus segmentation challenge. IEEE Trans. Med. Imaging 2019, 39, 1380–1391. [CrossRef] [PubMed]
55. Kather, J.N; Halama, N.; Marx, A. 100,000 histological images of human colorectal cancer and healthy tissue. Zenodo 2018, 5281.

Available online: https://zenodo.org/records/1214456 (accessed on 2 January 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1111/j.1541-0420.2008.01049.x
http://www.ncbi.nlm.nih.gov/pubmed/18479482
http://dx.doi.org/10.1016/j.media.2019.05.010
http://www.ncbi.nlm.nih.gov/pubmed/31226662
http://dx.doi.org/10.1109/TBME.2015.2496264
http://www.ncbi.nlm.nih.gov/pubmed/26540668
http://dx.doi.org/10.1038/s41598-019-50568-4
http://dx.doi.org/10.1016/j.media.2019.101563
http://dx.doi.org/10.1016/j.media.2018.09.005
http://www.ncbi.nlm.nih.gov/pubmed/30340027
https://zenodo.org/records/53169
http://dx.doi.org/10.1109/TITB.2010.2050695
http://www.ncbi.nlm.nih.gov/pubmed/20659835
http://dx.doi.org/10.1109/TMI.2019.2947628
http://www.ncbi.nlm.nih.gov/pubmed/31647422
https://zenodo.org/records/1214456

	Introduction
	Related Works
	Materials and Methods
	Background
	Overall Pipeline for Til Score Prediction
	Self-Supervision-Based Pretraining Task
	SimCLR
	SwAV

	Downstream Analysis Task for Tissue Segmentation and Lymphocyte Detection
	DeepLabv3 for Tissue Segmentation
	U-Net for Lymphocyte Detection

	Experiments
	Dataset and Data Preprocessing
	Experiment Setup of the Pre-Train Task and the Downstream Task
	Evaluation Metrics for Tissue Segmentation and Lymphocyte Detection
	Til Score Evaluation


	Results
	Pre-Training of Simclr and Swav
	Tissue Segmentation and Lymphocyte Detection
	Til Score Prediction
	Performance on Size of Amount of Train Dataset
	Performance on Fine-Tuned vs. Frozen Model

	Discussion and Conclusions
	References

