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Abstract: We are exposed to a mixture of environmental man-made and natural xenobiotics. We expe-
rience a wide spectrum of environmental exposure in our lifetime, including the effects of xenobiotics
on gametogenesis and gametes that undergo fertilization as the starting point of individual develop-
ment and, moreover, in utero exposure, which can itself cause the first somatic or germline mutation
necessary for breast cancer (BC) initiation. Most xenobiotics are metabolized or/and bioaccumulate
and biomagnify in our tissues and cells, including breast tissues, so the xenobiotic metabolism plays
an important role in BC initiation and progression. Many considerations necessitate a more valuable
explanation regarding the molecular mechanisms of action of xenobiotics which act as genotoxic and
epigenetic carcinogens. Thus, exposomics and the exposome concept are based on the diversity and
range of exposures to physical factors, synthetic chemicals, dietary components, and psychosocial
stressors, as well as their associated biologic processes and molecular pathways. Existing evidence for
BC risk (BCR) suggests that food-borne chemical carcinogens, air pollution, ionizing radiation, and
socioeconomic status are closely related to breast carcinogenesis. The aim of this review was to depict
the dynamics and kinetics of several xenobiotics involved in BC development, emphasizing the role of
new omics fields related to BC exposomics, such as environmental toxicogenomics, epigenomics and
interactomics, metagenomics, nutrigenomics, nutriproteomics, and nutrimiRomics. We are mainly
focused on food and nutrition, as well as endocrine-disrupting chemicals (EDCs), involved in BC
development. Overall, cell and tissue accumulation and xenobiotic metabolism or biotransformation
can lead to modifications in breast tissue composition and breast cell morphology, DNA damage
and genomic instability, epimutations, RNA-mediated and extracellular vesicle effects, aberrant
blood methylation, stimulation of epithelial–mesenchymal transition (EMT), disruption of cell–cell
junctions, reorganization of the actin cytoskeleton, metabolic reprogramming, and overexpression
of mesenchymal genes. Moreover, the metabolism of xenobiotics into BC cells impacts almost all
known carcinogenic pathways. Conversely, in our food, there are many bioactive compounds with
anti-cancer potential, exerting pro-apoptotic roles, inhibiting cell cycle progression and proliferation,
migration, invasion, DNA damage, and cell stress conditions. We can conclude that exposomics has a
high potential to demonstrate how environmental exposure to xenobiotics acts as a double-edged
sword, promoting or suppressing tumorigenesis in BC.

Keywords: breast cancer (BC); exposomics; xenobiotics; breast cancer risk (BCR); biologic pathways

1. Introduction

The aim of this review is to deepen our understanding of the study of breast cancer
as an ”environmental disease”, using an exposomics-based hypothesis sustaining that BC
is an “ecological disorder” [1–3]. We are what we eat [4–8], we are what we breathe [9],
and we are what we live in [10]. This means that food-borne chemicals, all air, soil,
and water pollutants; drugs and drug-related metabolites; different types of radiation;
aflatoxins; nanoparticles; noise; and many other environmental factors act, individually
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or synergistically, as genetic and epigenetic carcinogens, in association with inheritance,
disparities, reproductive life, age at exposure, and socioeconomic status, which can also
increase BCR [11]. Many studies concluded that cumulative environmental exposure and
lifestyle factors account for 70% to 95% of risk factors that drive the BC incidence rate [12],
whereas only 10% to 30% of chronic disease risk can be explained by individual genomic
landscape [13]. The effects of different types of environmental exposure on BC development,
recurrence, overall survival, or treatment resistance [14–16] have been reviewed by many
authors. Some studies suggest that even climate change will affect women’s cancers [17].
Cell/mobile phone or smartphone use can result in increased BCR, due to the emission
of radiofrequency energy that is absorbed by human tissues situated in the proximity,
including breast tissue [18]. Many occupational habits, such as heat or night-light exposure,
as well as dysregulation of the circadian rhythm, can result in moderate or increased
BCR [19,20]. Hair dyes [21], cigarette smoking [22,23], radiofrequency radiation [24],
laptops, tablets, and other devices [25], hormone-based treatments [26,27], residential and
road traffic noise [28,29], and dust [30] were significantly associated with tumorigenesis
and invasive BCR. Last but not least, oncogenic viruses have an important role in BC
initiation and development [31].

Exposomics is a modern exposome analysis that characterizes all exposures in an
untargeted and comprehensive manner [13]. Thus, the exposome concept is based on the
diversity of exposures to physical factors, synthetic chemicals, dietary components, and
psychosocial stressors, as well as their associated biological responses [32]. More than
two decades ago, Ziegler et al. (1997) reported that BC incidence rates were 4–7 times
higher in the United States compared to China and Japan; moreover, when Japanese,
Chinese, or Filipino women migrate to the United States, their BCR rates increase over
several generations, becoming almost similar with the BCR among American whites [33].
Many studies emphasize that the BCR is elevated compared to countries of origin, mainly
due to the exposure to a Western lifestyle [33]. It is known that exposure to a Western
diet is a risk factor for the development and maintenance of chronic and systemic tissue
inflammation associated with reprogramming of innate immune cells [34]. This lifestyle-
associated inflammation is an important cause of multiple cancers, including BC [35].
Recently, the concept of “metaflammation” was used to describe a crosstalk between
immune and metabolic pathways that connect obesity to metabolic syndrome (MetS),
chronic inflammation, and insulin resistance [36]. It is well-known that MetS is more
prevalent in BC patients and is an independent risk factor or predictor for BC [37–39].

Consequently, numerous exogenous risk factors influence the growth, proliferation,
and differentiation of breast tissue and BC development. A total of 50% of all cancers in
women are hormonally mediated, with both estrogen and androgen playing key roles in ini-
tiation and BC development [40]. Of all xenobiotic classes, we chose to detail in this review
EDCs and food components that can interact with endocrine receptors (ERs) to disturb
the normal hormonal equilibrium in BC cells [41]. EDCs can be also ingested with food,
so increasing and convincing evidence associates food and food-based dietary patterns
with BCR [42]. Moreover, other food components that act as mutagens [43] can be involved
in nutritional regulation of the mammary tumor microenvironment (TME) [44], and also
impact growth and proliferation of cancer cells [45]. Conversely, food can contain many
bioactive compounds with anti-BC potential, exerting a pro-apoptotic role and inhibiting
cell cycle progression/cancer cell proliferation, migration, invasion, DNA damage, and cell
stress conditions.

It is known that EDC exposure could elevate BCR [46]. Most studies assessed environ-
mental EDC exposure, which includes pesticides, plasticizers, pharmaceutical agents, per-
sonal care products, food products, and food packaging, via biomarker measurements [46],
so that hundreds of EDCs have been assessed as entering human breast tissue from a
wide range of environmental sources, enabling all the hallmarks of cancer to develop in
human BC cells [47]. Furthermore, diets comprising energy-dense and nutrient-poor foods
have been associated with an increased BCR [48]. Food and food-related/dietary habits,
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including excessive alcohol use [49], deregulate many signals and metabolic pathways that
stimulate the epithelial–mesenchymal transition (EMT), oxidative stress, and reactive oxy-
gen species [50]; dioxin contamination [51], sweetened and highly processed coffee [52] and
food [53], meat [54], sweetened drinks [55], EDCs [56], polycyclic aromatic hydrocarbons
(PAHs) [57] present in our food, and an inadequate water/liquid daily intake [58] were
significantly correlated with carcinogenesis and invasive BC.

Study of absorption, distribution, metabolism/biotransformation, excretion/elimination,
and toxicity (ADME-Tox), as well as the bioaccumulation and biomagnification of xeno-
biotics in cells and liquid or solid tissues emphasize complex interactions with different
structures of the human body, such as cellular components (i.e., membranes and proteins),
molecular pathways, biological processes, and intra-/extracellular environments [59]. Several
exposomics-related omics have been developed as a consequence of advances in molecular sci-
ences and analytical techniques based on high-throughput sequencing and mass spectrometry
(MS). Thus, environmental toxicogenomics, epigenomics, and interactomics, metagenomics,
nutrigenomics and nutriproteomics, micromiRomics, and nutrimiRomics are several new
omics fields related with BC exposomics and are involved in molecular characterization of the
complex relationship between the human body, environmental exposure, and breast cancer.

2. Advances and Trends in Omics Fields Related to BC Exposomics

Advances in molecular approaches and analytical techniques based on high-throughput
sequencing and mass spectrometry (MS) have generated multi-omics data that can be suc-
cessfully used to understand the underlying molecular mechanisms involved in BC expo-
somics [60]. BC is mainly caused by mutations in multiple oncogenes and tumor suppressor
genes, accompanying epigenetic aberrations of genes and protein pathways [61]. Thus,
first of all, environmental toxicogenomics aims to collect, analyze, and interpret data on
the changes in genes or protein expression, resulting from exposure to xenobiotics, using
high-throughput technologies [62]. Evidence suggests that various pollutants, such as partic-
ulate matter involved in air pollution, act as carcinogenic factors in humans, inducing high
rates of genomic instability [63], which is known as an initiator of BC development [61]. In
addition, environmental epigenomics focuses on environmental factors that induce aberrant
DNA methylation of cancer-related genes, even in developing embryos, when result in
epigenetic mosaicism that can increase the oncogenic risk later in life [64]. Moreover, metage-
nomics, the study of genetic information of microorganisms present in an environment [65],
is involved in the assessment of the human microbiome as a biomarker that experiences long-
term exposure to numerous organic contaminants, known as xenobiotics [66]. Zhang et al.
(2028), using liquid chromatography MS-based global metabolomics coupled with targeted
metabolomics, demonstrated that the human microbiome can be significantly perturbed by
exposure to xenobiotic mixtures, resulting in dysbiosis and metabolite-modified profiles that
play an important role in the host’s health [66]. With regard to BC, it is well-known that
human microbiome-related disturbance may contribute to BC development by producing
toxins or promoting inflammation, while certain types of bacteria may have positive effects
against BC [67]. Recently, network biology techniques were used to identify xenobiotics
that target hub proteins in the human interactomes, mainly in disease-associated proteins
and contaminant-sensitive biomarkers [68], suggesting a new omics field, environmental
interactomics. To exemplify, Moslehi et al. (2021) confirmed the role of arsenic as an ED or
xenoestrogen involved in breast carcinogenesis, highlighting the complex arsenic-responsive
BC interactome [69]. Nutrigenetics studies the effects of nutrition at the gene level, while
nutrigenomics is focused on the effects of nutrients on the genome and transcriptome pat-
terns [70]. Thus, based on the complex interaction between food components and human
genome/proteome, nutrigenomics and nutriproteomics provide new opportunities for devel-
opment of personalized diets in patients at risk of developing BC [71].

Tissue or circulating microRNA (miRNA) can serve as a novel toxicological biomarker
involved in gene activation or suppression, being associated with several key epigenetic
mechanisms involved in xenobiotic toxicity [72–74]. miRNAs are also studied and validated
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as biomarkers for various diseases, as in the case of miR-423, which is highly expressed in
BC and promotes cancer cell proliferation, migration, and invasion by activating NF-κB
signaling [75,76]. Thus, miRomics is focused on the study of the role of miRNAs in a variety
of human diseases, including BC [73]. Evidence suggests that organic pollutant exposure,
like bisphenol A (BPA), can alter miRNA expression in response to toxicity [77]. Recently,
nutrimiRomics has been defined as a new omics field focused on the influence of diet
components on the dysregulation of gene expression due to epigenetic modification that
involves miRNAs, resulting in a higher risk for the development of chronic diseases [78].
Thus, Venkatadri et al. (2016) demonstrated that resveratrol, a dietary compound found
in a wide variety of plants, can inhibit BC progression by controlling miRNA, regulating
the expression of several proteins involved in apoptosis and the cell cycle [79]. These
authors emphasized the key role in BC cell death in response to resveratrol for miR-542-3p
in MCF7 cell line and miR-122-5p in MDA-MB-231 BC cells [79]. All these new omics
fields complement the traditional approach of genomics, proteomics, transcriptomics, and
metabolomics, in order to depict the complicated molecular mechanisms studied by BC
exposomics.

3. Absorption, Distribution, Metabolism/Biotransformation, Bioaccumulation, and
Excretion/Bioelimination of Xenobiotics Involved in Breast Cancer

Xenobiotics are substances that are foreign to the intrinsic metabolism of a biolog-
ical system that has the capacity to bioaccumulate or remove xenobiotics by xenobiotic
metabolism, which consists of the deactivation and excretion of xenobiotics and their
metabolites [80,81]. The human body is exposed to 1–3 million foreign chemical com-
pounds that form a cocktail/mixture of xenobiotics during a lifetime [82]. In BC, genotoxic
carcinogens include dietary or environmental xenobiotics—heterocyclic amines, aromatic
amines, PAHs, and nitropolycyclic aromatic hydrocarbons (NPAHs) [83]. Also, many
cytotoxic compounds used as anti-cancer drugs for chemotherapy can cause high levels
of DNA damage [84], undergo metabolic activation, and are subject to drug metabolism,
including uptake, efflux, and detoxification [85].

3.1. Absorption

Generally, environmental xenobiotics enter the human body through different ab-
sorption surfaces/barriers from input compartments: skin and its appendages, by topical
application and absorption, gastro-intestinal mucosa, by ingestion and absorption, and
the pulmonary alveolar–capillary membrane, by inhalation. To begin with, EDCs from
personal care products are easily absorbed by the skin into systemic circulation after topical
application, and can be detected in blood, urine, and breast milk [86,87]. However, Rylan-
der et al. (2019) concluded that intensive use of skin care products did not increase the
BCR [86]. On the other hand, 70–100% of patients receiving radiation therapy following BC
experienced radiation-induced skin toxicity [88] comparable to UV exposure, which was
associated with decreased postmenopausal BCR, due to higher circulating concentration
of a precursor to the active form of vitamin D [89]. In addition, the gut absorbs dietary
nutrients and provides a barrier to many xenobiotics and microbiome-derived metabolites,
so the intestinal epithelium becomes one of the most rapidly proliferating tissues in the
body, assuring a rapid and effective elimination of some xenobiotics that bioaccumulate
in enterocytes [90]. Consequently, the gastro-intestinal tract is also an important route by
which drugs, chemicals, pesticides, environmental pollutants, and metabolites of other
species are absorbed in the human body [91]. Last but not least, air pollution is known
as a human carcinogen, especially by gaseous components, as well as through particulate
matter, including fine, inhalable particles that can be vectors for radioactive isotopes [92,93].
Air polluting agents on their way to the bloodstream pass through the lung barriers [93].
White et al. (2022) showed that higher exposure to ambient particle radioactivity (PR-β)
was associated with an elevated risk of ER– BC [92]. Moreover, Smotherman et al. (2023)
found a positive association of particulate matter with postmenopausal BCR [94].
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3.2. Distribution

The distribution compartment, mainly represented by the systemic bloodstream, trans-
ports xenobiotics and their metabolites to all tissues and organs, so that blood is the most
used liquid biopsy for biomonitoring of xenobiotics, such as persistent organic pollutants
(POPs) [95]. From blood, xenobiotics/drugs enter cells, including breast epithelial cells
or different cell populations from their ECM or TME. Distribution in cells depend on the
chemical nature of xenobiotics, the binding to different receptors or exertion of effects
without cellular entry, or using membrane transporters that allow for their entry into the
intracellular compartment [85]. Moreover, Ish et al. (2023) showed that changes in breast
tissue composition may be a potential pathway by which outdoor air pollution impacts
BCR [96]. Thus, quantitative changes in the relative amount of fibro-glandular tissue
can represent a biomarker of BCR that can be used to emphasize the potential biologic
pathways underlying the association between environmental exposures and BC [96]. In
addition, Segovia-Mendoza et al. (2020) showed that the environmental bisphenols, BPA
and BBS, induce alteration of the proteomic landscape of different human BC cell lines [97].
After bisphenol exposure, vascular endothelial growth factor (VEGF) secretion, CD44, as a
biomarker of stemness, and metalloproteinase MMP-14, as a biomarker for invasion, were
overexpressed in ER+ BC cell lines, whereas the epidermal growth factor receptor (EGFR)
and transforming growth factor beta (TGF-β) were upregulated in ER– BC lines [97]. Over-
all, cell and tissue accumulation of xenobiotics, such as EDCs/POPs, could lead to cellular
DNA damage and genomic instability [98], epimutations induced by DNA methylation,
acetylation, histone posttranslational modifications (PTMs), RNA-mediated effects, and
extracellular vesicle effects [99], alteration of DNA methylation during adipocyte differenti-
ation [100] as well as blood methylation [101], epithelial–mesenchymal transition (EMT)
by formation of lamellipodia, disruption of cell–cell junctions, E-cadherin downregula-
tion, reorganization of the actin cytoskeleton in stress fibers as well as overexpression of
mesenchymal genes, such as vimentin and fibronectin [102,103], FOXA1 repression and
phosphorylation of ERK1/2, p48-MAPK, PI3K/AKT signaling in ER-BC cells [104], and
upregulation of Snail and Slug in MCF7 ER+ BC cell line [103].

3.3. Biotransformation/Metabolism

Many bioreactive compartments are involved in biotransformation and elimination of
xenobiotics. Consequently, many chemicals undergo metabolism and detoxification to pro-
duce various metabolites that can cause, in turn, harmful effects such as toxicity [105]. Xeno-
biotic metabolism and detoxification involve xenobiotic-metabolizing enzymes/proteins
that are mainly expressed in the liver, but some are also expressed in breast tissue, so that
intratumoral xenobiotics or metabolites generated in the liver can undergo further trans-
formation in the breast tissue [83,106]. Thus, many enzymes such as mammary-expressed
enzymes metabolically activate or detoxify potential genotoxic BC carcinogens, acting in
mammary lipid, nipple aspirate, breast milk, and mammary epithelial cells, where most
BCs originate [83]. Bieche et al. (2004) pointed out that the intratumoral dysregulation of
genes coding for major xenobiotic-metabolizing enzymes has a role in breast tumorigene-
sis and drug resistance; thus, N-acetyltransferase 1 (NAT1) was proposed as a candidate
biomarker for antiestrogen responsiveness [106]. These authors maintained that one-half of
the patients with ER+ BC fail to respond favorably to antiestrogen treatment with tamox-
ifen due to the altered tamoxifen metabolism or bioavailability following the intratumoral
alteration in expression of genes coding for xenobiotic-metabolizing enzymes. Moreover, it
is known that, in solid tumors, the extracellular and intracellular distribution of xenobiotics
and drugs presents a high degree of variability, and is controlled by drug/xenobiotic-
metabolizing enzymes (DXMEs) as well as cellular influx and efflux systems that transport
xenobiotics and drugs into and out of cells [107].
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3.4. Bioelimination/Excretion

The main routes of elimination of xenobiotics and their metabolites are renal excretion,
bile and fecal elimination, and pulmonary exhalation, but there are also secondary routes,
such as sweat, hair and nails, breast milk, and tears [105]. For example, cadmium was
detected at high concentration in BC tissue [108], as well as in the urine of patients with
BC, urinary Cd being correlated with the expression of hypoxia-inducible factor 1 alpha
(HIF1A) in BC tissues [109]. Other heavy metals, such as arsenic, chromium, lead, and
mercury are considered to be carcinogens or co-carcinogens and have been detected in
the urine of BC patients, even markedly increased [108]. Moreover, the environmental
exposure to these heavy metals could influence the urine level of metabolites, in association
with BC development [108]. Human breast milk, a specific breast secretion that reflects the
molecular landscape of the normal or pathological mammary gland, contains secretions of
the mother’s body, in which there are compounds bioaccumulated in her organism, such as
organic contaminants (polychlorinated biphenyls, brominated flame retardants, parabens,
bisphenols, and perfluoroalkyl and polyfluoroalkyl substances) as well as heavy metals,
mycotoxins, and pharmaceuticals residues [110]. Thus, many POPs, such as polychlorinated
dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated
biphenyls (PCBs), and organochlorine pesticides, such as DDT, have been detected in
human blood, adipose tissue, and breast milk and tend to become magnified in the food
chain over time; breastfeeding infants becoming the final target of POPs [111]. Moreover,
POPs have been correlated to an increased incidence of hormone-dependent BCs [112].

3.5. Bioaccumulation

Usually, many xenobiotics, such as POPs and heavy metals, bioaccumulate within
adipose tissue, considered to be widely contaminated with lipophilic xenobiotics in modern
society and, consequently, acting as a significant site of xenobiotic storage or sequestra-
tion [113]. Adipose tissue can play a protective role against xenobiotic effects, because
xenobiotic storage in fat can reduce the burden in other critical organs [114]. However,
female breast adipose tissue is abundant in and in close contact with epithelial cells, repre-
senting a major component of the BC TME, which contributes to the development, growth,
and invasion of tumor cells [115]. Weight loss and insulin resistance are involved in xeno-
biotic release from adipose tissue into bloodstream [114]. Heavy metals, one of the most
harmful classes of environmental compounds [116], also stimulate BC progression, exerting
a role of DNA methylation level in cancer cells [117]. Heavy metals are very difficult to
metabolize or decompose, and accumulate in all tissue and organs over the lifetime [116].
Evidence suggests that obese people accumulate more heavy metals compared to healthy
people [118]. Thus, cadmium, among other heavy metals, is a widely spread compound
that exerts estrogenic effects, acts as an endocrine disruptor, and accumulates in BC cells
over time [109].

4. Food and Nutrition

Dietary nutritional intake is a key environmental factor with a vital role in cancer pre-
vention and care [70]. One-third of cancers in Western high-income societies are associated
with food and nutrition, in correlation with physical activity [45], so that increasing and
convincing evidence associates food-based dietary patterns with BCR [42]. Thus, poor
nutrition and foods with a higher energy density have been associated with an increased
risk of obesity as well as BC [48,119]. Thus, Jacobs et al. (2021), analyzing dietary patterns
correlated to BCR in Black urban South African women, concluded that both traditional
and cereal–dairy-based meals may reduce the BCR in this population [48].

Overall, thirteen cancers, including BC, have been estimated to be associated with
obesity and are known as “obesity-associated cancers” [120]. The female breast is rich in
adipose tissue [121], so that, in postmenopausal women, the adipose tissue becomes a sig-
nificant source of estrogen, this obesity-associated estrogen likely playing an essential role
in BC growth, mainly in ER+ BC tumors [120]. Conversely, caloric restriction or intermittent
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fasting, a period of voluntary abstention from all food or specific food products [122], can
negatively impact BC development, reduce the treatment-induced adverse effects, cyto-
toxicity, and DNA damage, and increase optimal glycemic regulation, improving serum
glucose, insulin, and insulin-like growth factor 1 (IGF-1) levels [123]. Insulin and the IGF-1
pathway regulate lifespan and longevity [124]. IGF-1 is known as a potent mitogen of high
importance in the mammary gland that binds to the cognate receptor, IGF-1R, triggering a
signaling intracellular cascade, which increases the proliferative and anti-apoptotic path-
ways in cancer cells [125]. It is known that the Western diet, characterized by high intake of
hyperglycemic carbohydrates and insulinotropic dairy, stimulates IGF-1 signaling [124].
GH, IGF-1, and insulin have BC-promoting actions, due to increased IGF-1 levels, which
have been associated with increased BCR [124].

Food components may act as mutagens, such as N-nitroso-derivatives, polycyclic
aromatic hydrocarbons (PAHs), and heterocyclic aromatic amines [43], which can be in-
volved in nutritional regulation of the mammary tumor microenvironment (TME) [44],
and impact the growth and proliferation of cancer cells [45]. Nutritional stimuli modulate
interactions between different cell populations within the TME, such as immune cells,
adipocytes, vascular cells, and mammary epithelial and BC stem cells, so that both obesity,
a chronic over-nutritional condition, as well as excess caloric consumption, disrupt mam-
mary gland homeostasis and increase BCR [44,123]. EDCs has been reported in aquatic
macroinvertebrates, mussels and seawater or freshwater fish [126], pork, beef, and chicken
meat [127], vegetables [128], as well as in milk and dairy products [129]. Heavy metals, such
as cadmium, mercury, and lead, act as EDCs and bioaccumulate mainly in fish and seafood
products [130]. Fish product consumption acts as a double-edged sword. There are studies
that emphasize the protective effect of omega-3 fatty acid in fish consumption against
BC [131], while the human exposure to fat from milk, eggs, fish, and meat can enhance
mammary gland susceptibility to carcinogenesis [132]. Alcohol consumption has been
related to higher BCR, principally for estrogen receptor-positive (ER+) BCs [133], through
stimulation of migration and invasion of MCF7 human BC cells [133], EMT, angiogenesis,
OS and ROS production [49,50], decreasing E-cadherin, α, β, and γ catenin expression, as
well as BRCA1 tumor suppressor gene expression [133].

Fortunately, in our food, there are many bioactive compounds that are able to exert
an anti-cancer potential, re-inducing apoptosis or targeting multiple signaling pathways
that allow for cancer cell survival, proliferation, growth, and metastatic progression of BC
cells [134]. Many dietary compounds are also considered epigenetic modulating agents
in cancer [135]. Thus, both green or black tea, as well as green or dark coffee, have been
associated with a reduced BCR [136,137]. Chlorogenic acid (CGA) from coffee exerts an
inhibitory role on signaling pathways, such as NF-κB/EMT [138]. Epigallocatchin-3-gallate
from green tea significantly reduces BCR by decreasing ROS and oxidative DNA damage,
mutagenesis, and tumor progression [137]. Resveratrol from grapes, berries, and nuts can
reduce specific cancer stem cell (CSC) biomarkers in BC cells [139]. Piperine inhibits the
growth of human BC cells, cell cycle progression, and BC cell migration [140]. Carotenoids
have been associated with several metabolites involved in membrane signaling, immune
regulation, redox balance, and epigenetic regulation [141]. One of the most active com-
ponents of garlic (Allium sativum), allicin (diallylthiosulfinate), induces cell cycle arrest
and has pro-apoptotic effects in BC cells, through p53 pathway activation [142], exert-
ing antiproliferative, anticlonogenic, and senolytic effects, inducing the selective death of
senescent cells [143]. Last but not least, the omega-3 polyunsaturated fatty acids, eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA), decreased tumor cell proliferation by
downregulation of proliferation-associated protein expression (proliferating cell nuclear
antigen (PCNA) and proliferation-related kinase (PRK), induced apoptosis by increasing
caspase activity and DNA fragmentation, and decreased signal transduction through the
Akt/NF-κB cell survival pathway [144].
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5. Exposure to Endocrine-Disrupting Chemicals (EDCs)

EDCs are man-made chemicals ubiquitously found in the atmosphere as aerosols
and particulate matter [145], water [146], pesticides [147], metals such as cadmium (Cd),
mercury (Hg), arsenic (As), lead (Pb), manganese (Mn), and zinc (Zn) [148], additives
or contaminated food such as dairy products, fish, meat, eggs, and vegetables, bottled
water and canned food [149], and cosmetics and personal care products [150]. EDCs
arrive in the human body through ingestion, inhalation, and/or the transdermal route,
bioaccumulate, and interfere with endocrine, immune, and other systems, leading to a
disruption of the endocrine signaling and metabolic pathways, and inducing life-long
effects and negative consequences even for the next generation [151]. EDC exposure
also interferes with placental function [152], can interfere with gamete quality, embryo
implantation, and fetal development, with serious consequences for offspring viability
and health [153]. EDCs affect epigenetic markers such as DNA methylation and histone
posttranslational modifications (PTMs) [154]. In addition, EDCs increase incidence of
BC [151].

EDCs are heterogeneous natural or synthetic compounds that include pharmaceutical
agents (diethylstilbestrol (DES)), fungicides and pesticides (dichlorodiphenyltrichloroethane
(DDT)), plastics (bisphenol A (BPA)), plasticizers (phthalates), and industrial solvents/lubricants
(polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), and dioxins). Many
EDCs are persistent organic pollutants (POPs), known as lipophilic toxicants that persist in the
environment due to their resistance to biodegradation and, moreover, biomagnify or move up
the food webs and increase in concentration [113]. POPs affect the production of estrogens and
estrogenic signals, so that, measured in breast adipose tissue, POP levels were associated with
higher BCR and worse prognosis [112].

Several pathogenic effects of EDC exposure are presented in Table 1. Thus, BPA
stimulates the proliferation and malignancy of cancer cells through the activation of the
Wnt/β-catenin pathway [155], which is widely implicated in the pathogenesis of metastatic
BC [156]. Significant deregulated gene expression and transcriptional reprogramming in
adult fibroblasts exposed to in utero BPA and DES, and specifically, changes in extracellular
matrix (ECM) composition due to increased collagen deposition in adult mammary glands,
lead to molecular alterations, which develop over time and contribute to increased BCR in
adulthood [157]. Consequently, in utero exposure of the embryo to high maternal synthetic
estrogens/EDCs could be associated with an increased BCR later in life [158]. Thus, BC may
start in the womb, EDCs affecting the early development of mammary glands [159,160].

It is known that African Americans (AAs) are disproportionately exposed to elevated
levels of BPA, so that the urinary BPA level among Black adults and children are statistically
significantly higher compared to the non-Black population [161]. Recently, Zhang et al.
(2023) used a metabolomics-based approach based on both ultra-performance and high-
performance liquid chromatography tandem mass spectrometry (UPLC/HPLC-MS/MS)
and demonstrated a high connection between tetrabromobisphenol A (TBBPA), a bromi-
nated derivative of bisphenol A (BPA) that is extensively present in the environment, with
BC development [115]. In male and female rats and Rhesus monkey, low-dose exposure
to BPA can affect mammary gland development, resulting in significant alterations in
the gland morphology, inducing intraductal hyperplasia that could be associated with
an increased BCR [162,163]. The normal-like human breast epithelial cell line, MCF-10F,
after exposure to BPA, showed an increased expression of breast cancer genes BRCA1/2,
BRCA1 associated RING domain 1 (BARD1), choline transporter-like protein (CtlP), RAD51
recombinase (RAD51), and BRCA1/2-containing complex subunit 3 (BRCC3), which are
all involved in DNA repair, as well as the silencing of programmed cell death protein 5
(PDCD5) and Bcl-2-like 11 (BCL2L11 (BIM)), which are involved in apoptosis [164].

For example, the breasts are particularly susceptible to polycyclic aromatic hydrocar-
bons (PAHs) that can affect cell morphology, cell division, growth, and repair, cell–cell
junctions, and the number of p53 mutations [165]. Moreover, Korsh et al. (2015) investigated
the link between PAHs and BC based on the use of biomarkers in measuring PAH-DNA



Life 2024, 14, 402 9 of 19

adducts to assess the exposure level [165]. Polychlorinated biphenyls (PCBs) are persistent
industrial pollutants that have been linked to BC progression [166]. Thus, many authors
concluded that early life exposure to PCBs is a factor of BCR [12,167,168]. The highly
reactive PCB metabolite, 2,3,5-trichloro-6-phenyl-[1,4]-benzoquinone (PCB29-pQ), induces
metastasis of BC and increases cancer stem cell (CSC) biomarker expression, resulting in an
increase in EMT in MDA-MB-231 BC cells; the Wnt/β-catenin pathway is also activated by
PCB29-pQ, due to overproduction of ROS [166]. Many authors concluded that early life
exposure to PCBs is a factor of BCR [12,167,168].

Phthalates, phenols, and parabens are considered non-persistent EDCs that have
been associated with BC [169]. Biomarker concentrations of non-persistent EDCs tend
to be higher among women than men, and among Black Americans compared to White
Americans, especially based on inconsistent access to healthy food or use of certain products
with higher concentration of phthalates, such hair relaxers and skin lightening topical
products, that specifically target Black consumers [169]. Some phthalates that mimic
estradiol may promote BC, as in the case of dibutyl phthalate (DBP) exposure, which is
associated with a two-fold increase in the rate of ER+ BC [170].

Parabens, such as methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and
butylparaben (BuP), are a group of alkyl esters of the para-hydroxybenzoic acid esters [171]
that can mimic estrogen in the body [172]. These chemicals are used as broad-spectrum an-
timicrobial preservatives in lotions/creams, skin foundation, eye makeup products, deodor-
ants/perfumes, hair care products, shaving products, toothpastes, shampoos/conditioners,
pharmaceuticals, textiles, clothes, and processed foods [173,174]. Parabens are absorbed
by the dermal route or ingested and are systematically distributed and metabolized, being
detected in human normal and tumoral tissues [175], hair [176], blood [171], saliva [177],
breast milk [178,179], placenta [180], and urine [181]. Parabens can be found intact in the
human breast [175] and preferentially accumulate in metastatic breast tumors compared to
benign breast tumors [174]. Tapia et al. (2023) reported altered ER target gene expression
and cell viability that was paraben- and cell line-specific [172].

Table 1. Pathological effects of the exposure to ECDs.

EDCs Pathological Effects of EDC Exposure References

DES

in utero exposure dysregulates gene
expression and transcriptional

reprogramming in adult fibroblasts, ECM
composition and collagen deposition in

adult mammary gland, molecular
alteration develops over time and

contributes to increased BCR in
adulthood, induces epigenetic

alterations/epimutations with intergener-
ational/transgenerational effects

[157,182]

PAHs (BaP and DB(ah)A)

in mammary gland, affect cellular
morphology, cell-cell junctions, division,

growth, repair, and number of p53
mutations, increase EVs production,

changes in exosome content and gene
expression control

[99,165]
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Table 1. Cont.

EDCs Pathological Effects of EDC Exposure References

BPA and other bisphenols (AF, F, S)
and TBBPA

affect mammary gland development,
resulting in precancerous and cancerous

lesions in adulthood, exert estrogenic
effects, activate the expression of genes

associated with cell proliferation and BC;
associated with EMT and BC progression;

activate VEGF associated with
angiogenesis, MAPK signaling pathway,

Wnt/β-catenin pathway, STAT3
signaling, and DNA repair; induce
changes in genes associated with
apoptosis and DNA methylation;

inactivate p53; increase expression of
BRCA1/2, BARD1, CtlP, RAD51, and

BRCC3 involved in DNA repair;
downregulate PDCD5 and BCL2L11

involved in apoptosis

[103,155,162–164,183,184]

Phtalates (DBP)

mimic estradiol, interact with ER and PR,
promote BC, especially ER+ BC, interfere

with DNA methylation and
DNA damage

[170,185]

PCBs (PCB-153, PCB-180, PCB29-pQ)

BC cell proliferation by regulating
ERK1/2 activation; induce cancer cell

stemness and EMT via
Wnt/β-catenin signaling

[166,184]

Organochlorine insecticides (DDT)

increase in utero BCR, BC progression by
interfering with androgen signaling

pathways, BC cells proliferation, negative
effects on OS

[184,186]

Parabens (MeP, EtP, PrP, BuP) and
their metabolites

promote protumorigenic effects in BC;
modulate local estrogen-converting
enzymes and increase local estrogen

levels; cross-talk with HER2 pathway and
affect ER signaling to increase

pro-oncogenic c-Myc expression in
ER+/HER2+ BC cells; alter ER target

gene expression and cell viability

[172,173,181]

6. Conclusions

We are living in close interaction with a cocktail of man-made and natural xenobiotics.
We are experiencing a wide spectrum of exposure during our lifetime, including the effects
of xenobiotics on gametogenesis and gametes that undergo fertilization as the starting
point of individual development and, moreover, in utero exposure that can initiate BC
development. We are what we eat, we are what we breathe, and we are what we live.
Most xenobiotics are metabolized or/and bioaccumulate and biomagnify in our tissues
and cells, including breast tissues, so xenobiotic metabolism can play an important role in
BC initiation and progression. This review pointed out the main mechanisms involved in
the absorption, distribution, metabolism, bioaccumulation, biomagnification toxicity, and
excretion of xenobiotics associated with BC risk, incidence, mortality, initiation, and pro-
gression. This association necessitates more valuable explanations at the biomolecular level
to highlight the effects of genotoxic and epigenetic carcinogens. However, the accumulated
xenobiotics, including their metabolites that arise as a consequence of biotransformation
phases, such as heavy metals, endocrine-disrupting chemicals, or food contaminants, as
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well as a plethora of biomarkers of exposure, can be detected in breast tumoral tissues,
adipose tissue, hair, blood, saliva, breast milk, placenta, and urine. In BC tissue biopsies
and non-invasive liquid biopsies, xenobiotic exposure has been associated with changes in
breast tissue composition and breast cell morphology, genomic instability, DNA damage,
alteration of DNA repair, epimutations and epigenetic regulation, cell migration and in-
vasion, angiogenesis, anti-apoptosis, cell adhesion, and cytoskeletal rearrangements, OS
and ROS, metabolic reprogramming, immune regulation and metaflammation, membrane
transport and signaling, extracellular matrix (ECM) and tumor microenvironment (TME)
modifications, or extracellular vesicle (EV) production and content, with consequences
in intercellular communication. At a biologic pathway level, most xenobiotics interact
with endocrine signaling, adipogenesis, angiogenesis, DNA repair, inflammatory response,
IGF-1 and NF-κB signaling, epithelial–mesenchymal transition (EMT), Wnt/β-catenin
pathway, PI3K/Akt signaling, fatty acid metabolism (FAM) and glycolysis, MAPK, STAT3,
p53 pathway, MYC targets, xenobiotic metabolism, and other cancer-related pathways. For-
tunately, in our food, there are also many bioactive compounds with anti-tumor potential,
which re-induce apoptosis by activation of caspases or target multiple signaling pathways,
such as EMT migration-related pathway, Akt/NF-βB cell survival pathway, or p53 tumor
suppressor signaling, that allow for cell survival, proliferation, growth, and metastatic
progression of BC cells.

Consequently, BC can be characterized as an environmental disease or an ecological
disorder. Evidence for BC risk suggests that food-borne chemical carcinogens, air pollution,
ionizing radiation, and socioeconomic status are closely related to breast carcinogenesis.
Thus, exposomics and the exposome concept are based on the diversity and range of
exposures to physical factors, synthetic chemicals, dietary components, and psychosocial
stressors, as well as their associated biological responses. Advances in molecular sciences
and analytical techniques based on high-throughput sequencing and mass spectrometry
(MS) have generated multi-omics data that can be successfully used to understand the
complexity of molecular mechanisms involved in BC exposomics. Thus, environmental toxi-
cogenomics, epigenomics, and interactomics, as well as nutrigenomics and nutriproteomics,
metagenomics, micromiRomics, and nutrimiRomics are several new omics fields related
to BC exposomics, which can contribute to molecular characterization of the complex
relationship between the human body, environmental exposure, and breast cancer.

Author Contributions: Conceptualization, A.-N.N. and C.C.D.; literature search, A.-N.N., T.J., L.C.,
K.J. and C.C.D.; writing—original draft preparation, A.-N.N., T.J., L.C., K.J. and C.C.D.; writing—
review and editing, A.-N.N., T.J., L.C., K.J. and C.C.D.; project administration, C.C.D.; funding
acquisition, C.C.D. All authors have read and agreed to the published version of the manuscript.

Funding: This publication was supported in part by the National Cancer Institute of the National
Institutes of Health under Award Number R15CA260126. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the National Institutes of Health.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: The authors thank the members of the Biochemistry and Proteomics Laboratories
for the pleasant working environment.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

BaP—benz(a)pyrene; BCR—breast cancer risk; BPA—bisphenol A; BuP—butylparaben; DB(ah)A—
dibenz(ah)anthracene; DBP—dibutyl phthalate; DES—diethylstilbestrol; DDT—dichlorodiphenyl
trichloroethane; ECM—extracellular matrix; EDC—endocrine-disrupting chemicals; EMT—epithelial–
mesenchymal transition; ER—estrogen receptor; EtP—ethylparaben; EVs—extracellular vesicles;



Life 2024, 14, 402 12 of 19

MeP—methylparaben; OS—overall survival; PAHs—polycyclic aromatic hydrocarbons; PCBs—
polychlorinated biphenyls; PCB-29-pQ—polychlorinated biphenyl quinone; PR—progesterone re-
ceptor; PrP—propylparaben; TBBPA—tetrabromobisphenol A; VEGF—vascular endothelial growth
factor.

References
1. Lynn, H.; Ward, D.; Burton, D.; Day, J.; Craig, A.; Parnell, M.; Dimmer, C. Breast Cancer: An Environmental Disease. The Case

for Primary Prevention. 2005. Available online: https://www.researchgate.net/publication/275209371_Breast_Cancer_an_
environmental_disease_The_case_for_primary_prevention (accessed on 14 March 2024).

2. Hiatt, R.A.; Brody, J.G. Environmental Determinants of Breast Cancer. Annu. Rev. Public Health 2018, 39, 113–133. [CrossRef]
3. Neagu, A.-N.; Whitham, D.; Bruno, P.; Arshad, A.; Seymour, L.; Morrissiey, H.; Hukovic, A.I.; Darie, C.C. Onco-Breastomics: An

Eco-Evo-Devo Holistic Approach. Int. J. Mol. Sci. 2024, 25, 1628. [CrossRef]
4. Mathipa, E.R.; Semuli, Q.K. We are what we eat. In Rethinking Teaching and Learning in the 21st Century, Proceedings of the South

Africa International Conference on Education, Pretoria, South Africa, 21–23 September 2015; Manhattan Hotel Pretoria: Pretoria, South
Africa, 2015.

5. Pretty, J. We are what we eat. New Sci. 2004, 184, 44–47.
6. Rumiati, R.I.; Foroni, F. We are what we eat: How food is represented in our mind/brain. Psychon. Bull. Rev. 2016, 23, 1043–1054.

[CrossRef]
7. Hull, S.C.; Charles, J.; Caplan, A.L. Are We What We Eat? The Moral Imperative of the Medical Profession to Promote Plant-Based

Nutrition. Am. J. Cardiol. 2023, 188, 15–21. [CrossRef]
8. Rajkhowa, S. “ARE WE WHAT WE EAT?”: Understanding Identities through Food. Master’s Thesis, Ambedkar University Delhi,

Delhi, India, 2021.
9. Miller, M.R.; Shah, A.S.V.; Newby, D.E. We all breathe the same air . . . and we are all mortal. Cardiovasc. Res. 2020, 116, 1797–1799.

[CrossRef]
10. Sorin Mihalache, A. How do We Live and what is the World We Live in Like? Some Possible Neuroscientific Evaluations on the

Anthropology of the Spiritual Life in the Context of the Contemporary Society. Glob. J. Anthropol. Res. 2018, 4, 55–65. [CrossRef]
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