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Abstract: Wine grape quality is influenced by the variety and growing environment, and the quality
of the grapes has a significant impact on the quality of the wine. Tannins are a crucial indicator
of wine grape quality, and, therefore, rapid and non-destructive methods for detecting tannin
content are necessary. This study collected spectral data of Pinot Noir and Chardonnay using a
geophysical spectrometer, with a focus on the 500–1800 nm spectrum. The spectra were preprocessed
using Savitzky–Golay (SG), first-order differential (1D), standard normal transform (SNV), and their
respective combinations. Characteristic bands were extracted through correlation analysis (PCC).
Models such as partial least squares (PLS), support vector machine (SVM), random forest (RF), and
one-dimensional neural network (1DCNN) were used to model tannin content. The study found that
preprocessing the raw spectra improved the models’ predictive capacity. The SVM–RF model was
the most effective in predicting grape tannin content, with a test set R2 of 0.78, an RMSE of 0.31, and
an RE of 10.71%. These results provide a theoretical basis for non-destructive testing of wine grape
tannin content.

Keywords: hyperspectral; wine grape; tannin; non-destructive detection

1. Introduction

The study of phenolic compounds has become increasingly important in recent years
due to their significant impact on the sensory properties of red wine [1,2]. Anthocyanins and
tannins had a great influence on the quality of red wine. They influenced the organoleptic
properties of wine by interacting with other components [3]. Among them, tannins are
found in grape skins and seeds and are an important phenolic compound in grapes [4,5].
These compounds impart astringency to wine, which influences its taste and flavor [6].
Additionally, tannins contribute to the color changes observed during wine aging [7]. The
tannin content in wine grapes increases with maturation. However, the increase in tannin
content is influenced by various factors, such as grape varieties, the growth environment,
and cultivation practices [8–10]. Therefore, monitoring tannin levels is crucial for timely
adjustments in cultivation management, intervention in grape growth, and determining the
optimal harvest period [11]. This process is essential for producing high-quality red wine.

Tannin extraction is predominantly conducted using chemical methods. Spectropho-
tometry and high-performance liquid chromatography (HPLC) represent the standard
techniques for determining tannin content [12]. However, these methods are characterized
by lengthy extraction cycles and cumbersome procedures [13]. Hyperspectral technology
has emerged as a powerful analytical tool due to its continuous evolution. Hyperspectral
technology has gained widespread use in monitoring key plant indicators to assess growth
status due to its rapid and non-destructive nature [14]. Numerous researchers have utilized
hyperspectral imaging to monitor grape phenotypic characteristics, soluble solids content,
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and anthocyanin content [15–17]. For instance, Zhang et al. employed hyperspectral imag-
ing to detect tannin content in grains and established a predictive model using both full
and characteristic wavelengths. The study found that hyperspectral technology enables
quick and non-invasive evaluation of tannin levels in grains [18]. Maria Inês Rouxinol
and her colleagues used a portable infrared spectrometer to collect spectral data on wine
grapes, analyzing various components, including tannins. They then modeled the data
using partial least squares regression (PLS). The results showed significant potential for
accurately predicting tannin content [19].

Chen et al. used hyperspectral imaging to measure the tannin content in drying
persimmons. They applied seven preprocessing methods (SG, SNV, 1D, and 2D) to prepare
the data and developed models to assess the effectiveness of these methods. The results
showed that SG1D and SG2D were the most effective, with R2 values of 0.742 and 0.857,
respectively. This highlights the importance of choosing appropriate preprocessing tech-
niques to improve model performance [20]. Gao Sheng et al. analyzed red tip berries using
hyperspectral imaging and employed preprocessed hyperspectral data for modeling. They
developed predictive models, such as partial least squares regression (PLS), least squares
support vector machine (LSSVM), and random forest (RF), to predict the Brix and hardness
of red grapes. The study found that the RF model was the most effective in predicting
both Brix and hardness, with R2 values of 0.928 and 0.932, respectively. This highlights
the importance of selecting an appropriate model to improve accuracy in predicting these
parameters [21]. Julio Nogales-Bueno et al. used spectroscopic equipment to scan harvested
grapes and preprocessed the hyperspectral data using multiplicative scattering correction
(MSC), standardized normal variable (SNV), and detrending. The study showed that hyper-
spectral techniques can be used to quickly and non-destructively detect polyphenol content
in grapes. It also predicted the extractable polyphenol content in red grape skins [22].

Specifically, this study focused on analyzing wine grapes from Ordos (Zhungeer
Banner). Spectral data was collected using a portable geophysical spectrometer (SVC HR-
1024i) and processed using various techniques, including SG, SNV, 1D, SG1D, SG1D-SNV,
and RAW. The study used spectral feature extraction integrated with principal correlation
analysis (PCC) to model grape tannin content. Four different estimation models were
employed: random forest (RF), support vector machine (SVM), partial least squares (PLS),
and 1-dimensional neural network (1DCNN). The accuracies of the models were compared
to determine the most effective one for estimating tannin content.

2. Materials and Methods
2.1. Sample Preparation

The experiment was carried out in Zhungeer Banner, Ordos City, from 2021 to 2022
using Pinot Noir and Chardonnay as experimental varieties (Figure 1). Both experimental
varieties were harvested at the same time. The harvest dates in 2021 were 28 August,
4 September, 11 September, and 18 September. The harvest dates in 2022 were 25 August,
1 September, 8 September, and 15 September.
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2.2. Spectral Acquisition

In this study, a portable geophysical spectrometer (HR-1024, SVC, Manufactured
by Sloan Valve Company (svc), located in Franklin Industrial Park near Chicago, IL,
USA) was used with a detection range of 500–1800 nm. The built-in CPU provided data
processing capacity, and the personal digital assistant (PDA) enabled real-time information
transmission through remote Bluetooth technology. Prior to collecting spectral data, the
instrument was calibrated by scanning a whiteboard. Data was collected by scanning
the wine grape berries. During scanning, ten plants of each variety were selected. Two
spikes were taken from each plant, and five grains were taken from each spike, totaling
100 grains (20 spikes). Every 10 grains were divided into a group. A total of 160 samples
were collected for further analysis by making four measurements before harvesting. The
spectrometer automatically adjusted the integration time according to changes in light
intensity for optimal scanning. After completing the scanning process, we measured the
reflectance of the grape samples using the companion software of the instrument called
DARWinSP (version 1.10.8).

2.3. Software and Model Evaluation

The study utilized TensorFlow 2.1, a deep-learning framework, in Python (version
3.7.16). The computer was equipped with a GeForce GTX 1650 graphics card with 6 GB
video memory and an Intel(R) Core (TM) i7-9750H processor operating at 2.59 GHz.

2.4. Measurements of Tannin Content

Tannin content was determined by the Folin–Denis method. A total of 10 g of grapes
were placed in a triangular flask and 50 mL of distilled water was added. The grapes were
filtered in a water bath at 60 ◦C for 12 h. The supernatant was extracted in a water bath
at 80 ◦C for 20 min and filtered. A total of 2 mL of the sample filtrate was aspirated and
centrifuged at 8000 r/min for 4 min and the supernatant was set aside. Then, 1 mL of
0 g/L, 20 g/L, 40 g/L, 60 g/L gallic acid standard use solution was sucked up, and 5 mL
of distilled water, 1 mL of a sodium tungstate–sodium molybdate mixture and 3 mL of



Life 2024, 14, 416 4 of 12

sodium carbonate solution were added; the concentration of gallic acid standard solution
was 0 g/L, 2 g, 4 g/L, 6 g/L, respectively, and the color was developed and left for 2 h, and
then 0 g/L was used as the blank of the standard curve. The absorbance was measured at
760 nm using a spectrophotometer and the standard curve was plotted. Pipette 1 mL of
sample supernatant, add 5 mL of water, 1 mL of a sodium tungstate–sodium molybdate
mixed solution and 3 mL of sodium carbonate solution, respectively, develop the color and
leave it for 2 h, and measure the absorbance at 760 nm using the standard curve 0 g/L as
blank. The tannin content of the samples was calculated as in Equation (1).

X = C × (1/V) × 250 × (1/1000) × (1/m) × 1000 (1)

In this equation, ‘X’ represents the tannin content (g/L), ‘C’ is the absorbance of the
sample on the standard curve (mg), ‘V’ is the volume of the test solution (mL), ‘250’ is the
total volume of the extract (mL), and ‘m’ is the mass of the weighed sample (g).

2.5. Data Analysis Methods
2.5.1. Hyperspectral Preprocessing

To enhance model accuracy, we conducted data preprocessing on the raw hyperspec-
tral reflectance data. We employed six preprocessing methods in this experiment: SG, 1D,
SNV, SG1D, SG1D-SNV and Raw. Hyperspectral preprocessing methods can reduce or
eliminate the impact of unimportant data on spectral data, reduce background noise inter-
ference, and highlight spectrally valid information, thereby improving spectral sensitivity.

2.5.2. Data Dimensionality

Data dimensionality reduction is a technique that eliminates redundant spectral infor-
mation, reducing the likelihood of model overfitting and improving the speed of model
operation. In this study, we utilized the Pearson Correlation Coefficient (PCC) method
for data dimensionality reduction. The PCC method reflects the strength of the linear
relationship between two variables, allowing for the screening out of characteristic bands.
The calculation formula is presented below as Equation (2).

rX,Y =
cov(X, Y)

σXσY
(2)

In this equation, ‘r’ represents the correlation coefficient, ‘X’ the spectral wavelength,
‘Y’ the grape tannin content, ‘cov’ the covariance, and ‘σ’ the standard deviation.

2.5.3. Model Establishment

The data on grape tannins were split into a training set and a test set in an 8:2 ratio
using Scikit-learn in Python. We developed a mathematical model for predicting grape
tannin content using hyperspectral non-destructive testing and subsequently validated and
evaluated the predictive ability of each model for accuracy.

SVM is a machine learning algorithm based on the principle of structural risk mini-
mization. It reduces the complexity of the learning machine to achieve good generalization
ability while ensuring training accuracy. SVM is effective in addressing issues with small
samples, nonlinearities, and high dimensions, making it widely applicable in regression
problems [23]. The kernel function in SVM used the radial basis function kernel. The
method to find the optimal parameters was to utilize the cross-validation method, which
included the parameter C (penalty factor) and the parameter δ (variance in the RBF kernel
function). In this study, the paper mentioned that C = 2 and δ = 0.7 were used as parameters
for modeling.

Random forest (RF) is another machine learning algorithm proposed by Breiman in
2001, which is tailored for small-scale data. The random forest algorithm is known for
its robustness and strong generalization capabilities, as well as its fast training speed. It
is particularly effective in handling high-dimensional data and large-scale datasets with
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high accuracy [24]. This study modeled 200 decision trees, and the number of independent
variables required to create branches was set to ‘auto’.

The PLS model is particularly suitable for inverse modeling of datasets with small
sample sizes and is conducive to refining key spectral information. PLS merges the ben-
efits of principal component analysis, canonical correlation analysis, and multiple linear
regression. This approach offers a many-to-many linear regression model and considers
the explanatory power of the independent variables for the dependent variable [25].

y = a0 + a1x1 + a2x2 + . . . + anxn (3)

where a0 in the equation is the intercept of the regression coefficient, ai is the regression
coefficient, xi are the independent variables 1 to n.

The 1DCNN model consists of an input module, a convolution module, a fully con-
nected layer, and a regression output layer. The model’s input parameters include the
spectral data corresponding to each sample and the measured tannin values. This model
demonstrates strong generalization and nonlinear capabilities, making it suitable for the
conditions and requirements of this experiment [26]. The convolutional layers of the con-
volutional module consisted of convolutions with 16 kernels, a size of 3 × 3, and steps
of one. The number of convolutional layers was determined by the number of specially
acquired features.

2.5.4. Model Performance

A prediction model was developed with tannin content as the dependent variable and
the model was evaluated using the coefficient of determination (R2) and root mean square
error (RMSE). The larger R2 is closer to 1. It means that the model is more accurate. A
smaller RMSE indicates that the accuracy of the model is more robust. The two evaluation
coefficients were formulated as in Equations (4) and (5).

R2 =
∑(ŷi − y)2

∑(yi − y)2 (4)

RMSE =

√
∑n

i=1(ŷi − yi)
2

.
n

(5)

where yi is the actual value; ŷi is the estimated value; y is the mean actual value of the
sample; and n is the number of samples.

3. Results
3.1. Analysis of the Tannin Content of Grapes

Analysis of the tannin content data for the two grape varieties from the 2021–2022
harvest (Table 1) showed that the tannin content of the grapes ranged from 1.06 to 3.92, with
Chardonnay having a tannin content of 1.09–3.85 and Pinot Noir having a tannin content
of 1.06–3.92. In addition, in 2021 and 2022, the average tannin content of Chardonnay
was 2.01 and 2.32, respectively, and the average tannin content of Pinot Noir was 2.35 and
2.66, respectively, which was higher than the average tannin content of Chardonnay in
both years.

Table 1. Statistical analysis of tannin content in two grape varieties.

Variety Measuring
Time

Sample
Size

Minimum
(g/L)

Maximum
(g/L)

Mean
(g/L)

Standard
Deviation (g/L)

Chardonnay 2021 40 1.12 3.19 2.01 0.46
2022 40 1.09 3.85 2.32 0.59

Pinot Noir
2021 40 1.06 3.31 2.35 0.70
2022 40 1.08 3.92 2.66 0.86



Life 2024, 14, 416 6 of 12

3.2. Hyperspectral Data Preprocessing Analysis

As shown in Figure 2A, the spectral reflectance curves of grape berries showed three
peaks at 920 nm, 1070 nm, and 1350 nm, which were related to the vibration of N-H and
C-H groups in the samples. The troughs at 950 nm, 1130 nm, and 1400 nm were related
to the C-H, N-H, and O-H of the tannins in the samples, which indicated that there was a
close correlation between the spectral reflectance of tannins and the tannin content.
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Given the broad range of spectral data for grape berries and the extensive number of
measurement periods, the external environment can influence the spectral reflectance. The
first-order derivative (1D) was selected to enhance the convergence speed of the model
(Figure 2B). SG smoothing was applied for data smoothing (Figure 2C), and the standard
normalized variable (SNV) was employed to eliminate the gap (Figure 2D). Furthermore,
the three preprocessing methods were integrated as SG1D (Figure 2E) and SG1D-SNV
(Figure 2F) for spectral data preprocessing.

3.3. Data Dimension Reduction

The experiment utilized the Pearson Correlation Coefficient (PCC) method to extract
characteristic bands. Only bands highly correlated with grape tannins were extracted from
the preprocessed data. Wavelengths with a correlation greater than 0.5 and ranking in the
top 20 were used instead of the original bands. This approach reduced model complexity
and shortened the modeling time. Table 2 displays the results of feature band extraction.

Table 2. Extracted characteristic wavelengths.

Preprocessing Method Number of Feature Bands Maximum Correlation Coefficient

1D 19 0.63
SG 20 0.72

SNV 20 0.86
SG1D 19 0.60

SG1DSNV 20 0.62
RAW 20 0.73

3.4. Performance of Models for Tannin Content Estimation

In this study, tannin content prediction was performed using SVM, RF, PLS, and
1DCNN with various preprocessing methods. To improve model accuracy, the dataset was
divided into 128 training sets and 32 test sets, in an 8:2 ratio. Model evaluation coefficients
included R2, RMSE and RE. The table highlights the best inversion results for each model
by comparing the values of R2, RMSE, and RE.

3.4.1. SVM Model Prediction Results

The prediction results of the SVM model were shown in Table 3, the R2 of the spectral
training set based on 1D, SG, and SNV were all greater than 0.80, the R2 of the training
set of the three was not much different, and the three were mainly compared from the test
set R2. Among them, the spectral test set R2 = 0.77 based on SNV, and the spectral test
set R2 of SG and 1D were 0.75 and 0.66, respectively, which were lower values than those
of SNV. The test sets RMSE and RE of SG and 1D were larger than those of SNV, which
indicated that, when using the SVM model to monitor the tannin content of grapes, the
preprocessing of the spectra by choosing SNV could effectively improve the predictive
ability and stability of the model.

Table 3. Training and testing results of SVM model to estimate tannin content.

Preprocessing
Method

Train Test

R2 RMSE RE (%) R2 RMSE RE (%)

Raw 0.78 0.33 11.56 0.71 0.35 12.07
1D 0.80 0.31 9.63 0.66 0.38 13.61
SG 0.78 0.33 11.56 0.71 0.35 12.07

SNV 0.78 0.33 11.13 0.77 0.31 10.77
SG1D 0.64 0.43 13.90 0.43 0.49 18.39

SG1DSNV 0.59 0.45 13.86 0.37 0.52 19.53
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3.4.2. RF Model Prediction Results

The prediction results of the RF model were shown in Table 4; the R2 of the spectral
training set with different preprocessing showed that SNV was the highest, and 1D was
the second highest, with R2 of 0.97 and 0.96, respectively. There was not much difference
in the R2 of the training set of the two, and the comparison was mainly drawn from the
R2 of the test set. From the table, it could be seen that the R2 of the spectral test set based
on SNV and 1D were 0.78 and 0.56, respectively, and the SNV spectra were better than
the 1D spectra. In addition, the spectral test sets RMSE and RE of SNV were smaller
than those of 1D. Therefore, when using the RF model to monitor the tannin content of
grapes, choosing SNV for spectral preprocessing can effectively improve the accuracy and
robustness of the model.

Table 4. Training and testing results of RF model to estimate tannin content.

Preprocessing
Method

Train Test

R2 RMSE RE (%) R2 RMSE RE (%)

Raw 0.96 0.14 4.72 0.80 0.29 9.64
1D 0.95 0.16 5.63 0.56 0.43 16.16
SG 0.96 0.14 4.77 0.81 0.28 9.29

SNV 0.97 0.12 4.25 0.78 0.31 10.71
SG1D 0.92 0.20 7.19 0.40 0.51 20.92

SG1DSNV 0.92 0.20 7.17 0.39 0.51 19.97

3.4.3. PLS Model Prediction Results

The prediction results of the PLS model were shown in Table 5, the R2 of the spectral
training sets with different preprocessing was greater than 0.5, the training set R2 did not
differ much, and the comparison was mainly drawn from the test set R2. From the table, it
could be seen that the test set R2 of 1D-based spectra was 0.69, which was much higher
than the test set R2 of the other preprocessed spectra. In addition, the test set RMSE and RE
of the spectra of 1D were 0.36 and 13.10%, which were smaller than the other preprocessed
spectra. This suggested that when using the PLS model to monitor the tannin content of
grapes, choosing 1D to preprocess the spectra could effectively improve the predictive
ability and stability of the model.

Table 5. Training and testing results of PLS model to estimate tannin content.

Preprocessing
Method

Train Test

R2 RMSE RE (%) R2 RMSE RE (%)

Raw 0.67 0.41 15.07 0.57 0.43 16.66
1D 0.68 0.40 15.41 0.69 0.36 13.10
SG 0.67 0.41 15.07 0.57 0.43 16.66

SNV 0.78 0.33 11.13 0.77 0.31 10.77
SG1D 0.55 0.48 17.94 0.59 0.42 16.51

SG1DSNV 0.53 0.49 17.62 0.47 0.47 18.75

3.4.4. 1DCNN Model Prediction Results

The prediction results of the 1DCNN model were shown in Table 6; the spectral
training set based on SG1DSNV had a higher R2 of 0.87, followed by 1D and SNV spectra
with 0.79 and 0.71, respectively. From the table, it could be seen that the spectral test set
based on SNV had the highest R2, followed by 1D and SG1D spectra with R2 of 0.70, 0.63,
and 0.50, respectively. The other preprocessed spectral test sets all had R2 less than 0.5
and had poor prediction results. In addition, the spectral test sets RMSE and RE of SNV
were smaller than 1D and other preprocessed spectra. This suggested that when using the
1DCNN model to monitor the tannin content of grapes, choosing SNV to preprocess the
spectra could effectively improve the accuracy and robustness of the model.
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Table 6. Training and testing results of 1DCNN model to estimate tannin content.

Preprocessing
Method

Train Test

R2 RMSE RE (%) R2 RMSE RE (%)

Raw 0.31 1.60 27.82 0.23 1.53 24.12
1D 0.76 0.35 10.84 0.31 0.54 21.34
SG 0.43 1.03 23.53 0.27 0.81 17.03

SNV 0.67 0.41 15.55 0.66 0.38 14.15
SG1D 0.66 0.41 14.56 0.50 0.46 19.12

SG1DSNV 0.87 0.26 8.84 0.21 0.58 23.31

3.4.5. Selection of Optimal Model for Tannin Content Estimation

As depicted in Figure 3, the four modeling methods—SVM, RF, PLS, and 1DCNN—
were compared. The models exhibiting the best prediction performance were selected to
create independent validation scatter plots, showing both measured and predicted tannin
content. The most effective predictive models were identified as SNV-SVM, SNV-RF, 1D-
PLS, and SNV-1DCNN, respectively. Notably, the sample distributions in the validation and
test sets of the SNV-RF model showed minimal deviation from the 1:1 line, especially when
compared to those of the SNV-SVM, 1D-PLS, and SNV-1DCNN models. This distribution
was essentially linear along the 1:1 line, suggesting that the prediction accuracy of the
SNV-RF model surpasses that of the other three models overall. Consequently, the SNV-RF
model was selected for detecting grape tannin content, as it could further enhance the
accuracy and stability of the prediction results.
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the test set data. The degree of model strength can be summarized based on the deviation of the
model from the standard line, and these plots show R2, RMSE, and RE.
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4. Discussion

In recent years, spectroscopic techniques have been widely used for the rapid mon-
itoring of fruit substance content, among other applications [27]. Visible-near-infrared
spectroscopy has been demonstrated by numerous researchers as feasible for predicting
grape composition [28,29]. It is worth noting that the majority of these studies utilized
raw spectral data without implementing spectral data preprocessing and feature band
extraction. The use of redundant and complex spectral data resulted in decreased model
prediction accuracy and operational speed. To address this issue, spectral data preprocess-
ing is performed, followed by feature band extraction based on the preprocessed spectral
data. This approach reduces the dimensionality of the spectral data and retains the feature
bands that are highly correlated with the samples. Thus, this methodology effectively
addresses the issues of decreased predictive ability and operational speed of the model.
In this study, six preprocessing methods were used to process the spectral data, aiming
to eliminate noise and enhance spectral variability, thereby improving spectral quality.
Furthermore, principal component analysis (PCA) was used for feature band extraction
to achieve data downscaling and simplification. The feasibility of four distinct modeling
methods for the prediction of tannin content in wine grapes has also been investigated.

In this study, the raw spectral data were preprocessed, and modeling based on the
preprocessed data resulted in improved model accuracy. This result is consistent with the
results of the study [30]. The modeling prediction of the spectral data preprocessed by
SNV was the best. This may be due to the fact that SNV standardizes and normalizes the
raw data to further improve the accuracy of the spectral data and make the differences
between different spectra more significant, thus enabling PCC to extract the characteristic
bands more accurately. This is what leads to the higher accuracy of the model built based
on the spectral data preprocessed by SNV. In addition, in this study, PCC was used for data
downscaling and feature band extraction, replacing 1300 variables with 19–20 variables,
which improved the running speed of the model. The results showed that the extracted
feature bands were feasible for estimating grape tannin content. This is consistent with the
results of the study [20]. In this study, SVM, RF, PLS and 1DCNN were used to develop an
accurate quantitative model for wine grape tannin content. In this study, each of the four
models was modeled based on six pre-processed spectral data, for a total of 24 combined
models. The optimal models corresponding to each modeling method were SNV-SVM, SNV-
RF, 1D-PLS, and SNV-1DCNN, respectively. Comparison of these four models revealed that
the SNV-RF model had the strongest predictive ability, which may be due to the fact that
the RF model based on SVM spectral preprocessing is more suitable for data with small
sample sizes and high dimensionality of variables. The model provides a theoretical basis
for the prediction of tannin content in wine grapes using small sample data.

Considering the limitations of this study, it is crucial to note that, despite examining
the tannin content at the maturity of different wine grape varieties over two consecutive
years, the small number of varieties selected limits the model’s generalizability. Future
research could benefit from increasing the number of varieties and ecological zones, thereby
enhancing the model’s generalizability. Furthermore, while PCC is employed for feature
band extraction, this method may inadvertently exclude some crucial bands due to their
marginally lower correlation, leading to the loss of significant bands. In subsequent research,
exploring various methods for feature band extraction to achieve data dimensionality
reduction and enhance model accuracy will be valuable. It should be noted that deep
learning models typically demonstrate greater applicability to larger datasets. Thus, in
future studies, expanding the sample size and training the model with these accumulated
samples will be crucial for enhancing its predictive capability and stability.

5. Conclusions

In this study, we describe the complete workflow for predicting tannin content in
grapes based on hyperspectral detection of tannin content in grapes, using six preprocessing
methods for spectral data preprocessing. The extraction of feature bands was performed
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using PCC, and the data were downscaled to improve the speed of model running. And
four modeling methods were used to increase the comparability of the models by pairing
with the six preprocessing to determine the best model. The results show that the use of SNV
for spectral data preprocessing can effectively improve the predictive ability and stability
of the model when using SVM, RF and 1DCNN models for prediction. A comparison
of the optimal models of the four modeling approaches revealed that the SNV-RF model
had the highest accuracy and good robustness in predicting grape tannin content. Its
R2 = 0.78, RMSE = 0.21, and RE = 10.71%. These results indicate that it is feasible to utilize
hyperspectral technology for the detection of tannin content in wine grapes and to provide
a theoretical basis for the rapid non-destructive detection of tannin content in wine grapes.
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