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Abstract: Chronic kidney disease (CKD) is a global health issue with a rising prevalence, affect-
ing 697.5 million people worldwide. It imposes a substantial burden, contributing to 35.8 million
disability-adjusted life years (DALYs) and 1.2 million deaths in 2017. The mortality rate for CKD has
increased by 41.5% between 1990 and 2017, positioning it as a significant cause of global mortality.
CKD is associated with diverse health complications, impacting cardiovascular, neurological, nu-
tritional, and endocrine aspects. One prominent complication is CKD–mineral and bone disorder
(MBD), a complex condition involving dysregulation of bone turnover, mineralization, and strength,
accompanied by soft tissue and vascular calcification. Alterations in mineral metabolism, including
calcium, phosphate, parathyroid hormone (PTH), vitamin D, fibroblast growth factor-23 (FGF-23),
and Klotho, play pivotal roles in CKD-MBD. These disturbances, observed early in CKD, contribute to
the progression of bone disorders and renal osteodystrophy (ROD). Vascular calcification (VC) is a key
component of CKD-MBD, accelerated by CKD. The pathophysiology involves complex processes in
vascular smooth muscle cells and the formation of calciprotein particles (CPP). VC is closely linked to
cardiovascular events and mortality, emphasizing its prognostic significance. Various serum markers
and imaging techniques, including lateral plain X-ray, Kauppila Score, Adragao Score, and pulse
wave velocity, aid in VC detection. Additionally, pQCT provides valuable information on arterial
calcifications, offering an advantage over traditional scoring systems. CKD poses a substantial global
health burden, and its complications, including CKD-MBD and VC, significantly contribute to mor-
bidity and mortality. Understanding the intricate relationships between mineral metabolism, bone
disorders, and vascular calcification is crucial for effective diagnosis and therapeutic interventions.

Keywords: chronic kidney disease (CKD); vascular calcification; cardiovascular disease (CVD); serum
markers; imaging techniques; renal osteodystrophy

1. Introduction
1.1. Epidemiology and Morbidity of CKD

Chronic kidney disease (CKD) is a prevalent and widespread health condition associ-
ated with a significant burden and considerable morbidity. With 697.5 million recorded
cases worldwide and a global prevalence of 9.1%, CKD accounts for 35.8 million DALYs
and 1.2 million deaths in 2017 [1].

Furthermore, despite being a preventable and treatable condition, CKD affects an
increasing portion of the general population. Its prevalence increased by 29.3% and its
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all-age mortality rate grew by 41.5% between 1990 and 2017 [1]. This trend aligns with
recent projections indicating that CKD is poised to become the fifth leading global cause of
mortality [2].

Technological advances now enable long-term survival even after end-stage kidney
disease (ESKD) through various chronic replacement therapies (RRT). The number of
individuals undergoing these therapies globally has already surpassed 2.5 million and is
expected to reach 5.4 million by 2030 [3].

Although readily available in wealthier countries, RRT comes with high costs that
have been steadily increasing since the introduction of dialysis in the 1960s. This rise in
costs contributes to the lack of access to this life-saving therapy, resulting in the premature
death of up to 7.1 million people [3,4].

CKD impacts various aspects of an individual’s health. It is a recognized independent
cardiovascular risk factor [5] and commonly causes anemia [6]. Additionally, it presents
various neurological complications, including anxiety, sleep disturbances, motor abnormal-
ities, depression, and cognitive impairment [7]. Due to their chronic inflammatory state,
CKD patients often experience protein-energy wasting, leading to frequent malnutrition [8].
CKD also induces a complex pattern of mineral disturbances and bone disorders associated
with abnormal vascular calcification and endocrine dysregulation [9–12].

This complication is referred to as chronic kidney disease–mineral and bone disorder
(CKD MBD).

1.2. Main Features of CKD Mineral and Bone Disease

CKD MBD is a complex condition characterized by dysregulation of bone turnover,
growth, mineralization, or strength, accompanied by soft tissue and vascular calcification
(VC) [13–15]. Additionally, alterations in mineral metabolism and homeostasis are almost
invariably associated with endocrine disturbances, such as secondary hyperparathyroidism
and low synthesis of vitamin D [9].

While CKD MBD affects most patients with moderate and severe CKD [13], its patho-
physiological changes start in the early phases of renal function impairment.

In CKD MBD, metabolic, vascular, soft tissue and endocrine–metabolic alterations are
all interconnected from a pathophysiological perspective. When individually assessed, it is
crucial to keep in mind the broader context to comprehend the entire picture.

2. Mineral Metabolism Alterations

As previously mentioned, alterations of mineral metabolism, a central aspect of CKD
MBD, can manifest in the early phases of kidney disease. Some of these alterations serve as
valuable laboratory markers routinely monitored in the follow-up of CKD patients [15].

2.1. Calcium

Serum calcium levels decrease with the progression of CKD. Maintaining adequate
calcium levels is pivotal for preventing CKD MBD [9]. Both lower and higher calcium
levels are associated with CKD progression and higher cardiovascular mortality [16,17],
emphasizing the significance of calcium level regulation in CKD.

2.2. Phosphate

Phosphate, an essential element with key roles in cellular signaling and metabolism, is
fundamental for bone mineralization. It is one of the main components, together with cal-
cium, of hydroxyapatite crystals, the mineral component of bone structure. It is associated
with CKD progression, end-stage kidney disease, and all-cause and cardiovascular mortal-
ity [18–20]. Normalizing serum phosphate in CKD is mandatory in current guidelines and
clinical practice [15].
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2.3. Parathyroid Hormone

Parathyroid hormone (PTH) is a peptide secreted by parathyroid glands, with an
active form known as “intact” PTH, consisting of 84 amino acids obtained by cleavage
of an inactive form [21]. It regulates calcium homeostasis stimulating calcium reuptake
by kidneys, absorption by the small intestine and calcium release by the bone [22]. Its
serum concentration increases as early as stage 3 CKD, with a dramatic rise in patients
nearing renal replacement therapy [18,19]. Elevated PTH levels are linked to cardiovascular
events and CKD progression and are an independent predictor of fractures [17,23,24].
Clinical complications include bone disruption, cardiomyopathy, soft tissue calcification
and various other harmful complications. Despite being considered a uremic toxin, and
its elevation being a recognized indication of treatment initiation, optimal serum PTH
levels remain uncertain, and guidelines do not provide a clear indication [14,15]. Complete
normalization of PTH levels is cautioned to prevent low turnover bone disease [25].

Untreated rising PTH levels inevitably lead to secondary parathyroid hyperplasia [9],
reducing sensitivity to vitamin D and contributing to treatment resistance in the later
phases of CKD. Patients starting RRT with higher PTH levels may exhibit a poor response
even to more aggressive therapy [9,26].

2.4. Vitamin D

Vitamin D, more accurately described as a steroid hormone, is more than a simple
vitamin. It exists in two main forms: calcidiol and calcitriol, obtained by successive
hydroxylation. Of major clinical and biological interest, 25(OH) vitamin D (also known as
calcidiol, or calcifediol) is produced by the liver and represents the less bioactive form but
is highly circulating [27]. Via hydroxylation of its precursor, 1.25(OH) vitamin D (calcitriol),
the more biologically active form is synthesized by the kidneys [28].

Although calcitriol is considered the active form of vitamin D, its serum levels are
not frequently monitored, due to short half-life, lack of a standardized assay, and serum
levels influenced by exogenous administration. Therefore, calcidiol is the commonly used
biomarker both in clinical and research settings [29]. Calcitriol increases enteric absorption
of calcium and regulates phosphate levels, along with numerous still discussed pleiotropic
effects, including immune system modulation and insulin release [30,31].

Vitamin D deficiency, defined as a calcidiol serum level <20 ng/mL [32], is common in
both CKD and the earlier phases of ESKD. It is associated with poor renal outcomes and
increased mortality [21,28,33]. There is no universal consensus on the treatment of vitamin
D deficiency, as its optimal levels to ensure bone health are yet to be defined [34]. US
guidelines are prone to early intervention, while KDIGO guidelines suggest treating non-
ESKD patients with nutritional vitamin D starting from CKD stage 3, reserving calcitriol
and its analogs to advanced CKD with otherwise untreatable hyperparathyroidism [15,33].

2.5. FGF-23

Fibroblast growth factor-23 (FGF-23), a 32 kDa glycoprotein synthesized by osteoblasts
and osteocytes, inhibits renal tubular phosphate reabsorption and suppresses calcitriol
synthesis in the kidney [35]. Increased FGF-23 is an early alteration in CKD-MBD, and low
25(OH) vitamin D levels and high FGF-23 levels are independent predictors of poor renal
outcomes, progression to renal replacement therapy, and all-cause mortality [24,36,37].

2.6. Klotho

Closely linked to FGF-23, Klotho is a protein with both soluble and membrane-bound
states. While the latter acts as a coreceptor of FGF-23, the soluble form has pleiotropic
effects including regulation of ion channels and transporters [38–40]. Klotho deficiency
begins in the early phases of CKD [41,42], and in the later stages, Klotho resistance and
deficiency lead to elevated phosphate serum levels despite high FGF-23 levels [43].
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3. Renal Osteodystrophy, Osteoporosis, and Bone Dysregulation

The bone is composed of two main components: an organic matrix, consisting of
type-I collagen, and an inorganic mineral part, compromising calcium, phosphorus and
hydroxyapatite crystals [44,45]. In total, 80% of its mass is in the cortical bone, which is
more compact and hard, while the remaining 20% is located in the trabecular bone, which
is more fragile and spongy [46].

Osteoporosis, defined as a disease characterized by low bone mass, microarchitecture
deterioration of bone tissue, bone fragility, and a consequent increase in fracture risk [47],
constitutes one of the main features of CKD MBD. It is twice as prevalent in individuals
with CKD compared to those with normal renal function [48], and CKD itself is an inde-
pendent risk factor for osteoporosis [49]. Fractures in CKD subjects are 2–100 times more
common than age-matched patients with normal renal functions [50,51], with a mortality
rate threefold greater for those with CKD.

When bone structural alterations are subsequent to and caused by CKD, they are
collectively known as renal osteodystrophy (ROD).

3.1. Pathogenesis of Renal Osteodystrophy

In recent decades, numerous advancements have been made in understanding the
complex pathogenetic mechanism of ROD, although further studies are needed for a
comprehensive understanding. The main alteration in ROD is an imbalance between bone
formation and reabsorption, ultimately leading to bone loss [52].

Several interconnected pathways contribute to the dysregulation of bone metabolism.
Under normal conditions, a reduction in serum calcium stimulates calcium-sensing

receptors (CaSR) in the parathyroid glands, leading to the release of PTH. PTH increases
renal calcium reabsorption and phosphate excretion, while also enhancing the synthesis
and release of calcitriol, responsible for the intestinal uptake of calcium and phospho-
rus [9,14,53]. With the progressive deterioration of kidney function, the kidneys become
inefficient in increasing calcium reabsorption and stimulating calcitriol production. In an
attempt to regulate calcium homeostasis by increasing its enteric absorption, due to the
kidney’s inability to effectively increase calcitriol synthesis, this insufficient counterbal-
ancing mechanism results in hypocalcemia, inducing a further increase in PTH release by
parathyroid glands, releasing calcium from bones and weakening them further [9,14,53].

3.2. Bone Histology

According to international guidelines, the gold standard for ROD diagnosis is bone
biopsy [15]. To facilitate the interpretation of bone biopsies, they are classified based on
three main histologic parameters: bone turnover (T), mineralization (M), and volume (V)
(i.e., bone mass). These three descriptors constitute the TMV system, introduced for the
first time in 2006 [54].

A histological classification based on the TMV system can provide a standard nomen-
clature, distinguishing five different and recognizable conditions grouped in two categories
of low and high bone turnover (Table 1):

1. Osteomalacia (OM), characterized by low turnover and mineralization, with normal
or low bone mass (depending on severity and duration of the disease).

2. Adynamic bone disease (ABD), described as low bone turnover with normal mineral-
ization and normal or low volume.

3. Mild hyperparathyroid-related bone disease (HPT-BD), which presents a medium
turnover, normal mineralization and any bone volume.

4. Osteitis fibrosa (OF), which represents a more severe variant of the HPT-BD in a
continuum specter of alterations, with high turnover, normal mineralization and
normal to low volume.

5. Mixed uremic dystrophy (MUO), characterized by high turnover, abnormal mineral-
ization and normal volume [54,55].
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Table 1. Five different types of renal osteodystrophy (ROD). Normal values are referred to adult
males of age 45–75 years [56].

ROD Types Mineralization Turnover Mass

Osteomalacia (OM) − − =/−
Adynamic Bone Disease (ABD) = − =/−
Mild hyperparathyroid-related bone disease (HPT-BD) = =/+ −/=/+

Osteitis fibrosa (OF) = + =/−
Mixed uremic dystrophy (MUO) − + =

Normal values (adult males) 0.50 (±0.08) µ/day 16.9 (±11.15)%/year 19.8 (±6.7)%

A bone biopsy can offer unique insights into bone architecture, turnover rate, and
mineralization, providing valuable indices that no other tool can reliably offer simulta-
neously. Despite these advantages, bone biopsy is rarely performed due to the potential
risk of complications, perceived invasiveness, and, most importantly, lack of experienced
pathologists capable of accurately interpreting the results [57,58].

Bone turnover is a particularly important parameter, as it is crucial for the evaluation
of the most appropriate therapy of ROD (Table 2) [13].

Table 2. Most appropriate therapy according to bone turnover status.

Turnover Drug

Low (OM, ABD) Anabolic agent (teriparatide, abaloparatide)

High (HPT-BD, OF, MUO) Anti-resorptive drug (bisphosphonate, denosumab)

Bone micro-indentation, a minimally invasive technique, measures bone resistance
to mechanical force through a small probe, causing micro-fractures on the bone surface.
This method provides information evaluated through the bone material strength index
(BMSi) [59]. Despite being a promising technique, there are currently no studies validating
its use for assessing bone quality in non-ESKD patients [60].

3.3. Serum Markers

Various blood markers have been identified to assess ROD, offering information on
bone metabolism and changes more rapidly than other techniques. However, these are not
always tissue-specific, and their clinical relevance may vary [61].

Of these biomarkers, FGF-23 and Klotho have already been discussed [62,63].
Alkaline phosphatase, an enzyme responsible for removing phosphate groups from

nucleotides and proteins, is produced by many tissues, but primarily the liver and bone.
Each produces a specific variant that can be separately identified by laboratory measure-
ments [64]. In the bone, alkaline phosphatase stimulates the mineralization of the collagen
matrix [65]. Bone-specific alkaline phosphatase (BSAP) correlates with bone formation rate.
Elevated levels of BSAP and total alkaline phosphatase are associated with a higher risk
of mortality and fracture in ESKD subjects [66,67]. Together with whole PTH and intact
PTH, it can discriminate bone turnover patterns, identifying subjects with low or normal
turnover [68,69]. Monitoring both PTH and BSAP is recommended for a more accurate
assessment of bone status, rather than evaluating each alone [70].

Procollagen type-1 N-terminal propeptide (P1NP) is a byproduct of collagen type
1 production [71], and, like BSAP, is considered a bone formation marker [59]. It can be
evaluated alongside osteocalcin and TRAP5b (further discussed in this paper) to enhance
the diagnostic accuracy of radiological exams to identify subjects at risk for fracture [51].

Osteocalcin, a hormone produced by osteoblasts, has pleiotropic effects on bones
and glucose and lipid metabolism [72,73]. These effects are strictly intertwined, as bone
reabsorption and formation are energy-demanding processes [73].
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Sclerostin, a protein produced by osteocytes, inhibits the differentiation and activity
of osteoblasts, reducing bone formation [74,75]. Sclerostin serum levels are inversely
correlated with renal function and may be implicated in low-turnover bone disease in the
early CKD stages [76,77]. In CKD progression, the vicious circle of PTH resistance followed
by increasing PTH levels pushes a breakthrough in peripheric tissue resistance and lead to
high-turnover bone disease [78].

Tartrate-resistant acid phosphatase 5b (TRAP5b), an enzyme responsible for bone
matrix catabolism, is secreted by osteoclasts. It serves as a marker of augmented osteo-
clastic activity and is correlated with bone turnover and the development of secondary
hyperparathyroidism [79,80]. TRAP5b is an independent predictor of hip bone mineral
density [51,81] and is associated with a higher risk of fracture, aiding in the identification
of low- and high-turnover bone disease [82].

Of all these serum biomarkers of bone health, only alkaline phosphatase is widely
available and therefore commonly utilized in daily clinical practice.

3.4. Diagnostic Imaging Assessment

Current guidelines recommend monitoring bone health in individuals at risk for
ROD [15]. Although biopsy is the gold standard for assessing bone health, its infrequent
execution has led to the development of various imaging techniques to obtain information
about bone status.

Plain radiographs can identify signs of very severe CKD MBD, such as rugger-jersey
vertebral aspect, tumoral calcinosis, brown tumors, or major vascular calcifications [83]. Lat-
eral thoracic and lumbar radiographs remain the golden standard for diagnosing vertebral
fractures, a crucial aspect of ROD [84].

Dual-energy X-ray absorptiometry (DXA) is perhaps the most widely used diagnostic
tool for bone density (BMD), particularly for patients with stage 3–5 CKD [15]. Current
data show that a decrease in BMD increases the fracture risk [85]. While DXA is widely
available and offers low radiation exposure and relative cost-effectiveness, it has several
important limitations. It provides a bidimensional evaluation of the bone, measuring only
areal BMD without providing information about bone volume or differentiating between
cortical and trabecular bones. Additionally, it cannot determine bone quality parameters
regarding micro-architecture and micro-damage. DXA results can be confounded by vascu-
lar calcification (especially in the abdominal aorta), vertebral fractures and degenerative
arthrosis [86,87]. To address some of these limitations, DXA can be integrated with tra-
becular bone score (TBS), a special software that can evaluate bone architecture in the
lumbar vertebrae by characterizing trabecular bone texture [88]. TBS has proven effective
in improving the correlation between DXA BMD scans and fracture risk compared to bone
biopsy parameters [89,90]. The FRAX prediction model, widely used to assess the risk of
10-year fractures, can be applied to both standard DXA and TBS [91], with better results
when adjusted for TBS [92]. Vertebral fracture assessment (VFA) during DXA scan can
be easily performed, as it is available on most modern machines [93], but lateral X-rays
are still considered the gold standard due to the low quality of images for upper thoracic
vertebrae [94].

Peripheral quantitative computed tomography (pQCT) and its high-resolution derivate
(HRpQCT) are low-radiation and low-cost imaging techniques [95] which are extremely
useful for the evaluation of trabecular and cortical bone volumetric density [13]. pQCT
accurately assesses bone volume and quality, showing a strong correlation with histologic
exams [87,96,97]. HRpQCT provides greater resolution and direct quantification of cortical
geometry and porosity, thickness, and trabecular parameters [98]. However, it is still lim-
ited to research settings [61]. A drawback for both pQCT and HRpQCT is their inability
to evaluate central skeleton bones, and QCT is more expensive and comes with greater
radiation exposure [59].

Magnetic resonance imaging is the only other available technique that can perform a
three-dimensional evaluation of bone geometry and architecture without ionizing radiation.
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Micro-MRI, with its excellent spatial resolution, closely approximates bone histology [99,100].
However, a great limitation is the scarce availability of necessary equipment and the high cost
associated with MRI.

4. Vascular Calcification

Vascular and soft tissue calcification are integral aspects of CKD MBD, intricately
connected to ROD, particularly adynamic bone disease [101,102]. Numerous studies
highlight a high prevalence of VC with increased severity and rapid progression in CKD,
spanning both early stages and ESKD [103–106]. The presence and progression of VC are
crucial prognostic indicators [107,108], suggesting their potential role in guiding therapeutic
interventions [15,109]. While not considered a direct target in CKD [110], VC is closely
correlated to cardiovascular events and cardiovascular and all-cause mortality, posing the
greatest cardiovascular risk in individuals with CKD and evidence of VC [15,111].

4.1. Pathophysiology of Vascular Calcification in CKD MBD

Although CKD MBD is characteristic of this condition, is not solely responsible for vas-
cular calcification. CKD acts as an accelerator of ongoing calcification processes associated
with aging [112]. VC is an intricate, active process, not a mere deposition of calcium and
phosphate. The transformation of vascular smooth muscle cells to a secretory phenotype
plays a key role in initiating and sustaining arterial calcification [113,114].

Calcium and phosphate ions in the bloodstream can form nanocomplexes, typically
removed by regulatory proteins like fetuin-A and Matrix Gla proteins. In CKD, these
proteins can become oversaturated, leading to the formation of primary calciprotein parti-
cles (CPP) and amorphous calcium phosphate accumulation. These primary CPPs further
convert to secondary CPPs characterized by a crystalline form [115]. Secondary CPPs
create a conducive environment for the trans-differentiation of vascular smooth muscle
cells into osteoblast-like cells, changing their phenotype from contractile to secretory. This
transformation promotes arterial wall mineralization by producing matrix vesicles [116].
Moreover, secondary CPPs appear to stimulate inflammation and macrophage apoptosis,
promoting ectopic calcification [117,118]. Conversely, some studies suggested that VC itself
may act as a promoter of inflammation rather than being a consequence [119].

Vascular calcification can be categorized into two related conditions distinguished by
the site of calcium crystal deposition in the arteries: medial calcification (Mönckeberg’s
sclerosis) and intimal calcification. These two different manifestations of VC in CKD MBD
have different characteristics and lead to different clinical manifestations. Medial calcification
occurs in the absence of inflammation or lipid deposition [120,121] and is responsible for
increased arterial stiffness, left ventricular hypertrophy, and subsequent heart failure [122].
In contrast, intimal calcification, pathophysiologically characterized by lipid accumulation,
chronic endothelial damage [123], and inflammatory infiltration [120,124,125], is associated
with ischemic events [126]. Both medial and intimal calcification occur in CKD MBD, with
medial VC being more prevalent [127].

4.2. Serum Markers

Fetuin-A is a regulatory protein with pleiotropic effects capable of scavenging calcium-
phosphate complexes, by binding its N-terminal domain [128,129]. Its role in vascular
calcification is not fully understood, with clinical relevance differing in advanced and early
CKD. Low serum fetuin-A correlates with rapid progression of aortic VC and major clinical
adverse events [130,131]. However, recent data show no increased risk for non-ESKD
subjects, despite confirming a higher risk in patients requiring RRT [132].

Matrix Gla protein (MPG) binds calcium-phosphate through negatively charged glu-
tamate residues. Combined with fetuin-A, it initiates the CPPs (calciprotein particles)
formation [129]. Carboxylation by vitamin K activates MGP, inhibiting VC. Inactivate
MGP, observed in late-stage CKD, is associated with surrogate markers of mortality and
VC [133,134].
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CPPs, as already mentioned, can be distinguished in two sequential forms: primary
CPPs, small complexes of amorphous calcium phosphate, and secondary CPPs, containing
a needle-shaped crystallized complex of calcium phosphate [135]. CPPs’ serum levels
increase CKD progression [136]. A recently developed in vitro assay can identify the
propensity of VC formation and overall calcification by measuring the semi maximal
conversion time (T50, in minutes) from primary to secondary CPPs when given additional
calcium and phosphate [137]. T50 is of great clinical relevance, as it is associated with
higher cardiovascular and all-cause mortality, as well as the progression of coronary artery
calcification [138,139]. T50 also reflects the coexistence of other serum factors that can
promote the calcification process [140].

TRAP5b is not only a bone turnover marker, but can also be prognostic for higher
vascular stiffness when evaluated with BSAP [141]. TRAP5b could serve as a useful
biomarker for both bone health and cardiovascular risk assessment.

Sclerostin is linked to the development of vascular calcification in non-ESKD patients
more than serum phosphate levels [75,142,143]. Elevated sclerostin levels correlate with
cardiovascular events, both fatal and non-fatal [144]. This association underscores the
interplay between altered bone turnover and the development of vascular calcification [145].

Although not directly correlated to vascular calcification, low osteocalcin levels are associ-
ated with increased arterial stiffness and carotid atherosclerosis in CKD patients [146,147].

Vitamin K is a crucial fat-soluble vitamin known for its role in blood clotting and bone
metabolism. In fact, vitamin K2 activates the Matrix Gla protein (MGP), a potent inhibitor
of arterial calcification. CKD patients with higher levels of inactive, undercarboxylated
MGP have a significantly increased risk of vascular calcification [148]. Vitamin K sup-
plementation on vascular calcification progression in CKD patients reported a significant
reduction in the progression of coronary artery calcification in the treated group compared
to the control group [149]. The mechanisms by which vitamin K prevents vascular calci-
fication extend beyond the activation of proteins like MGP and osteocalcin as it acts on
inflammation and oxidative stress [150,151] Figure 1.
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compared to the control group [149]. The mechanisms by which vitamin K prevents vas-

cular calcification extend beyond the activation of proteins like MGP and osteocalcin as it 

acts on inflammation and oxidative stress [150,151] Figure 1. 

 

Figure 1. Schematic representation of the intricate network involving mediators of chronic kidney
disease–mineral bone disorder (CKD–MBD) and vascular calcification. Abbreviations: CKD–MBD,
chronic kidney disease–mineral and bone disorder; MGP, Matrix Gla protein; BMP, bone morpho-
genetic protein; AGE, advanced glycated end-products; AGE-rs, advanced glycated end-products
soluble receptors; OPG, osteoprotegerin; ROS, reactive oxygen species; FGF23, fibroblast growth
factor 23; PTH, parathyroid hormone; Ca, calcium; Pi, inorganic phosphate.
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4.3. Diagnostic Imaging Assessment

Various imaging techniques used in clinical contexts can detect VC, computed tomog-
raphy (CT), vascular and intravascular ultrasound, arteriography, and positron-emitting
tomography [152–154]. However, current techniques cannot differentiate between intimal
and medial artery calcification [155].

Current guidelines recommend a lateral plain X-ray of the abdomen to identify aortic
wall calcification [15]. A semiquantitative analysis using the Kauppila Score (Table 3),
since 1997 and still valid today, provides a reliable and reproducible index of VC severity
and progression [156]. Kauppila score is associated with CKD progression and worsening
cardiovascular parameters such as left ventricular mass, pulse pressure and left atrial
volume [157].

Table 3. Kauppila score: 1 point is assigned for calcification in the anterior or posterior wall of the
aorta, extending for each third of each vertebra. Score ranges from 0 to 24.

Kauppila Score Small (1/3 of Lumbar Length) Moderate (2/3 of Lumbar Length) Large (3/3 of Lumbar Length)

1st lumbar vertebra 1 2 3

2nd lumbar vertebra 1 2 3

3rd lumbar vertebra 1 2 3

4th lumbar vertebra 1 2 3

Total points 0–24

The Adragao score (Table 4), based on X-rays of both hands and hips, is independently
associated with coronary and peripheral vascular disease. It correlates with a higher risk
of cardiovascular hospitalization and fatal and non-fatal cardiovascular events [109,158].
The Adragao score demonstrates a better predictive ability for hard outcomes than the
Kauppila score in several studies, with extended application to non-ESKD patients [126].

Table 4. Adragao score: 0 points for no calcification, 1 point for presence of calcification for each
quadrant of both hands and hips; values range from 0 to 8 points.

Adragao Score Upper Quadrant Lower Quadrant

Right hand 1 1

Left hand 1 1

Right hip 1 1

Left hip 1 1

Total points 0–8

Arterial stiffness, a fundamental determinant of cardiovascular complications and
an independent cardiovascular risk factor [159–161], is associated with an increased
risk of all-cause death [162]. Pulse wave velocity (PWV) is actually the gold standard
for its assessment [163] due to its validation, reproducibility, standardization, and non-
invasiveness. High PWV is also linked to the worsening of CKD and coronary artery
calcification [164,165].

The Agatston Score can quantify the extent and severity of coronary artery calcification
and heart valve calcification using computed tomography (CT). It is calculated based on
the density and area of calcified lesions identified through CT imaging. In CKD patients,
the Agatston Score demonstrated a strong direct correlation with increased mortality and
risk of fatal and non-fatal cardiovascular events, emphasizing the prognostic significance of
cardiovascular calcification in this population [166,167]. This score can also be used to mon-
itor the rapid progression of cardiovascular calcification over time in CKD patients [168].
Despite its utility challenges existing due to factors such as arterial stiffness and arterial media
calcification, the Agatston Score has been shown to underestimate coronary artery calcification
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in hemodialysis patients [169]. The dynamic nature of cardiovascular calcification in CKD
highlights the need for vigilant monitoring using tools such as the Agatston Score.

Peripheral quantitative computed tomography (pQCT) offers valuable information be-
yond bone quantity and quality. It distinguishes muscle and fat areas in three-dimensional
evaluation, providing a quantitative measure of arterial calcifications [170], an advantage
over semi-quantitative Kauppila and Adragao scores that rely on visual assessment. Ad-
ditionally, recent studies suggest an association between bone architecture assessed via
high-resolution pQCT (HRpQCT) and coronary artery calcification [171]. Further research is
required to establish optimal methods for using vascular calcification information provided
by pQCT.

4.4. Therapy of Vascular Calcifications

Despite their many negative effects, there is currently no approved specific therapy
for VC. Their progression can be effectively slowed in the context of the management of
CKD MBD, particularly focusing on the following aims:

• Lowering serum phosphate levels: phosphate binders, preferably non-calcium-based.
• Controlling PTH levels: calcimimetic drugs, vitamin D.
• Normalizing calcium levels: calcium supplementation, vitamin D.

Other experimental therapeutic options include vitamin K, bisphosphonates, and
magnesium, but current evidence, despite being encouraging, does not support their
routine use in a clinical context [172].

5. Conclusions and Future Perspective

Chronic kidney disease is a global health challenge, affecting millions of individu-
als and imposing a substantial burden on healthcare systems. The rising prevalence of
CKD, coupled with its diverse and severe complications, underscores the urgent need for
comprehensive strategies to address this public health issue. The interconnected nature
of CKD with cardiovascular, metabolic, and bone disorders highlights the complexity of
its pathophysiology.

Despite the advancements in technology that allow for long-term survival after end-
stage kidney disease (ESKD), the high costs associated with chronic replacement therapies
pose a significant barrier to access, particularly in less affluent regions. This economic
challenge contributes to the alarming number of premature deaths associated with CKD,
emphasizing the critical importance of finding sustainable and affordable solutions to
ensure access to life-saving therapies globally.

The focus on chronic kidney disease–mineral and bone disorder (CKD MBD) sheds
light on the intricate relationships between mineral metabolism, bone health, and cardio-
vascular outcomes. The alterations in calcium, phosphate, parathyroid hormone, vitamin D,
FGF-23, and Klotho levels in CKD MBD highlight the need for nuanced and personalized
management strategies.

Furthermore, the comprehensive overview of renal osteodystrophy, osteoporosis, and
bone dysregulation in CKD emphasizes the need for accurate diagnostic tools. While bone
biopsy remains the gold standard, challenges such as invasiveness and lack of experienced
pathologists limit its widespread use. Emerging technologies like bone micro-indentation
and various serum biomarkers offer promising alternatives, yet their clinical utility requires
further validation.

Vascular calcification emerges as a critical aspect of CKD MBD, with implications
for cardiovascular morbidity and mortality. The intricate pathophysiology of vascular
calcification, involving factors like fetuin-A, Matrix Gla protein, and calciprotein particles,
underscores the need for a multifaceted approach to mitigate these complications.

Looking forward, a holistic approach to CKD prevention, early detection, and man-
agement is imperative. Investments in healthcare infrastructure, awareness campaigns,
and research are essential components of a global strategy to reduce the prevalence of
CKD, improve access to treatment, and enhance the quality of life for affected individ-
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uals. Additionally, ongoing research into advanced diagnostic techniques and targeted
therapeutic interventions is crucial for refining our understanding of CKD and improving
patient outcomes. The integration of multidisciplinary efforts from healthcare professionals,
policymakers, and researchers will be pivotal in addressing the multifaceted challenges
posed by CKD in the future.
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