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Abstract: This study investigated the potential of machine-learning-based stroke image reconstruction
in capacitively coupled electrical impedance tomography. The quality of brain images reconstructed
using the adversarial neural network (cGAN) was examined. The big data required for supervised
network training were generated using a two-dimensional numerical simulation. The phantom
of an axial cross-section of the head without and with impact lesions was an average of a three-
centimeter-thick layer corresponding to the height of the sensing electrodes. Stroke was modeled
using regions with characteristic electrical parameters for tissues with reduced perfusion. The head
phantom included skin, skull bone, white matter, gray matter, and cerebrospinal fluid. The coupling
capacitance was taken into account in the 16-electrode capacitive sensor model. A dedicated ECTsim
toolkit for Matlab was used to solve the forward problem and simulate measurements. A conditional
generative adversarial network (cGAN) was trained using a numerically generated dataset containing
samples corresponding to healthy patients and patients affected by either hemorrhagic or ischemic
stroke. The validation showed that the quality of images obtained using supervised learning and
cGAN was promising. It is possible to visually distinguish when the image corresponds to the patient
affected by stroke, and changes caused by hemorrhagic stroke are the most visible. The continuation
of work towards image reconstruction for measurements of physical phantoms is justified.

Keywords: capacitively coupled electrical impedance tomography; image recognition; inverse
problem; machine learning; neural networks; cGAN; brain imaging; stroke detection

1. Introduction

Electrical impedance tomography with capacitively coupled electrodes (CCEIT) [1–3]
has greater potential in brain imaging than classic electrical impedance tomography
(EIT) [4–7] due to problems with the impedance of the electrode–skin contact [8,9]. In EIT,
four-electrode measurement limits the influence of electrode impedance on the measure-
ment, but compensation is insufficient if an electrode impedance mismatch occurs [10–12].
In CCEIT, a two-electrode measurement is performed in the form of electrical capacitance
tomography (ECT) [13–15]. The contactless electrodes are insulated from the skin by a
dielectric and do not require gluing to the skin with gel. This is of great importance in
medical practice because it facilitates the performance of tests and increases patient comfort.
However, coupling capacitance may affect the measurement. The coupling capacitance
value must be high to make the contact susceptance significant compared to the measured
conductivity. The changes in the coupling capacitance value during the measurement also
disturb the results, but the monitoring of coupling capacitance during measurement is
theoretically possible [16].

The application of electrical impedance tomography in brain imaging, especially in
stroke detection [17,18], attracts a lot of interest due to its relatively low cost, absence of
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side effects, and the possibility of developing wearable solutions [19]. Poor blood flow to
the brain tissues during a stroke may be caused by a lack of blood flow (ischemic stroke) or
bleeding (hemorrhagic stroke) [20–22]. It has been shown that the conductivity of tissues
in stroke-affected areas is significantly different from that of healthy tissues and differs in
both stroke types [18,23,24]. However, it should be remembered that a significant barrier
in brain impedance measurements is the very low conductivity of the skull bones [25].
According to the guidelines, stroke differentiation should be based on X-ray computed
tomography (CT) or magnetic resonance imaging (MRI) [25]. However, even nowadays,
the availability of such equipment could be limited, especially in underdeveloped regions.
Despite its low spatial resolution, we believe that EIT can find its place in brain imaging
when CT and MRI modalities are unavailable.

The factors limiting the quality of EIT images are a low signal level with high signal
dynamics for adjacent and opposite electrodes, poor sensitivity to changes in electrical
parameters in the center of the examined object, a small number of electrodes, poor spa-
tial sampling, as well as an ill-posed and numerically ill-conditioned nonlinear inverse
problem [4]. Image reconstruction in EIT is severely ill-posed due to the relatively small
number of measurements in comparison to the number of reconstructed pixels. However,
it is possible to find a satisfactory solution using a wide variety of algorithms, from simple
algebraic ones, like linear back projection (LBP), to modern machine-learning-based meth-
ods [26–29]. The application of machine learning (ML) and neural networks for EIT image
reconstruction and classification is widely explored [30–34]. The idea of synthetically gen-
erating training samples and using them to train the neural network has been employed for
30 years [35]. The interest in machine-learning-based approaches arose because algebraic
methods either provide poor-quality reconstruction or require heavy computational power
due to extremely poor numerical conditioning, which impedes inverse problem regulariza-
tion [36,37]. It is possible to use various ML-based algorithms in EIT image reconstruction,
such as artificial neural networks, Random Forests, K-Nearest Neighbors, Elastic Net, Ada
Boost, and Gradient Boosting [38]. In our work, we focused on ANN approaches as they
show very promising results in the reconstruction of medical EIT images, for example, the
fully connected network [39] and hybrid convolutional network [40] for brain EIT or the
conditional generative adversarial network (cGAN) for thoracal EIT [33]. Also, ANN-based
classifiers can support stroke differentiation-related decisions [41,42].

The cGAN approach is widely used in EIT image reconstruction. We have already
successfully confirmed the possibility of using cGAN in thoracal CCEIT [15]. However,
according to our knowledge, there have been no attempts to explore its feasibility for
human brain CCEIT image reconstruction. Inspired by the study for brain EIT focused
on intracerebral hemorrhage imaging [40], we propose a new approach for more precise
brain modeling and apply a cGAN-based algorithm for image reconstruction in human
brain CCEIT.

This paper presents the experimental verification of adversarial network image recon-
struction in the capacitively coupled electrical impedance tomography of brain stroke. The
experiments were conducted numerically using a computer simulation of tomographic
measurements. To conduct the simulation, we developed a numerical phantom of the
human head inspired by the famous Shepp–Logan phantom used in X-ray computed to-
mography simulations [43]. This study aimed to verify whether image reconstruction based
on an artificial neural network (cGAN) allows the reconstruction of acceptable brain images
and the detection of stroke regions from measurements made using the CCEIT technique.

2. Materials and Methods

This work’s primary focus is exploring conditional generative adversarial networks’
potential for human brain CCEIT image reconstruction. As CCEIT is a new emerging technique
that has not yet been introduced into clinical practice, numerical simulation is the only possible
way to acquire training data. In this section, we describe a method for the simulation of
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tomographic measurements and introduce the neural network architecture. Dataset generation
and the network training procedure are described in subsequent sections.

2.1. Numerical Simulation of Tomographic Measurement

When using supervised machine learning, it is necessary to acquire a large dataset
containing samples of input and expected output data. In the brain CCEIT, input data are
capacitance measurements of a human head, and output data are a corresponding spatial
distribution of electrical properties in the brain. Collecting a set of several tens of thousands
of patient studies is unrealistic. No database of such reference data exists. However, it
is possible to generate the required data using numerical simulation. To solve a forward
problem in EIT, we needed to develop a numerical phantom of the human brain. This could
help us define the distribution of expected electrical properties inside the brain. Having the
phantom defined, we could vary the phantom elements’ position and size, generating any
number of samples describing conductivity and electrical permittivity.

To generate expected capacitance measurements by the given distribution of electrical
properties, we used the ECTSim v1.1 toolbox running in the Matlab environment [44].
This toolbox calculates complex capacitance as an output and expects complex electrical
permittivity as an input:

ε = ε′ − j
σ

ω
(1)

where ε′ is permittivity, σ is conductivity, and ω is the angular frequency. The measurements
are calculated using the Gauss law equation:

Cm(i,j) =
1

Vi − Vj, j ̸=i

{

∂Ωj

ε(r)E(r)ds (2)

applying the finite volume method [45]. ε(r) is complex permittivity at position r in the
examined volume, E(r) is the electric field, ∂Ωj is a surface surrounding the measuring
electrode j, ds is a normal vector to a small element of the surface, Vi is a potential at the
i-th electrode and Cm(i,j) is a complex capacitance measured for a pair of electrodes (i, j).

Our experiment numerically simulated the actual CCEIT device used in our laboratory.
The bioimpedance measurement method used by our system is described in detail in [16].
We simulated a two-wire measurement method with pulse excitation. Figure 1a shows
the electronic equivalent circuit of the simulated measurement system. The bioimpedance
of the head Zx is represented as a parallel connection of capacitance Cx and resistance Rx.
The serially connected coupling capacitance Cc results from the dielectric layer insulating
the electrodes. Since, in the measurement, the smaller capacitance dominates in a series of
capacitance connections, the contact capacitance must be large compared to the measured
impedance. This means that, in the case of bioelectrical measurements of a medium with
low resistance, the electrode’s insulation should be as thin as possible and made of a
material with high electrical permittivity. The air gap between the insulation and the
surface of the head should be minimized.

To simulate the bioimpedance measurement of the human head, we modeled a
16-electrode measuring belt with surface electrodes covered with an insulation layer
(Figure 1b). Belt dimensions correspond to the average size of a human head [46]. In
the simulation, we considered the measurement range of our device, the noise level, and
the influence of the coupling capacitance on the deterioration of the measurement quality.
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Figure 1. (a) The CCEIT measurement system with pulse excitation; (b) the measuring belt on the
patient’s head.

2.2. Artificial Neural Networks in CCEIT Image Reconstruction

A forward problem in CCEIT relies on representing capacitance measurements and
the electrical permittivity distribution as vectors of corresponding sizes and then finding a
transformation operator representing dependence between those vectors:

c = f (ε) (3)

Such an operator is nonlinear, but it is possible to use its linear approximation in the
simplified case. In this case, we can represent the forward problem by multiplying the
electric permittivity distribution vector by a sensitivity matrix:

∆c = ∆εS (4)

where ∆ε ∈ RN is a vector representing the electrical permittivity change in each of the N
pixels, ∆c ∈ RM is a vector representing capacitance change due to permittivity change at
M measurements, and S ∈ RMxN is a sensitivity matrix, which is a Jacobian, showing how
the change in electrical permittivity in each pixel influences each capacitance measurement.

Solving the inverse problem implies, in this case, finding an inverse of the matrix S.
However, since matrix S is not a square matrix and, therefore, is not strictly invertible, it is
necessary to use approximate inverse methods as follows: the Moore–Penrose pseudoin-
version or matrix transposition could replace the matrix inverse operator, as in the linear
back projection method. Nevertheless, as a rough linear approximation, this approach only
shows satisfactory results in relatively simple object imaging. In more complex cases, for
example, human body imaging, the nonlinear nature of the operator f (3) becomes essential.

Since artificial neural networks with the unbounded activation function have the
property of being a universal approximator [47], it is possible to use ANN to represent
the nonlinear operator f and use such a network to solve the inverse problem in CCEIT.
There are two main challenges while training the network, as follows: choosing network
architecture and obtaining the training dataset. The minimal neural network for EIT image
reconstruction consists of linear layers since artificial neural networks with the unbounded
activation function have the property of being the universal approximator [47], and it is
possible to use ANN to represent the nonlinear operator f and use such a network to
solve the inverse problem in CCEIT. Two main challenges while training the network are
choosing the network architecture and obtaining the training dataset. The minimal neural
network for EIT image reconstruction consists of linear layers (5) and ReLU (rectified linear
unit) or its generalized version leaky ReLU activation function:

y(x) = xWT + b (5)
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LeakyReLU(x) =
{

αx, x < 0
x, x ≥ 0

(6)

where W—layer learnable weights and b—layer learnable bias. The activation function
adds necessary nonlinearity and allows ANN to approximate nonlinear functions.

More sophisticated networks, such as U-Net-based networks [48], additionally contain
convolution and deconvolution layers. The basic 2D convolution layer is shown in Figure 2.
The deconvolution layer, or transposed convolution layer, is a reciprocal operation to
convolution and is usually implemented using the data gradient operation. Convolution
and deconvolution layers can be of an arbitrary number of dimensions, but the 2D version
is the most useful for image processing and, therefore, for image reconstruction.
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wi—input matrix size; r, s—kernel size; ho, wo—output matrix size; k—number of kernels; and
⊗—convolution operation.

To increase network stability and make training faster, it is possible to add batch
normalization layers [49]:

y(x) =
x − Mean[x]√

Var[x] + ϵ
W + b (7)

where W—layer learnable weights, b—layer learnable bias, Mean[x]—moving average,
Var[x]—moving variance, and ϵ—constant for numerical stability.

In addition to the ANN architecture itself, the training procedure is also essential.
The conditional generative adversarial network (cGAN) approach is very useful in image
reconstruction. It is based on the idea of adding the simple classifier network, named
the discriminator, to the main network, named the generator. After that, it is possible to
train both networks by exposing ground truth images and reconstructed images to the
discriminator and constructing the loss function so that an output value of 1 is expected
when the true image is presented. When the reconstructed image is given, an output value
of 0 is expected from the discriminator. The network trains successfully when the loss
function tends to 0.5, which means that the discriminator cannot distinguish between the
true and reconstructed images produced by the main generator network.

2.3. Neural Network Architecture

Our previous work [15] showed that modified cGAN-based neural network archi-
tecture inspired by the Pix2Pix approach [50] is very promising for electrical tomography
image reconstruction. Previously, this network was trained on the imaginary component
of normalized measurement data obtained by simulating measurements for an empty
sensor and the sensor filled with high-conductivity material. In this work, we trained the
real-valued network using the raw measurements’ real and imaginary components, with
the input matrix size of the algorithm as 2 × 240 and the output matrix size as 64 × 64.

One of the advantages of the chosen network architecture is that the number of weights
of the network layers depends almost exclusively on the output image size. Changing the
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size of the input data vector requires only changes in the number of weights of the very
first linear layer of the generator (Figure 3) and discriminator (Figure 4).
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However, using a 16-electrode sensor instead of a 32-electrode sensor dramatically
shrinks the size of the input vector from 992 to 240. Even using both real and imaginary
components, what makes the size of the input vector 1 × 480 requires network training
procedure tuning. Specifically, the most important step is to prevent discriminator loss from
collapsing to zero because when this happens, the discriminator becomes too strong and can
easily distinguish the reconstructed image from the real one with a near 100% probability.

3. Numerical Phantom

Supervised neural network training requires having a large dataset representing the
dependence between the network input and expected output. In the case of CCEIT image
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reconstruction, the network input is a set of capacitance measurements, and the output
is a corresponding conductivity distribution. As mentioned, the CCEIT technique is still
new and has not yet been introduced into clinical practice compared to EIT. Therefore,
obtaining such a dataset containing human brain CCEIT measurements is only possible
using numerical simulation at the current level of CCEIT development.

It is possible to create a simplified geometrical model representing the human head
and use such a numerical phantom to generate a training dataset of an arbitrary number
of samples. Our study shows the method of creating a training dataset with an arbitrary
number of samples representing a possible human head based on selected real-life MRI
examinations (Figure 5). We can infer brain model geometric constraints using a few
examinations and generate a large dataset containing samples within defined limits.
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3.1. Model of the Human Head

A numerical human head phantom was developed based on the IXI dataset [51],
containing about 600 T1 MRI examinations of healthy subjects. After aligning all dataset
samples and segmenting them into the skull, grey matter, white matter, and cerebrospinal
fluid (CSF), the three-centimeter-thickness cross-section volume was cut from segmented
3D images (Figure 6). Then, corresponding conductivity and electrical permittivity values,
according to Table 1, were assigned to voxels belonging to particular tissues. The mean
value was calculated throughout cross-sections to obtain the mean value image of the
volume. In the numerical model, we assumed the dielectric properties for a frequency
of 64 MHz, which allowed the comparison of the results with 1.5 T electrical properties
tomography [52]. Recently proposed electrical properties tomography (EPT) is based on
magnetic resonance image processing and allows the precise reconstruction of electrical
properties distribution in the brain. Several EPT brain studies showed visible changes in
brain electrical properties in the regions affected by stroke [53,54].
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Table 1. Dielectric properties of brain tissues at 64 MHz. Permittivity and conductivity values are
taken form [55].

Tissue εr σ
[

mS
m

]
White matter 67.8 292
Grey matter 97.4 511

Bones 16.7 59.5
Cerebrospinal fluid 97.3 2070

Other (fat) 13.6 66.2
Skin 92.2 436

Four regions were defined for the modeling as follows: the skull and skin together,
two brain hemispheres, and CSF. The regions were modeled using ellipses and positioned
according to the mean value images of electrical properties, as shown in Figure 7. Inter-
individual variability was considered by measuring the position and size of the ellipses
throughout the 50 selected images from the dataset and then determining the possible
range of values. Mean conductivity and electrical permittivity values for the regions were
calculated for each of the 50 samples. Subsequently, after removing outliers by filtering out
values with more than triple the standard deviation, the mean and standard deviation were
calculated for each region (Table 2) for training the dataset generation. The distribution of
the values throughout all 50 samples is shown in Figure 8.
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Table 2. Calculated dielectric properties of model regions at 64 MHz.

Region
εr σ

[
mS
m

]
Mean Std Mean Std

Skull and skin 14.79 1.77 102 29
Brain 46.46 3.44 378 59

Cerebrospinal fluid 61.26 4.40 788 207
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ing 77 mm and 105 mm, which gave the required circumference. The fixed-size ellipse was 
positioned at point (0,0) and was collinear to the image’s vertical and horizontal axes. Two 
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Electrical parameters in regions corresponding to the skin and skull bone were assigned 
according to Table 1. Each brain hemisphere was modeled by two ellipses with variable 
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Figure 8. Conductivity and permittivity distribution throughout 50 selected samples in regions of
interest such as the skull, brain hemispheres, and cerebrospinal fluid (CSF): (a) distribution of the
conductivity in the skull region; (b) distribution of the conductivity in the brain region; (c) distribution
of the conductivity in the CSF region; (d) distribution of the electrical permittivity in the skull region;
(e) distribution of the electrical permittivity in the brain region; and (f) distribution of the electrical
permittivity in the CSF region.

We defined the elements of the 2D numerical model of the human head axial cross-
section using geometrical primitives such as ellipses with variable positions, sizes, and
tilt. The 2D model is the result of averaging MRI cross-sections in the three-centimeter
range corresponding to the height of the measurement electrodes in the CCEIT sensor.
When developing our measuring belt model, we assumed a head circumference of 575 mm,
which corresponds to the size of an average man’s head [46]. In numerical simulations,
the constant head geometry was represented by the ellipses with semiaxes measuring
77 mm and 105 mm, which gave the required circumference. The fixed-size ellipse was
positioned at point (0,0) and was collinear to the image’s vertical and horizontal axes.
Two inner ellipses defined by tissue thickness were added to represent the skin and skull
bone. Electrical parameters in regions corresponding to the skin and skull bone were
assigned according to Table 1. Each brain hemisphere was modeled by two ellipses with
variable center positions, axes sizes, and tilt (Figure 9a,b). Both hemispheres were limited
by the additional ellipse (‘Inner’ object in Table 3), preventing the intersection of the brain
region with the elements representing the skin and skull. The brain was divided into two
hemispheres by the vertical line shifted in the X direction at −3.0 ± 6.0 mm and in the Y
direction at −8.5 ± 10.5 mm and tilted relative to the Y axis at 1.0 ± 10.0 deg. Cerebrospinal
fluid was modeled by a composition of the five ellipses (Figure 9c), where the central larger
one had variable position, size, and tilt. The angular position was chosen for each of the
other four ellipses of varying size and tilt. Then, the ellipse’s center was positioned at the
variable distance on the outward-pointing normal vector to the first ellipse at the point
corresponding to the chosen angular position. A complete list of the model elements and
their parameters is shown in Table 3.
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Figure 9. Geometry elements of the numerical phantom of the head: (a) the left hemisphere is
the intersection of the ‘Inner’ object with the union of ‘LUp’ and ‘LDown’ objects, (b) the right
hemisphere is the intersection of the ‘Inner’ object with the union of ‘Rup’ and ‘RDown’ objects, and
(c) cerebrospinal fluid is the union of ‘CenterCSF’, ‘CSF1–CSF4’ objects.

Table 3. Geometric constraints for elements of the brain numerical phantom.

Element Object Relative
to Object

Center Position [mm] Size [mm] Tilt
[deg]x y x y

Skull Head 2.0 ± 3.0 14.0 ± 8.0 91.0 ± 20.0 99.0 ± 12.0 −2.5 ± 8.5

Brain

Inner Head −0.5 ± 2.5 −1.5 ± 4.5 −14.0 ± 5.0 −14.0 ± 5.0 2.0 ± 10.0
LDown Inner −25.5 ± 9.5 −21.5 ± 9.5 −23.5 ± −14.5 −50.0 ± 12.0 −72.5 ± 12.5

LUp Inner −24.5 ± 7.5 24.0 ± 10.0 −30.5 ± 7.5 −32.0 ± 9.0 −20.0 ± 22.0
LUp LDown 0.0 ± 8.0 49.0 ± 13.0 −4.5 ± 37.5 21.0 ± 12.0 48.5 ± 17.5

RDown Inner 25.5 ± 6.5 −20.0 ± 11.0 −25.5 ± −17.5 −54.5 ± 11.5 72.5 ± 11.5
RDown LDown 47.0 ± 6.0 0.0 ± 3.0 1.0 ± 5.0 0.5 ± 5.5 151.5 ± 13.5

RUp Inner 27.0 ± 7.0 26.0 ± 13.0 −32.0 ± 9.0 −33.5 ± 7.5 29.0 ± 15.0
RUp RDown 3.0 ± 9.0 48.0 ± 16.0 −31.5 ± 14.5 22.0 ± 8.0 −46.0 ± 17.0
RUp LDown 52.5 ± 12.5 0.0 ± 3.0 0.0 ± 11.0 −3.0 ± 8.0 55.0 ± 23.0

CSF

Center CSF Inner 0.5 ± 2.5 −2.5 ± 13.5 −54.5 ± 8.5 −53.0 ± 15.0 2.0 ± 9.0

Axis angle
[deg]

Shift
[mm]

Size [mm] Tilt
[deg]x y

CSF1 149.5 ± 10.5 8.5 ± 1.5 17.5 ± 2.5 9.0 ± 1.0 −27.0 ± 6.0
CSF2 25.0 ± 23.0 8.5 ± 1.5 18.0 ± 2.0 9.0 ± 1.0 22.0 ± 5.0
CSF3 −51.0 ± 11.0 1.5 ± 4.5 13.0 ± 5.0 5.5 ± 2.5 5.5 ± 5.5
CSF4 −130.5 ± 13.5 1.5 ± 4.5 16.0 ± 5.0 5.0 ± 2.0 −6.0 ± 6.0

Two approaches were used to generate dataset samples to increase variability from
one side and better represent reality from the other. Both approaches are based on manually
fitting the model to 3 cm thick MRI slices. The first approach relies on finding constraints
on elements’ size and position based on manually marked models. A complete list of the
geometric constraints used in the model is shown in Table 3. Additionally, it was necessary
to apply more constraints to prevent the separation of the model elements representing the
same tissue.

The ellipse’s circumference and axes ratio were limited, as shown in Table 4. The
brain area was limited to 23.0 ± 6.0% of the total image area, the CSF area was limited
to 23.0 ± 6.0%, and the area of the rest of the head was limited to 13.5 ± 5.5%. The ratio
between the left and right hemispheres area was constrained to 98.5 ± 7.5%.

The second approach relies on randomly selecting one of the models and modifying all
model parameters, adding random numbers from the normal distribution with a relatively
small standard deviation.
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Table 4. Circumference and axes ratio constraints for elements of the brain numerical phantom.

Element Object Circumference [mm] Axes Ratio

Skull Head 570.0 ± 70.0 1.2 ± 0.2

Brain

Inner 487.5 ± 53.5 1.3 ± 0.2
LDown 0.7 ± 0.1 * 0.6 ± 0.1

LUp 1.3 ± 0.1 ** 1.8 ± 0.5
RDown 0.6 ± 0.1 * 0.5 ± 0.1

RUp 1.3 ± 0.1 *** 1.6 ± 0.5

CSF

CenterCSF 0.3 ± 0.1 * 4.4 ± 2.9
CSF1 93.5 ± 24.5 0.3 ± 0.2
CSF2 94.0 ± 22.0 0.4 ± 0.2
CSF3 57.0 ± 21.0 0.5 ± 0.3
CSF4 70.0 ± 23.0 0.3 ± 0.3

*—relative to the inner object circumference, **—the sum of LDown and LUp circumferences relative to the inner
object circumference, ***—the sum of RDown and Rup circumferences relative to the inner object circumference.

Conductivity and permittivity values are selected randomly according to Gaussian
distribution, with the mean and standard deviation shown in Table 2. An additional
condition is applied, ensuring that values for the CSF region are greater than the brain
region and that values for the brain region are greater than for the skin and skull region.

3.2. Training Dataset with Diseases

Stroke was modeled using a circular region with altered electrical properties added
to the left or right brain hemisphere. In the case of hemorrhagic stroke, conductivity and
permittivity values were equal to 1230

[
mS
m

]
and 76, correspondingly [55]. The conductivity

value corresponded to the conductivity of blood. While modeling ischemic stroke, the
permittivity value was assumed to be the same as the surrounding brain tissue, and
conductivity was randomly selected as 65 ± 5% of the conductivity of the surrounding
brain tissue. We expected that, with such parameters, it would be much more challenging
to detect ischemic than hemorrhagic stroke.

The position of the stroke region was selected randomly using the following procedure.
Six lines were defined to model stroke-affected cases, representing the main brain arteries
according to known supply areas of the cerebral arteries [56]. Lines starting from the point
in the middle of the main axis’s upper part were tilted at the following angles: 12, 80,
135, −12, −80, −135 degrees relative to the vertical axis. Ischemic stroke was modeled by
selecting one of the arteries and drawing a circular region on the line representing this
artery but with the center outside the brain. The intersection of this region and the cerebral
hemisphere was treated as the stroke region. Hemorrhagic stroke was modeled by selecting
a point on the line representing the blood vessel inside the region representing the brain.
The selected point was considered to be the center of the circle representing the stroke. The
stroke size was selected randomly from 15 mm up to the whole distance between the CSF
region and the edge of the brain region. The CSF region was subtracted from the stroke
region, and the result was intersected with a corresponding hemisphere region to ensure it
was located exclusively inside the brain region (Figure 10).

When generating dataset samples, we simulated 100,000 cases using the constraint-
based model and 100,000 cases using the second approach based on introducing random
disturbances into models based on actual samples. The patient condition was chosen
randomly, resulting in 66,758 samples representing healthy individuals and 66,468 and
66,774 samples representing patients affected by hemorrhagic and ischemic stroke, respec-
tively. To assess the reconstruction quality more reliably, we also generated a validation
dataset of 50,000 simulated samples using the abovementioned approaches.
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4. Network Training

After training and validating the dataset generation, we conducted neural network
training according to the procedure shown in Figure 11. During training, the training
part of the dataset was randomly divided into training and testing parts in the ratio of
75:25. The testing part of the dataset was used to control training and fine-tune network
metaparameters, such as the discriminator and generator learning rates.
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One of the Pix2Pix approach’s techniques is setting up different starting learning rates
separately for the generator and discriminator. When the generator and discriminator’s
starting learning rates were set to 10−3 and 10−8 correspondingly, the network became
satisfactory and stable in cases where noise was added to the training data and when it
was not (Figure 12).
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Figure 12. Discriminator loss function on 100 epochs for generator and discriminator starting learning
rates set to 10−3 and 10−8, respectively, shown for the training on data without (blue) and with
(green) noise.

Gaussian noise was added to the input data, providing a peak signal-to-noise ratio of
30 dB to increase the network’s robustness [57]. After tuning the learning rates described
above, the network was trained for 100 epochs using a single NVIDIA Tesla P100 GPU
(Nvidia Corporation, Santa Clara, CA, USA). The training time was about 5.5 h. During
training, the mean relative standard error (8) was calculated on the testing part of the
training dataset (Figure 13).

IE =
∥ŷ − y∥
∥y∥ (8)
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To evaluate the network training quality, we adopted several simple pixel-to-pixel
metrics such as the L2 norm (root mean square error, RMSE), the 2D correlation coefficient,
peak signal-noise ratio (PSNR), and structural similarity index (SSIM) [58,59] defined
as follows:

RMSE(ŷ, y) =

√√√√ 1
N

N

∑
i=1

|yi − ŷi|2 (9)

CC(ŷ, y) =
∑N

i=1
(
ŷi − ŷ

)
(yi − y)√

∑N
i=1

(
ŷi − ŷ

)2
∑N

i=1(yi − y)2
(10)

PSNR(ŷ, y) = 10log10 N
maxŷ

∑N
i=1|yi − ŷi|2

(11)

SSIM(ŷ, y) =

(
2µyµŷ + c1

)(
2σyŷ + c2

)(
µy + µŷ + c1

)(
σ2

y + σ2
ŷ + c2

) (12)

where
N—the number of pixels,
yi—the expected conductivity value at pixel i,
ŷi—the reconstructed conductivity value at pixel i,
µy—the mean value of vector y,
µŷ—the mean value of vector ŷ,
σ2

y —the variance of vector y,
σ2

ŷ —the variance of vector ŷ,
σyŷ—the covariance of vectors y and ŷ,
c1 and c2—stabilization variables to prevent division by zero on weak denominators.
After training, we calculated an average of adopted metrics throughout the validation

dataset to estimate reconstruction quality. We calculated a metric dispersion alongside a
mean value because averaging did not consider outlying cases.

5. Results

As a result, an ANN-based model was trained, and reconstruction quality was assessed
using the pixel-to-pixel metrics mentioned above, such as RMSE, PSNT, SSIM, and the
2D correlation coefficient. These metrics were calculated for each pair of the ground
truth and reconstructed normalized images for different levels of noise applied to the
simulated measurements (Table 5). The reconstruction examples for a healthy brain and
brain affected by a hemorrhagic and ischemic stroke for the various noise levels are shown
in Figures 14–16. Additionally, histograms of image quality metrics distribution were
created to reflect the reconstruction quality (Figure 14).

Table 5. Image quality metrics for normalized images calculated on a verification set depending
on SNR.

Measure
SNR 60 dB SNR 30 dB SNR 10 dB

Mean Std Mean Std Mean Std

RMSE 0.09 0.04 0.09 0.04 0.12 0.05
PSNR 21.58 3.39 21.53 3.39 19.08 3.08
SSIM 0.81 0.08 0.81 0.08 0.71 0.12

2D correlation 0.95 0.03 0.95 0.03 0.92 0.04
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It is easy to note that image reconstruction for cases involving hemorrhagic stroke is
much easier than for cases involving ischemic stroke. This was expected since ischemic
stroke implies only subtle changes in the conductivity. However, in many samples from
the test dataset, such changes are visible in the reconstructed images. Also, it is essential to
emphasize that when the signal-to-noise level decreases, it becomes harder to reconstruct
the image. But, having in mind that achievable SNR during actual measurements is about
30 dB, we can state that reconstruction quality at that noise level remains at a satisfactory
level and, according to the metric distributions shown in Figure 17, it is not very different
from the almost perfect signal (with an SNR of 60 dB)-based reconstruction quality.
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6. Discussion

Electrical impedance tomography has already been introduced into clinical practice,
and various image reconstruction methods have been developed. Such methods include
LBP, Tikhonov regularization, Moore–Pensore pseudoinverse, the Levenberg–Marquardt
iterative algorithm, and more sophisticated ones such as Calderon’s and the D-Bar methods.
The main limitations of these methods are either poor reconstruction quality or the high
computational power required to achieve satisfactory results. In the last decade, the
evolution of rapid machine learning has contributed to the development of various artificial
neural network-based approaches for EIT image reconstruction. They advanced from
simple multilayer fully connected networks such as EIT-4LDNN [59] to complex hybrid
convolutional networks [40]. The cGAN scheme, in the last few years, has become a widely
adopted approach for training convolutional networks for EIT image reconstruction.

However, the new emerging capacitively coupled EIT technique, which is potentially
more patient-friendly due to the lack of direct electrode–skin contact, requires deeper study
before its introduction into clinical practice. We combined the most promising approaches,
such as the cGAN procedure for ANN training and the U-Net-based generator network for
simulating human brain CCEIT image reconstruction. We additionally modified the train-
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ing procedure using the Pix2Pix approach initially developed to generate high-resolution
images. To effectively train ANN, collecting a large dataset of conductivity distribution and
corresponding capacitance measurements is necessary. However, it is impossible to collect
real data measurements because it would require collecting thousands of examinations
using techniques not yet adopted into clinical practice. Therefore, developing a numerical
phantom that allows a synthetically generated large training dataset is necessary.

Our work focused on developing the human head numerical phantom for the CCEIT
simulation. We proposed a method for determining phantom parameters using MRI head
tomographic slices. Using the CCIET measurement numerical simulation, we prepared the
training dataset with random samples, which allowed us to conduct convolutional neural
network-supervised training that reconstructed synthetic cross-sectional brain images.

Applying the Pix2Pix approach to cGAN training allowed us to reconstruct 64 × 64
conductivity images from 16 electrode capacitance measurements comparable with EIT
studies. However, our method has great potential in increasing output image resolution as
it requires adding the additional convolutional block to the underlying U-Net generator.

Despite visible artifacts, the overall quality of the reconstruction appeared to be
satisfactory enough to distinguish images representing the stroke-affected brain, especially
in the case of hemorrhagic stroke. Even if the ability of the technique to discover ischemic
stroke is limited, it is possible to use it not only to find the stroke but also to differentiate
the stroke type. This might be crucial for further treatment-related decisions.

Comparing the quality measures obtained on the brain image dataset with the results
obtained on the thorax dataset [15], it is essential to notice that brain reconstruction appears
to be a more complicated task for the neural network. This was expected since the brain
is surrounded by a skull with a much lower conductivity and electrical permittivity. Our
numerical simulation proves that it strongly affects the network’s reconstruction ability.

In our study, we used synthetic data to prove the feasibility of CCEIT for human
brain imaging. The obtained results allow us to conclude that it is possible to use the
presented approach to generate synthetic datasets and successfully train ANN for image
reconstruction using such datasets. However, the obtained results should be further verified
by reconstructing images from real measurements of physical phantoms before it could
advance toward the adoption of this technique into clinical practice. In our future research,
we plan to enhance our model with a classifier convolutional network to evaluate the
possibility of detecting specific lesions using reconstructed images.

However, we are continuing our research on possible network architecture enhance-
ments to mitigate measurement disruptions introduced by the skull. Among such enhance-
ments, we consider fine-tuning training parameters such as learning rates and their ad-
justments during the training procedure. Another option could be switching to a complex-
domain-based network because it deals with electrical properties represented by complex
numbers. We have shown how using the real and imaginary parts of measurements as two
real numbers is a working approach. Still, we suspect that processing both components as
a complex number can improve the reconstruction algorithm’s robustness.

7. Conclusions

Based on numerical simulation, we can conclude that CCEIT measurements combined
with neural network image reconstruction have the potential for conductivity spatial
distribution imaging in the human head. The differences in dielectric properties reflected
in the proposed test object correspond to the changes observed in the brains of stroke-
affected patients. Due to conductivity differences occurring in different types of strokes
(hemorrhagic and ischemic), it may be possible to distinguish between them based on
CCEIT measurement results. The image reconstructions we achieved allowed us to deduce
that this method enables the effective imaging of such minor changes. In our opinion, it
makes sense to explore the potential of CCEIT as a new diagnostic device.
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