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Abstract: Background: Mitochondrial dysfunction, which is triggered by systemic ischemia–reperfusion
(IR) injury and affects various organs, is a key factor in the development of post-cardiac arrest syn-
drome (PCAS). Current research on PCAS primarily addresses generalized mitochondrial responses,
resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. This review focuses
on the organ-specific mitochondrial responses to IR injury, particularly examining the brain, heart,
and kidneys, to highlight potential therapeutic strategies targeting mitochondrial dysfunction to
enhance outcomes post-IR injury. Methods and Results: We conducted a narrative review examin-
ing recent advancements in mitochondrial research related to IR injury. Mitochondrial responses
to IR injury exhibit considerable variation across different organ systems, influenced by unique
mitochondrial structures, bioenergetics, and antioxidative capacities. Each organ demonstrates dis-
tinct mitochondrial behaviors that have evolved to fulfill specific metabolic and functional needs.
For example, cerebral mitochondria display dynamic responses that can be both protective and
detrimental to neuronal activity and function during ischemic events. Cardiac mitochondria show
vulnerability to IR-induced oxidative stress, while renal mitochondria exhibit a unique pattern of
fission and fusion, closely linked to their susceptibility to acute kidney injury. This organ-specific het-
erogeneity in mitochondrial responses requires the development of tailored interventions. Progress
in mitochondrial medicine, especially in the realms of genomics and metabolomics, is paving the
way for innovative strategies to combat mitochondrial dysfunction. Emerging techniques such as
mitochondrial transplantation hold the potential to revolutionize the management of IR injury in
resuscitation science. Conclusions: The investigation into organ-specific mitochondrial responses to
IR injury is pivotal in the realm of resuscitation research, particularly within the context of PCAS.
This nuanced understanding holds the promise of revolutionizing PCAS management, addressing
the unique mitochondrial dysfunctions observed in critical organs affected by IR injury.

Keywords: mitochondria; ischemia; reperfusion injury; cardiac arrest; ischemic stroke; cardiac injury;
acute kidney injury

1. Introduction

Post-cardiac arrest syndrome (PCAS) involves a complex constellation of pathophys-
iological processes triggered by the restoration of systemic circulation after successful
cardiopulmonary resuscitation (CPR). Characterized by cerebral injury, myocardial dys-
function, systemic ischemia–reperfusion (IR) response, and underlying pathologies, this
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syndrome contributes significantly to morbidity and mortality in survivors of cardiac
arrest [1,2]. At its core, mitochondrial dysfunction plays a pivotal role, being both affected
by and contributing to IR injury during PCAS [3–8]. In this context, targeting organ-specific
mitochondrial dysfunction represents a novel therapeutic approach but remains minimally
explored. For instance, the brain and heart, being highly aerobic organs, might demon-
strate distinct mitochondrial adaptive or maladaptive changes post-resuscitation, which
could influence the overall outcome of PCAS. Therefore, investigating these organ-specific
mitochondrial alterations can also facilitate the development of targeted interventions
aimed at mitigating mitochondrial dysfunction and enhancing patient recovery from PCAS.
This nuanced approach necessitates a paradigm shift in current research methodologies,
advocating for a more granular exploration of mitochondrial function across different
organs to further elucidate the pathophysiology of PCAS and unlock new avenues for
patient-specific therapeutic strategies.

IR injury occurs in scenarios such as cardiac arrest, myocardial infarctions, cerebrovas-
cular events, and organ transplantation [9–14]. IR injury involves a cascade of biochemical
and cellular events leading to significant tissue damage, contributing to morbidity and
mortality [13,15–17]. While the exact mechanisms of IR injury are not fully understood,
mitochondrial dysfunction is believed to play a significant role [18–22].

Current research on PCAS primarily addresses generalized mitochondrial responses,
resulting in a knowledge gap regarding organ-specific mitochondrial dynamics. Mitochon-
drial responses to IR vary across organ systems, influenced by differences in mitochondrial
structure, bioenergetics, antioxidative capacities, and ROS-mediated damage susceptibili-
ties. Thus, understanding organ-specific responses will allow researchers to understand
the pathophysiology of IR injury and develop targeted therapeutics in the context of PCAS.
This review summarizes the current understanding of mitochondrial roles in IR injuries
across brain, heart, and kidney tissue. We also explore potential therapeutic strategies
targeting mitochondrial dysfunction to enhance outcomes in post-IR.

2. The Pivotal Role of Mitochondria in Cellular Bioenergetics and Homeostasis

Mitochondria are dynamic, multifaceted organelles that play a pivotal role in cellular
bioenergetics, metabolism, and signaling [23–28]. Their complex dual-membrane archi-
tecture is intricately designed to facilitate their diverse functions, and their physiology
is tightly regulated to maintain cellular homeostasis. The outer membrane, acting as a
protective barrier, is equipped with porins that facilitate the passage of ions and small
molecules [29,30]. The inner mitochondrial membrane (IMM) is highly convoluted, con-
taining cristae that increase the surface area, thereby enabling a wide range of biochemical
processes. These cristae house the electron transport chain (ETC), a sophisticated assembly
of proteins responsible for energy conversion [30–32]. The intermembrane space and the
mitochondrial matrix each have their unique environments, adding to the organelle’s
multifaceted functions. The IMM is particularly crucial for apoptosis, as it is involved in
the release of caspase activators such as cytochrome c and changes in electron transport.
Moreover, the IMM plays a role in the production of reactive oxygen species (ROS), which
are implicated in various pathologies, such as cardiovascular, neurodegenerative, and
inflammatory diseases [33–35].

Most importantly, mitochondria convert nutrients into adenosine triphosphate (ATP).
This process involves a series of redox reactions in the ETC, where electrons are transferred
across protein complexes, generating an electrochemical gradient known as the mitochon-
drial membrane potential (MMP). This potential is the driving force behind ATP synthesis
through oxidative phosphorylation, a process vital for maintaining cellular homeosta-
sis [29–31]. Beyond ATP production, mitochondria function as metabolic hubs, involved in
fatty acid oxidation, the tricarboxylic acid cycle, and the urea cycle. Their roles extend to
regulating calcium homeostasis, ROS modulation, and apoptosis, positioning them as key
determinants of cell death [36–39].
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Mitochondria do not serve an isolated function but rather are part of a synergistic
interaction that influences various cellular processes. For instance, mitochondria work in
synergy with organelles such as the endoplasmic reticulum and extracellular matrix to
control the dynamic balance of the cell calcium concentration, critical for the physiological
processes from muscle contraction to neurotransmitter release. They buffer intracellu-
lar calcium levels, thereby modulating a range of physiological processes from muscle
contraction to neurotransmitter release [40–42]. Furthermore, mitochondria are dynamic
organelles, constantly undergoing fusion and fission, processes that are not merely struc-
tural adjustments but are intrinsically tied to their function. Fusion allows for the mixing
of mitochondrial contents, facilitating complementation and thus enhancing respiratory
function. Conversely, fission enables the replication of mitochondria, as well as the iso-
lation and removal of damaged mitochondrial components, serving as a quality control
mechanism [43–48].

However, the high-energy demands of mitochondria make them susceptible to oxida-
tive stress, particularly in metabolically active tissues. The very processes that generate
ATP also produce ROS as by-products, creating a precarious balance between energy pro-
duction and oxidative damage. When this balance is disrupted, mitochondria can activate
apoptotic pathways, triggering cell death. Yet, they also possess an innate resilience, with
mechanisms like mitochondrial biogenesis and mitophagy serving as reparative strategies
to restore function [49–52].

3. Organ-Specific Metabolism during Ischemia and Reperfusion

The vulnerability of specific tissues to IR injury is intricately linked to their inherent
metabolic needs and mitochondrial resilience, leading to variable responses among vital
organs, each with distinct physiological roles and metabolic requirements. We aim to
underscore the critical need to identify these variations to develop precise interventions
aimed at counteracting the adverse effects of IR injury by navigating the complex interre-
lation between metabolic anomalies and mitochondrial changes. Here, we review recent
knowledge in understanding the organ-specific metabolic and mitochondrial alterations
during IR injury.

3.1. Brain Metabolism and IR Injury

The cerebral metabolism under normoxic conditions predominantly harnesses glu-
cose through aerobic pathways, ensuring efficient energy production for the brain’s high
metabolic demands [53,54]. Ischemic events compel the brain to shift towards anaerobic
glycolysis as an alternative energy source. This metabolic adaptation, while temporarily
sustaining ATP production, results in the accumulation of lactate and a consequential
reduction in intracellular pH [54,55]. This shift to anaerobic metabolism, though adaptive,
sets the stage for significant cellular distress upon reperfusion [53,54]. The reintroduction
of oxygen post-ischemia, rather than being wholly restorative, paradoxically exacerbates
tissue damage through a phenomenon known as reperfusion injury. This is marked by an
excessive generation of ROS, overwhelming the cellular antioxidant defenses and leading
to oxidative stress, a key mediator of cellular injury and death [22]. The oxidative stress not
only damages cellular proteins, lipids, and DNA but also further impairs mitochondrial
function, creating a vicious cycle of mitochondrial damage and ROS production.

3.2. Heart Metabolism and IR Injury

The metabolic adaptability of the heart, characterized by its capacity to metabolize a
range of substrates such as fatty acids, glucose, and lactate, is foundational to its robust
functionality. This flexibility facilitates the heart’s ability to maintain ATP production under
varying physiological conditions [56]. During ischemic events, however, this metabolic
versatility is compromised due to restricted oxygen availability, leading to a decreased
efficiency in ATP synthesis as the myocardium shifts from the predominant fatty acid
oxidation to glycolysis, a less efficient energy production pathway in the context of oxygen
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scarcity. Reperfusion introduces additional challenges, notably mitochondrial calcium over-
load [57,58]. This influx of calcium into the mitochondria during reoxygenation exacerbates
metabolic disarray and precipitates the opening of the mitochondrial permeability tran-
sition pore (mPTP), a critical event that disrupts mitochondrial integrity and contributes
to cell death through necrosis and apoptosis [59]. This sequence of events underscores
the complexity of mitochondrial dysfunction during IR injury, highlighting not just shifts
in substrate preference but also the detrimental impact of impaired ETC activity, further
compromising ATP generation and contributing to the energetic deficit within cardiac
cells [60].

3.3. Kidney Metabolism and IR Injury

The kidneys demonstrate metabolic adaptability, with the cortical cells predominantly
engaging in fatty acid oxidation, while the medullary cells rely more heavily on glycolysis
for their energy needs. This metabolic specialization between the cortex and medulla
not only reflects their different physiological roles but also suggests that they may have
varying levels of vulnerability to IR injury [61]. The cortex, endowed with a high density
of mitochondria, predominantly utilizes fatty acid oxidation, a process heavily reliant on
oxygen, to efficiently produce ATP, supporting energy-intensive tasks such as filtration and
active reabsorption. In contrast, the medulla, situated farther from the oxygen-rich blood
supply and operating within the constraints of a hypoxic environment, primarily depends
on glycolysis for energy [62]. This adaptation ensures functionality despite lower oxygen
availability, albeit at the cost of reduced ATP yield per glucose molecule compared to
oxidative phosphorylation. IR injury disrupts this delicate metabolic equilibrium, leading
to significant alterations in energy dynamics [63].

4. Organ-Specific Mitochondrial Responses to Ischemia–Reperfusion Injury
4.1. Brain Mitochondrial Response and Vulnerability in IR Injury

Mitochondria play a crucial role in meeting the high energy demands of neurons [64].
The distribution and morphology of mitochondria vary significantly between axonal and
dendritic compartments in neurons, reflecting their distinct functions and responses to
neuronal activity [65]. Axonal mitochondria travel long distances along microtubules
via forward molecular motors of the kinesin family and reverse molecular motors of the
dynein family. Axonal mitochondria are smaller and more dynamic [66], while dendritic
mitochondria are elongated and more stationary [67,68]. This differential regulation is key
to maintaining neuronal integrity and function [66,69]. Neurons, especially in the human
brain, require substantial amounts of ATP for various functions, including maintaining
membrane potential and synaptic activity. While glycolysis was once thought to be the
primary source of ATP in neurons [70], it is now understood that oxidative phosphory-
lation (OXPHOS) is the major energy source during neuronal activity [66,71]. Synaptic
activity influences mitochondrial behavior and localization, with increased activity leading
to changes in mitochondrial movement and positioning in both dendritic and axonal re-
gions [67,71,72]. In the axon, increased neuronal activity results in a greater concentration
of mitochondria at synaptic junctions and a reduction in their overall length [67,73]. On the
other hand, previous studies showed that diminished synaptic activity is associated with a
decrease in both the presence of mitochondria at presynaptic sites and the mobility of these
mitochondria [67,73]. These adaptations are essential for fulfilling the substantial energy
requirements of neuronal processes.

The brain’s mitochondrial landscape is unique, particularly in the context of IR in-
jury [74–77]. Neuronal mitochondria, highly concentrated in neurites to fuel costly axonal
transport, adopt an elongated and interconnected morphology, facilitating efficient energy
distribution across extensive neuronal networks [78,79]. However, this specialization ren-
ders brain mitochondria susceptible to oxidative stress, a vulnerability exacerbated during
IR injury [80]. The brain’s high oxygen consumption for ATP production via OXPHOS
leads to an increased generation of ROS, which can overwhelm antioxidant defenses and
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induce oxidative stress. This stress, coupled with the susceptibility of the brain’s abundant
polyunsaturated fatty acids to peroxidation, can damage mitochondrial membranes, af-
fecting their structure and function. Consequently, these alterations can impair the ETC,
reduce mitochondrial membrane potential, and decrease ATP synthesis, compromising
neuronal function and health [81–84].

In addition to these structural and functional vulnerabilities, cerebral mitochondria
are also influenced by specific regulatory mechanisms that affect their response to ischemic
stress. Cerebral mitochondria are particularly susceptible to mitochondrial permeability
transition (MPT), a process where the mPTP opens, allowing the passage of low molecular
weight solutes across the typically impermeable inner mitochondrial membrane (IMM).
This event can precipitate cell death by disrupting mitochondrial function. This is ex-
acerbated by high levels of extracellular glutamate released during cerebral ischemia,
which in turn triggers a large calcium influx and overwhelms mitochondrial regulation of
calcium homeostasis [85–87]. The brain’s limited regenerative capacity compounds this
heightened vulnerability, rendering neuronal cells particularly susceptible to irreversible
damage [88,89]. Furthermore, the post-ischemic inflammatory response within the brain
can exacerbate mitochondrial dysfunction, triggering a cascade of neurodegeneration and
cognitive deficits [87,90]. This is thought to be mediated by the release of mitochondrial
contents, such as mitochondrial DNA, cardiolipins, and ROS, which in turn activate the
NLRP3 inflammasome in neighboring cells [87]. Cardiolipin, a crucial phospholipid of
the IMM, is essential for the optimal function of cytochrome c oxidase and the stabil-
ity of the ETC, directly impacting ATP synthesis and mitochondrial health. The NLRP3
inflammasome, activated by mitochondrial distress signals, orchestrates inflammatory
responses, linking mitochondrial dysfunction to inflammation through the production of
pro-inflammatory cytokines.

Cerebral IR can have profound consequences and often results from conditions such
as stroke or cardiac arrest. In regional cerebral hypoxia, which is most often a result of is-
chemic stroke, astrocytic and neuroendothelial mitochondria can sense neurons’ metabolic
hypoactivity and respond through the release of nitric oxide and other vasodilatory agents.
This response can alter cerebral blood flow to augment collateral circulation in hypoper-
fused yet salvageable tissue and extend the critical window for recanalization [91,92]. In
the case of PCAS, global ischemia affects the entire brain, contrasting with the localized
brain damage seen in stroke. Even a brief period of global ischemia can inflict debilitat-
ing neurological damage as cerebral blood flow regulation is diminished [93]. Cerebral
I/R injury disrupts the delicate balance between mitochondrial fusion and fission, critical
processes for maintaining mitochondrial function and neuronal health. During ischemia,
energy depletion leads to an increase in mitochondrial fission, resulting in fragmented
mitochondria that are less efficient in ATP production. Upon reperfusion, the sudden
influx of oxygen and substrates can exacerbate mitochondrial damage through excessive
production of ROS, further promoting fission and inhibiting fusion, leading to neuronal
dysfunction and cell death. Additionally, I/R injury can trigger the release of mitochondria
or mitochondrial components from cells, a process that may contribute to inflammation
and injury propagation by activating immune responses or by direct transfer of damaged
mitochondria to neighboring cells, exacerbating the injury response [44,94–97]. These
disturbances in mitochondrial dynamics result in excessive ROS production and neuronal
apoptosis, ultimately leading to neuronal death.

Finally, current research suggests that mitochondria may be released into the extracel-
lular environment and potentially transferred between cells [98,99]. In the context of brain
injuries or diseases, these extracellular mitochondria may function as damage-associated
molecular pattern molecules, assuming roles that are either beneficial or harmful, depend-
ing on the specific environmental conditions [98]. Understanding these brain-specific
mitochondrial dynamics is crucial for developing targeted therapies to mitigate the devas-
tating effects of IR injuries in the brain.
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4.2. Heterogeneity of Cardiac Mitochondria and Their Role in IR Injury

The heart features a distinctive mitochondrial architecture. Cardiac mitochondria are
not a homogenous population but rather exist in distinct subpopulations with unique struc-
tural and functional characteristics. These subpopulations, including subsarcolemmal mito-
chondria (SSM), interfibrillar mitochondria (IFM), and perinuclear mitochondria (PNM), are
differentially impacted by various cardiac pathologies [100–103]. Cardiomyocytes contain
high-density mitochondria, reflecting the heart’s significant energy requirements [104–106].

Understanding the structural and functional differences between SSM and IFM is
crucial to understanding the mechanism of cardiac IR injury. The heart’s response to IR
injury is intricately linked to the structural diversity of its mitochondria, which include
SSM located beneath the cell membrane and IFM situated between myofibrils. SSM are
primarily involved in generating ATP for basal cellular functions and are more susceptible
to IR-induced oxidative stress due to their proximity to the cell membrane, where ionic
imbalances and ROS production are more pronounced during reperfusion. IFM, on the
other hand, are crucial for ATP production needed for contractile function and are more
affected by changes in intracellular calcium levels during IR injury. This structural and
functional heterogeneity means that different mitochondrial populations within cardiac
cells may have varied thresholds for damage and repair in response to IR injury, influencing
the heart’s overall resilience or susceptibility to such stress. IR injury contributes to mito-
chondrial alterations, along with other reperfusion-induced alterations, influencing cardiac
contractile recovery and infarct size. The termination of OXPHOS leads to depolarization
of mitochondrial membranes, ATP depletion, and inhibition of myocardial contractile func-
tion [107–109]. Ischemic injury progresses more swiftly in SSM, as evidenced in previous
studies [110,111].

Research has shown that 45 min of ischemia impairs oxidative phosphorylation, specif-
ically via the inhibition of cytochrome oxidase activity in SSM [110]. A study further
revealed that ischemia specifically reduces cardiolipin in SSM, impacting oxidative phos-
phorylation through cytochrome oxidase. This effect is unique to SSM, as cardiolipin
levels in IFM remain unaffected. The decrease in cardiolipin in SSM is directly associated
with reduced oxidative phosphorylation, suggesting a link to the dysfunction in the ETC
observed during myocardial ischemia [112]. Importantly, distinct populations of cardiac
mitochondria may exhibit varying susceptibilities to ischemic damage, thereby shaping
the overall impact of IR injury on myocardial function [109,112]. These distinctions could
shed light on the varying responses of cardiac mitochondria to IR, potentially paving the
way for novel therapeutic interventions aimed at preserving mitochondrial integrity and,
subsequently, improving outcomes of myocardial disease.

4.3. Renal Mitochondrial Resilience and Vulnerability in Ischemia–Reperfusion Injury

The renal system depends on oxidative metabolism for bioenergetic demands. It thus
possesses a distinctive mitochondrial architecture. This architecture is particularly evident
in the mitochondria-dense regions of the proximal tubules and thick ascending limbs
(TAL) [113–115]. Renal mitochondria play central roles in managing ROS, maintaining
cellular calcium equilibrium, and modulating various signaling cascades. During IR injury,
the protein dynamin-related protein 1 (Drp1) plays a crucial role in mitochondrial dynamics
by mediating mitochondrial fission, which can lead to mitochondrial fragmentation and
dysfunction. This process is associated with increased production of ROS and cellular
damage, contributing to the pathophysiology of IR injury. The alteration in mitochondrial
morphology and function following hypoxia is closely associated with the activation of
Drp1 and its subsequent translocation to mitochondria [44,116]. This translocation is
marked by enhanced Drp1-mediated mitochondrial fission and consequent apoptosis in
tubular epithelial cells [117,118]. In this context, targeting Drp1 to modulate mitochondrial
fission presents a potential therapeutic strategy to mitigate the detrimental effects of IR on
mitochondrial and cellular health.
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Despite renal metabolic plasticity facilitating adaptation to cellular stressors, this
resilience is vulnerable to compromise under IR conditions, potentially culminating in
acute kidney injury (AKI) [119–122]. Additionally, the kidneys receive about 20–25%
of cardiac output, essential for maintaining adequate glomerular filtration, but exhibit
heterogeneous blood flow and oxygen levels, particularly lower in the medulla. This
heterogeneity, combined with varied metabolic activities of nephron segments, suggests
that medullary mitochondria may have adapted to function efficiently in low-oxygen
environments, supporting ATP production in suboptimal conditions [62].

Mitophagy, a selective process of degrading damaged mitochondria, has emerged as
a critical player in the context of IR-induced AKI. This selective degradation mechanism
ensures the removal of dysfunctional mitochondria, thereby preserving cellular integrity
and function in the face of stress. The significance of mitophagy has been further elucidated
through experimental studies involving knockout mice models deficient in BNIP3 (BCL2
interacting protein 3) and PINK1 (PTEN-induced kinase 1). BNIP3 and PINK1 are integral to
the regulation of mitophagy, with BNIP3 directly facilitating the sequestration of damaged
mitochondria and PINK1 initiating a cascade that tags these mitochondria for autophagic
degradation [123,124]. Their coordinated action ensures the removal of dysfunctional
mitochondria, thereby preserving cellular health and preventing mitochondrial-related
pathologies. Research using knockout mice for BNIP3 and PINK1, two key regulators of
mitophagy, has illuminated the protective effects of this process [125–128].

In summary, renal mitochondria are integral to preserving nephron integrity. Un-
derstanding the mitochondrial dynamics during renal IR injury is vital for innovating
therapeutic interventions focused on maintaining mitochondrial health and attenuating
the adverse impacts of IR on renal functionality [121,122,129].

5. Comparison of Mitochondrial Responses and Dynamics to Ischemia–Reperfusion
Injury between the Brain, Heart, and Kidneys

As we have discussed, the brain, heart, and kidneys are particularly susceptible
to IR injury. That susceptibility to injury is influenced by the structural and functional
heterogeneity of mitochondria within these organs. Moreover, these organs exhibit diverse
mitochondrial behaviors in the face of IR injury. The comparison of mitochondrial responses
to IR injury between the brain, heart, and kidneys is shown in Figure 1.
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In the brain, mitochondria, which are tailored for rapid energy distribution across
neuronal networks, display heightened vulnerability to oxidative stress, exacerbated by the
abundance of polyunsaturated fatty acids in cerebral tissue [74–77,80–84]. During cerebral
ischemia, fusion is reduced, enhancing energy optimization, while reperfusion leads to
increased fission and fragmentation, adapting to the influx of oxygen and nutrients but
potentially generating ROS [22,96].

Conversely, myocardial mitochondria demonstrate a swift resurgence in oxidative phos-
phorylation upon reperfusion, with a temporary lag in cardiac contractility before restoring to
pre-ischemic levels [107–109]. The cardiac tissue, highly reliant on fatty acid oxidation, shows
vulnerability to perturbations in mitochondrial dynamics and oxidative stress [130–132]. The
distinct susceptibilities of cardiac mitochondria to IR injury are compounded by their hetero-
geneous distribution into SSM and IFM populations [100–102,108,112,133].

In the kidneys, mitochondria predominantly populate the proximal tubules and TAL, adapt-
ing to reduced mass and structural alterations induced by ischemic insult [113–115,119–122,134].
Renal mitochondria exhibit a unique choreography of fission and fusion events, intrinsically
tied to the organ’s susceptibility to acute injury [115,117,119].

To understand this organ-specific heterogeneity in mitochondrial dynamics, medical
science must decipher the molecular mechanisms underlying them. This task requires
an interdisciplinary approach encompassing cellular biology, biochemistry, and clinical
medicine. The opportunity, however, is monumental: the potential to develop targeted
therapeutic strategies that can mitigate the impact of IR injuries across a range of clinical
scenarios, from cardiac arrest to organ transplantation.

6. Pharmaceutical Approaches in Ischemia–Reperfusion Injury with Targeted
Mitochondrial Protection

A central element in the pathological process of IR injury is mitochondrial dysfunc-
tion. In response, strategies aimed at enhancing mitochondrial resilience and functional-
ity have become pivotal in improving clinical outcomes. Pharmacological interventions
that modulate mitochondrial function during IR injury show promise, especially those
stabilizing mitochondrial processes and inhibiting mPTP formation. The application of
mitochondria-targeted protective agents, including specific drugs and antioxidants, has
shown encouraging effects in various in vivo models. For instance, Cyclosporine A (CsA)
exerts a protective effect in myocardial ischemia by specifically targeting the mPTP. CsA
binds to cyclophilin D, a key regulatory component of the mPTP located within the IMM,
inhibiting the mPTP opening. This interaction is crucial for maintaining mitochondrial
integrity, preventing calcium overload-induced mitochondrial swelling, and thus reducing
cell necrosis post-myocardial ischemia. Furthermore, the ability of CsA to enhance mito-
chondrial calcium buffering capacity, as demonstrated in cardiac-isolated mitochondria,
contributes to its protective role by delaying mPTP opening and preserving mitochondrial
function [135–139]. However, the clinical application of Cyclosporine A in treating IR injury
remains uncertain due to potential adverse effects and inconclusive benefits in clinical
studies to date [140]. The mitochondria-targeted peptide SS-31, also known as elamipretide
or Bendavia, concentrates within the IMM through interaction with cardiolipin, enhancing
its activity. SS-31 offers a multifaceted protective role against IR injury by preserving
mitochondrial function, reducing oxidative stress and inflammation, inhibiting MPT, pro-
tecting cellular integrity, and promoting tissue regeneration. By binding to cardiolipin,
SS-31 stabilizes the IMM structure and supports the organization of respiratory complexes
into supercomplexes, thereby enhancing OXPHOS and ATP production and decreasing
the production of ROS. SS-31 also prevents mPTP opening, thereby maintaining MMP
and preventing the release of pro-apoptotic factors. These actions collectively contribute
to mitigating the deleterious effects of IR injury on affected tissues, particularly the kid-
neys [141,142]. Poloxamer-188 (P-188) exerts its protective effects against IR injury primarily
by preserving the integrity of cell membranes and BBB. It achieves this by sealing defects
in cell membranes, as demonstrated by reduced uptake of propidium iodide, indicating
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decreased cell membrane permeability. Additionally, P-188 inhibits the activation of matrix
metalloproteinase-9, which is involved in extracellular matrix degradation and contributes
to BBB disruption. By maintaining cellular and vascular integrity, P-188 mitigates the
detrimental effects of IR injury [143–145].

7. Mitochondrial Transplantation as an Emerging Strategy for IR Injury

Mitochondrial transplantation (MTx) has emerged as a groundbreaking concept in IR
injury [146,147]. Recent evidence suggests the potential for mitochondria to be released and
transferred between cells. Notably, studies have demonstrated the transfer of mitochondria
from astrocytes and microglia to damaged neurons, conferring neuroprotection [99,148].
Treatments with isolated exogenous mitochondria have significantly reduced infarct size in
post-stroke rat models [149], and transplantation of muscle-derived mitochondria has been
shown to alleviate cellular oxidative stress and apoptosis, decrease brain infarct volume,
and reverse neurological deficits following ischemic stroke in rats [150]. In lung injury
scenarios, bone marrow-derived stromal cells have been observed to release mitochondria,
which are then transferred into pulmonary alveoli to mitigate damage [151]. While MTx as
a treatment modality should work in brain, heart, and kidney tissue, work remains to be
conducted to determine if each organ requires a different dose or delivery mechanism for
MTx to be most effective.

In a rat model of cardiac arrest, the intravenous injection of freshly prepared donor
mitochondria post-cardiac arrest and resuscitation significantly enhanced lung function,
improved brain microcirculation, accelerated lactate clearance, and markedly increased
72 h survival rates [152]. Labeled donor mitochondria were detected in the brain and
other organs 24 h post-cardiac arrest, substantiating the spontaneous transfer of exogenous
mitochondria into neurons in vitro and highlighting the importance of mitochondrial
membrane integrity for successful in vivo MTx. The retention of donor mitochondria in
the brain following MTx potentially contributes to improved survival rates post-cardiac
arrest [152]. Emerging research suggests that mitochondria are highly mobile, frequently
traversing between cells, indicating that MTx could be beneficial for various organs.

A significant hurdle in MTx is the effective integration of exogenous mitochondria
into recipient cells. This integration is complicated by the dynamic nature of mitochondrial
networks within cells, which undergo continuous fusion and fission events. These dynamics
are vital for maintaining mitochondrial function and adapting to fluctuations in cellular
energy demands. Achieving successful integration of transplanted mitochondria into these
networks is crucial for realizing their therapeutic potential.

One major concern of MTx is the potential immunogenicity of the transplanted mito-
chondria, which could trigger rejection or inflammatory responses in the recipient. More-
over, there is a risk associated with transferring damaged or dysfunctional mitochondria,
potentially worsening existing conditions or introducing new cellular dysfunctions. The
efficacy of MTx also could rely on the development of precise delivery methods to ensure
that mitochondria are accurately targeted to the tissues or cells of interest, a task made
challenging by the need to navigate biological barriers and minimize off-target effects.

Despite these challenges and limitations, MTx holds significant promise for treating not
only IR injury-related diseases but also a broad spectrum of diseases linked to mitochondrial
dysfunction. For instance, in neurodegenerative diseases where mitochondrial dysfunction
is a contributing factor, such as Parkinson’s and Alzheimer’s, MTx could offer a novel
therapeutic pathway.

8. Future Directions

Targeting organ-specific mitochondrial responses to whole-body IR injury presents a
highly promising strategy for treating PCAS. Tailored strategies that include antioxidants
and MPT inhibitors for neuroprotection, interventions to enhance oxidative phospho-
rylation in the heart, and methods to preserve mitochondrial mass in the kidneys are
crucial. Additionally, the integration of next-generation sequencing and metabolomics
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has revealed the genetic and metabolic factors underlying mitochondrial dysfunction,
guiding the development of targeted therapies [153–155]. Exploring epigenetic modu-
lators, especially histone deacetylase inhibitors, offers new possibilities for regulating
mitochondrial biogenesis and function, presenting innovative ways to modulate cellular
energy dynamics [156,157]. This shift towards a patient-centric model marks a significant
change in ischemia–reperfusion injury management, promising more nuanced and effective
treatment strategies.

9. Conclusions

The elucidation of organ-specific mitochondrial alterations in response to IR injury in
the context of PCAS underscores the imperative for tailored therapeutic interventions. The
divergent mitochondrial dynamics observed in the brain, heart, and kidneys necessitate
a nuanced approach to treatment, one that directly addresses the unique mitochondrial
susceptibilities and adaptive mechanisms within these organs. The advent of mitochondrial
medicine, bolstered by genomic and metabolomic innovations, is paving the way for more
precise, condition-specific therapeutic strategies. Furthermore, the promising horizon of
MTx offers a novel therapeutic modality, potentially revolutionizing the management of IR
injury. These advancements not only promise to ameliorate the detrimental effects of IR
injury but also herald a transformative era in critical care medicine, where treatments are
increasingly personalized, targeting the mitochondrial epicenter of cellular dysfunction.
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