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Abstract: Smoking significantly elevates the risk of lung diseases such as chronic obstructive pul-
monary disease (COPD) and lung cancer. This risk is attributed to the harmful chemicals in tobacco
smoke that damage lung tissue and impair lung function. Current research on the impact of smoking
on gene expression in specific lung cells is limited. This study addresses this gap by analyzing gene
expression profiles at the single-cell level from 43,539 lung endothelial cells, 234,349 lung epithelial
cells, 189,843 lung immune cells, and 16,031 lung stromal cells using advanced machine learning
techniques. The data, categorized by different lung cell types, were classified into three smoking
states: active smoker, former smoker, and never smoker. Each cell sample encompassed 28,024 feature
genes. Employing an incremental feature selection method within a computational framework,
several specific genes have been identified as potential markers of smoking status in different lung
cell types. These include B2M, EEF1A1, and TPT1 in lung endothelial cells; FTL and MT-ATP8 in lung
epithelial cells; HLA-B and HLA-C in lung immune cells; and HSP90B1 and LCN2 in lung stroma
cells. Additionally, this study developed quantitative rules for representing the gene expression
patterns related to smoking. This research highlights the potential of machine learning in oncology,
enhancing our molecular understanding of smoking’s harm and laying the groundwork for future
mechanism-based studies.

Keywords: smoking; lung cell; gene expression profile; machine learning; marker; explainable
artificial intelligence

1. Introduction

The well-documented and multifaceted deleterious impacts of tobacco smoking on
pulmonary health encompass conditions ranging from impaired lung function to carcino-
genesis [1–3]. Chronic exposure to tobacco smoke toxicants incites inflammatory and
oxidative stress responses, precipitating obstructive and restrictive lung diseases, notably
chronic obstructive pulmonary disease (COPD) [4–6]. Additionally, the carcinogenic com-
pounds in smoke contribute to the increased incidence of both small-cell and non-small-cell
lung cancer among smokers, owing to their role in inducing DNA damage, genetic muta-
tions, and chromosomal instabilities [7–9]. Recent studies using machine learning methods
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to analyze smoking-associated transcriptome aberrations in blood have highlighted the
broader genetic implications of smoking for lung health, indicating a complex interplay
between genetic factors and environmental exposure [10]. Environmental factors, partic-
ularly air pollution, significantly impact lung health. Studies linking PM2.5 air pollution
to lung cancer have shown that air pollutants can exacerbate the carcinogenic effects of
tobacco smoke through changes in protein interactions and DNA methylation [11]. Even
healthy lung cells are susceptible to these adverse effects, undergoing morphological and
functional alterations that increase the risk of pathological transformations and disease
onset [12,13]. While a significant body of research has addressed the lung carcinogenicity
associated with smoking, further investigations are required to elucidate the molecular
regulation impacts of smoking on the diverse cells constituting the human lung.

Tobacco smoking exerts significant adverse effects on various lung cells—including
epithelial, endothelial, immune, and stromal cells—compromising pulmonary function and
enhancing vulnerability to diseases. Epithelial cells exposed to smoke suffer from cellular
stress, DNA damage, impaired mucociliary clearance, and heightened apoptosis [14–16].
Endothelial cells undergo increased oxidative stress and inflammation, resulting in aug-
mented permeability and systemic inflammatory responses [17,18]. Smoking modifies
the function of immune cells, especially macrophages and T-cells, leading to chronic in-
flammation and heightened susceptibility to infections and immune-related pulmonary
ailments [14,19]. The extracellular matrix modifications in stromal cells induce tissue remod-
eling and fibrosis [20,21]. These cellular changes collectively contribute to the development
of conditions like COPD, lung cancer, respiratory infections, and asthma among smokers.

The amalgamation of machine learning and single-cell data technologies has markedly
advanced lung research, enabling nuanced analysis of cellular heterogeneity, gene expres-
sion patterns, and cellular interactions within lung tissues. Machine learning expedites
the analysis of expansive datasets derived from methods like single-cell RNA sequencing.
It plays a crucial role in pinpointing distinct cell types, states, and potential biomarkers
and forecasts disease trajectories and responses to treatments with enhanced accuracy.
Pioneering studies by Huang et al., Dohmen et al., and Yang et al. leveraged this combined
approach to unveil biomarkers associated with lung cancer and COPD [22–24]. Further-
more, machine learning has been instrumental in smoking-related research, particularly
in deciphering complex genomic patterns [25,26]. This interdisciplinary strategy is poised
to make significant contributions to personalized medicine, unveiling intricate disease
mechanisms and identifying novel therapeutic targets for a spectrum of lung disorders.

In this investigation, we utilized the Human Lung Cell Atlas (HLCA) core data from
CELLxGENE, as provided by Sikkema et al. [27]. The dataset encompasses single-cell data
procured from a cohort of healthy lungs, inclusive of tissue data from 107 individuals. We
separated the smoking status (active, former, never) for analysis, drawing from epithelial,
endothelial, immune, and stromal cell expression profiles. Each sample is characterized by
28,024 gene features. We deployed eight feature ranking algorithms—including adaptive
boosting (Adaboost) [28], categorical boosting (CatBoost) [29], extremely randomized
trees (ExtraTrees) [30], least absolute shrinkage and selection operator (LASSO) [31], light
gradient boosting machine (LightGBM) [32], Monte Carlo feature selection (MCFS) [33],
random forest (RF) [34], and extreme gradient boosting (XGBoost) [35]—to prioritize gene
features associated with smoking. An incremental feature selection (IFS) approach [36]
was adopted to pinpoint the features of paramount significance for classification with the
help of two classification algorithms, decision tree (DT) [37] and RF [34]. In the subsequent
phase, DTs were further adopted to derive rules for identifying smoking status. Despite
progress, gaps remain in our understanding of how smoking impacts the transcriptional
regulation in the microenvironment of lung tissues, particularly at the single-cell level. Our
study advances knowledge by analyzing smoking-associated cellular changes, identifying
novel biomarkers, and elucidating the interplay between smoking and lung cell functional
alterations. These contributions aim to enhance the prevention and treatment of smoking-
related lung diseases.
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2. Materials and Methods
2.1. Gene Expression Data in Lung Cells Related to Smoking Status

In this study, gene expression profile data were sourced from the CELLxGENE
database as presented by Sikkema et al. [27]. Such data utilized single-cell RNA sequenc-
ing (scRNA-seq) and gathered comprehensive metadata across 14 datasets to create the
HLCA. For data preprocessing, the HLCA integrated these scRNA-seq data and metadata,
established a hierarchical framework for consistent cell type naming, and implemented
multiple quality control measures. These measures included filtering based on gene and
cell counts, mitochondrial gene and intronic reads percentages, log normalization, variable
gene identification, principal component analysis, and clustering to refine the data and
remove low-quality clusters [27]. The cells included in the specific four cell types are listed
in Table S1.

The utilized dataset comprised 43,539 lung endothelial cells, 234,349 lung epithelial
cells, 189,843 lung immune cells, and 16,031 lung stromal cells. Each cell sample encom-
passed 28,024 feature genes. Within the endothelial cell subset, 6521 were from active
smokers, 7189 from former smokers, and 29,829 from never smokers. The epithelial cell
subset contained 37,905 from active smokers, 47,945 from former smokers, and 148,499 from
never smokers. The immune cell set comprised 41,801 from active smokers, 34,853 from
former smokers, and 113,189 from never smokers. Lastly, the stromal cell dataset included
3415 from active smokers, 2342 from former smokers, and 10,274 from never smokers.

2.2. Feature Ranking Methods for Prioritizing Features Based on Their Importance

Our study delved into gene expression profiles of specific samples, discovering nu-
merous genes, but only a few linked to smoking status. To gain a deeper insight into these
smoking-associated genes, we employed eight feature ranking algorithms. These included
Adaboost [28], CatBoost [29], ExtraTrees [30], LASSO [31], LightGBM [32], MCFS [33],
RF [34], and XGBoost [35]. Each method provided a unique approach to ranking fea-
tures, enhancing our understanding of the data and ensuring a thorough analysis of the
significance of the identified genes.

2.2.1. Adaptive Boosting

AdaBoost, which stands for “Adaptive Boosting”, is one of the first and most popular
boosting algorithms used in the field of machine learning. It was introduced by Yoav
Freund and Robert Schapire in 1995 [28]. AdaBoost focuses on improving the predictions
of the samples where previous classifiers (referred to as “weak learners”) made errors.
AdaBoost, like other ensemble algorithms, can provide insights into feature importance,
helping model interpretation and feature selection. The way AdaBoost determines feature
importance is intrinsically linked to its base learner. Given that AdaBoost often employs
DTs (usually shallow ones, like stumps) as weak learners, the computation of feature
importance is typically derived from these trees. When a feature is used for splitting in
a DT, it provides a certain improvement to the model, often measured by a criterion like
the Gini impurity or information gain. The importance of a feature is computed based on
the sum of the weighted impurity decrease for all nodes that the feature is used in. In the
context of AdaBoost, the feature importance can be computed as a weighted average from
all the DTs, where trees that do well on harder-to-classify examples have more weight. This
algorithm is implemented by a package in Scikit-learn [38]. We directly used this package
and executed it with default parameters.

2.2.2. Categorical Boosting

CatBoost is an open-source, high-performance machine learning library developed
by Yandex, a Russian multinational IT company [29]. The name “CatBoost” originates
from two key attributes of the algorithm: CATegorical features support and gradient
BOOSTing. Unlike traditional gradient boosting techniques, CatBoost uses a variant called
“ordered boosting”, which helps prevent overfitting. CatBoost uses a particular type of
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DT called “oblivious trees”, which are more memory-efficient and faster to evaluate than
standard depth-wise trees. CatBoost, as a sophisticated gradient boosting framework, offers
tools to compute and visualize feature importance, helping model interpretability and
potentially guiding further feature engineering or selection. CatBoost calculates feature
importance based on the number of times a feature is used to split the data, weighted
by the improvement to the model as a result of those splits. Essentially, the more a
feature helps in distinguishing the target variable (thereby reducing the model’s loss),
the more important it is considered. We retrieved the program of this algorithm at https:
//catboost.ai/en/docs/concepts/installation (accessed on 2 March 2023) and executed it
with default parameters.

2.2.3. Extremely Randomized Trees

“ExtraTrees” stands for “extremely randomized trees”. It is an ensemble learning
method fundamentally similar to RFs but with a key difference in the way splits are made
during the construction of the DTs [30]. While RFs only ensure that each bootstrap sample
is random, ExtraTrees goes a step further by making the split thresholds random as well.
This increased randomness helps in adding diversity to the model. ExtraTrees has an
option to either use the whole dataset to grow trees (without bootstrapping) or to use
bootstrap samples, similar to RFs. Given that ExtraTrees is based on DTs, the mechanism
for determining feature importance is related to the structure of these trees. Every time a
split of a node is made on a particular feature, it results in some reduction in impurity (e.g.,
Gini impurity for classification or mean squared error for regression). The importance of a
feature is computed by averaging the reduction in impurity over all the nodes of all the
trees where that feature is used for splitting. The program of this algorithm was sourced
from Scikit-learn [38]. Default parameters were used.

2.2.4. Least Absolute Shrinkage and Selection Operator

Lasso, which stands for “least absolute shrinkage and selection operator”, is a regres-
sion analysis method that performs both variable selection and regularization [31]. In a
traditional linear regression, the objective is to minimize the sum of squared residuals.
Lasso modifies this objective by adding a penalty for the absolute value of the magnitude
of the coefficients, which is called the L1 penalty. Feature importance is closely tied to
the coefficients assigned to each feature. The L1 regularization in Lasso tends to force the
coefficients of less important features to be exactly zero. This inherent feature selection
capability means that any variable with a non-zero coefficient can be considered “selected”
or “important” by the Lasso model. In Lasso, the magnitude of a coefficient can serve as an
indicator of feature importance. Larger coefficients (either positive or negative) suggest
that a feature has a stronger impact on the dependent variable. This makes Lasso a valuable
tool, especially in high-dimensional datasets, where feature selection and interpretability
are crucial. Here, we used the Lasso program in Scikit-learn [38]. For convenience, it was
performed using default parameters.

2.2.5. Light Gradient Boosting Machine

LightGBM, which stands for “Light Gradient Boosting Machine”, is a gradient boosting
framework specifically designed to be efficient and scalable [32]. It was developed by
Microsoft and has become increasingly popular in the machine learning community for
its speed and efficiency, especially in cases with large datasets or when dealing with high-
dimensional data. Unlike other boosting algorithms that grow trees level-wise, LightGBM
grows trees leaf-wise, meaning it chooses the leaf with the maximum delta loss to grow
at each iteration. LightGBM divides continuous feature values into discrete bins, creating
histograms which accelerates the training process and reduces memory usage. LightGBM,
like other gradient boosting frameworks, offers built-in tools to compute and visualize
feature importance. Total gain represents the improvement in accuracy brought by a feature
to the model. For every feature, the improvement in the model’s accuracy, or the gain, is

https://catboost.ai/en/docs/concepts/installation
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accumulated each time that feature is used to split the data in the trees. The total gain
brought by a feature can be thought of as the reduction in the loss as a result of adding that
feature. Thus, total gain can be used as an indication of feature importance in LightGBM.
This study used the LightGBM program reported at https://lightgbm.readthedocs.io/en/
latest/ (accessed on 10 May 2020), which was executed with its default parameters.

2.2.6. Monte Carlo Feature Selection

Monte Carlo feature selection (MCFS) is a method proposed by Michal Dramiński,
et al. to evaluate the importance of features in datasets [33]. MCFS employs a randomized
approach, hence the reference to “Monte Carlo”, a famous methodology for obtaining
numerical results through random sampling. By utilizing a Monte Carlo approach and
aggregating results across multiple iterations, MCFS can capture complex interactions
between features, making it effective for datasets where feature interactions play a crucial
role. Here is how MCFS works: (1) Randomization: It begins by constructing multiple
subsets of samples randomly. It first selects some feature subsets randomly, and for each
feature subset, multiple subsets of samples are constructed randomly. (2) DT construction:
For each subset of data, a DT is constructed, much like the process in RF. (3) Scoring: After
growing many DTs, the importance of a feature is determined based on how often it is
used to split data, the coverage and information gain of those decision nodes involving the
feature, and the weighted accuracy of the DTs. The MCFS program was downloaded from
http://www.ipipan.eu/staff/m.draminski/mcfs.html (accessed on 4 June 2019), which
was also performed by default parameters.

2.2.7. Random Forest

Due to the ensemble nature, RFs can be used to gauge the importance of each feature,
which can be critical for understanding, interpreting, and improving machine learning
models [34]. When a tree in a RF makes a decision, it uses one feature from the set of
available features. Over the course of many trees, some features will be used more often and
at earlier decision points, indicating that they are crucial for making accurate predictions.
Two common methods to calculate feature importance in RFs are described as follows:
(1) Gini importance: For each feature, the RF algorithm computes the average impurity
decrease (commonly using the Gini impurity) that results from splits over that feature,
normalized by the number of samples that reach the split. The decrease in impurity (or
increase in purity) acts as a proxy for the feature’s importance. (2) Permutation importance:
After the RF model has been trained, the values of each feature are randomly permuted in
the validation set, and the decrease in the model’s accuracy is computed. Features that are
more important to the model will produce a larger drop in accuracy when their values are
permuted. This algorithm was implemented by a package in Scikit-learn [38], which was
directly employed in this study. Likewise, it was performed by default parameters.

2.2.8. Extreme Gradient Boosting

XGBoost, which stands for “extreme gradient boosting”, is an open-source software
library that provides a gradient boosting framework [35]. Unlike other gradient boosting
algorithms that grow trees by depth (depth-first), XGBoost grows trees by level (level-wise)
and then prunes them using depth-first method. This results in a more balanced tree that
can generalize better. XGBoost incorporates L1 (Lasso) and L2 (Ridge) regularization terms
on the weights, which can prevent overfitting. Given that XGBoost is a gradient boosting
framework that primarily uses DTs, it offers several methods by which to determine feature
importance: (1) Weight (or frequency) importance: It measures the number of times a
feature appears in all the trees in the model, and a feature that appears more frequently
is considered to be more important. (2) Gain importance: For each feature, it calculates
the improvement in accuracy brought by a feature when it is used in trees. The gain of
each feature is averaged over all trees to compute its importance. (3) Coverage importance:
This method calculates the relative quantity of observations concerning a feature. Features

https://lightgbm.readthedocs.io/en/latest/
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that affect a large number of observations have higher coverage importance. The XGBoost
program used in current study was obtained from https://xgboost.readthedocs.io/en/
stable/ (accessed on 2 March 2023). It was also executed using default parameters.

2.3. Incremental Feature Selection

The IFS is a feature selection technique that aims to determine the most relevant subset
of features by incrementally adding features based on a specified criterion, typically their
importance or impact on a model’s performance [36]. Here is how IFS works: (1) rank
all features based on a specified criterion; this could be based on univariate statistics,
correlation with the target, or model-derived importance scores; (2) start with the most
important feature and build a model, evaluating its performance with one cross-validation
method [39], yielding a specified metric; (3) add the next-most-important feature then re-
build the model with the accumulated feature set, recording the performance; (4) continue
the process until all features are added or until a certain stopping criterion is met; this
stopping criterion can be a threshold of performance improvement or it can be when
performance starts to deteriorate or saturate; (5) determine the feature subset that gives the
best performance.

The approach is conceptually simple and can be implemented with minimal effort. It
is model-agnostic and can be applied with any machine learning algorithm. However, like
other greedy algorithms, it might not always find the global optimum because it relies on
local decisions at each step.

2.4. Synthetic Minority Oversampling Technique

SMOTE, which stands for “synthetic minority over-sampling technique”, is a popular
method used to handle class imbalance in datasets, especially in the context of classification
problems [40]. In many real-world scenarios, datasets might have an unequal distribution
of classes. Training a model on such imbalanced datasets can lead to poor performance
for the minority class because the model tends to become biased towards the majority
class. One common way to address this imbalance is by generating synthetic samples in
the dataset, and SMOTE is designed specifically for this purpose. Here is how SMOTE
works: (1) start by choosing a random sample from the minority class; (2) compute its k
nearest neighbors (from the minority class) (the number k can be a user-defined parameter);
(3) randomly select one of the k neighbors, compute the difference between the feature
vector of the sample under consideration and its chosen neighbor, multiply this difference
by a random number between 0 and 1, and then add it to the feature vector of the sample;
this creates a new, synthetic data point; (4) repeat steps 1–3 until the desired number of
synthetic samples are generated. The present study adopted the SMOTE program available
at https://github.com/scikit-learn-contrib/imbalanced-learn (accessed on 24 March 2020).
Default parameters were used to execute this program.

2.5. Classification Algorithm for Establishing Classification Rules

In our study, two supervised classification algorithms, DT and RF, were chosen to
implement the IFS method. These two algorithms have wide applications in tackling differ-
ent problems in health care [41,42]. The DT algorithm, detailed in [37], uses a hierarchical
decision structure for classification, while RF, described in [34], employs multiple DTs
to enhance accuracy. Both algorithms aim to optimize the IFS method by refining and
selecting significant features to improve model performance.

2.5.1. Decision Tree

A DT is a versatile machine learning algorithm. It is a tree-like structure where each
node represents a feature (or attribute), each branch represents a decision rule, and each leaf
represents an outcome [37]. The root node represents the entire dataset, which is further
divided into two or more homogeneous sets. A decision node represents the decision-
making point, where the data are further divided. A leaf node represents the end result or

https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
https://github.com/scikit-learn-contrib/imbalanced-learn
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the target variable. Here is how a DT is built: (1) start with the entire dataset at the root;
(2) select the best attribute to split the data using an attribute selection measure (ASM) (the
commonly used ASMs for this purpose include information gain, Gini index, gain ratio,
etc.); (3) make a decision node based on the best attribute; (4) split the dataset into subsets;
i.e., split the decision node into sub-nodes; (5) recursively apply steps 2–4 to each child
node until one of the stopping criteria is met; e.g., the subset at a node has all the same
target values (pure node), the information gain or decrease in impurity is below a threshold,
and the number of samples in a node is below a threshold; (6) pruning is used to reduce
overfitting, which involves removing parts of the tree that do not provide significant power
in predicting target values.

2.5.2. Random Forest

The RF is a versatile and widely used ensemble machine learning algorithm. An
ensemble method refers to a technique that combines the predictions from multiple models
in order to produce a more robust and accurate result [34]. RF, in particular, builds multiple
DTs and merges them together to obtain a more stable and accurate prediction. Here is
how RF works: (1) bootstrap samples (with replacement) are drawn from the dataset, and
a DT is built based on these samples; (2) for each split in the tree-building process, we
only consider a random subset of features, which add another layer of randomness into
the RF; (3) steps 1 and 2 are repeated several times; thus, multiple DTs are built; (4) for
classification, we take the majority vote from all trees as the prediction result (i.e., the class
that obtains the most “votes” from all trees is the final prediction).

The RF often delivers accurate predictions because it is less prone to overfitting than
individual DTs. However, while individual DTs are interpretable, a whole forest can be
hard to understand and visualize.

In this study, we directly adopted the DT and RF packages in Scikit-learn [38]. These
packages were executed using default parameters.

2.6. Performance Evaluation

The weighted F1 score is a valuable metric used to assess a classifier’s performance,
especially in datasets with class imbalances. Unlike the macro F1 score, which averages
the F1 scores [43–52] of each class, the weighted version allocates weights proportionate to
each class’s sample size. This ensures that larger classes have a more pronounced influence
on the overall score. By doing so, the weighted F1 score provides a more accurate and
nuanced understanding of a classifier’s efficacy across diverse class sizes, highlighting its
strengths and weaknesses in varied real-world scenarios. Here is the specific formula for
this metric:

Precisioni =
TPi

TPi + FPi
, (1)

Precisionweighted = ∑L
i=1 Precisioni × wi, (2)

Recalli =
TPi

TPi + FNi
, (3)

Recallweighted = ∑L
i=1 Recalli × wi, (4)

Weighted F1 =
2·Precisionweighted·Recallweighted

Precisionweighted + Recallweighted
. (5)

In this formula, i denotes each individual class, with wi symbolizing the proportion of
samples in that class relative to the overall sample count. L indicates the total number of
classes. Additionally, TP is an abbreviation for true positives, FP means false positives, and
FN designates false negatives.

Alongside weighted F1 and macro F1 scores, the classification accuracy (ACC) and
Matthews correlation coefficient (MCC) [53,54] were also employed to fully display the
performance of all models. ACC is defined as the proportion of correctly predicted samples
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among all samples. MCC is more complex than ACC. Two matrices are constructed in
advance, say X and Y, where X stores the true class of each sample and Y collects the
predicted class of each sample. Then, MCC can be computed by

MCC =
cov(X, Y)√

cov(X, X)·cov(Y, Y)
, (6)

where cov(X, Y) represents the correlation coefficient of X and Y.

2.7. Outline of the Analysis Procedure

In this study, several machine learning algorithms, described in Sections 2.2–2.5,
were integrated to analyze the gene expression profiling data of four cell types with three
smoking statuses. The data on each cell type were analyzed in the same pipeline. First, the
data were analyzed by eight feature ranking algorithms, yielding eight feature lists. Then,
each list was fed into the IFS method to extract essential genes, classification rules, and
construct best classifiers. At this stage, several feature subsets were generated according to
the given feature list. On each feature subset, the data were processed by via SMOTE to
tackle the imbalanced problem, and then DT and RF were used to build classifiers on the
balanced data. The entire procedure is illustrated in Figure 1.

Life 2024, 14, 502 8 of 27 
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑤 , (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 = , (3) 𝑅𝑒𝑐𝑎𝑙𝑙 = ∑ 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑤 , (4) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 = ∙ ∙
. (5) 

In this formula, 𝑖 denotes each individual class, with 𝑤  symbolizing the proportion 
of samples in that class relative to the overall sample count. 𝐿 indicates the total number 
of classes. Additionally, TP is an abbreviation for true positives, FP means false positives, 
and FN designates false negatives. 

Alongside weighted F1 and macro F1 scores, the classification accuracy (ACC) and 
Matthews correlation coefficient (MCC) [53,54] were also employed to fully display the 
performance of all models. ACC is defined as the proportion of correctly predicted sam-
ples among all samples. MCC is more complex than ACC. Two matrices are constructed 
in advance, say X and Y, where X stores the true class of each sample and Y collects the 
predicted class of each sample. Then, MCC can be computed by  𝑀𝐶𝐶 = 𝑐𝑜𝑣(𝑋, 𝑌)𝑐𝑜𝑣(𝑋, 𝑋) ∙ 𝑐𝑜𝑣(𝑌, 𝑌), (6) 

where 𝑐𝑜𝑣(𝑋, 𝑌) represents the correlation coefficient of X and Y. 

2.7. Outline of the Analysis Procedure 
In this study, several machine learning algorithms, described in Sections 2.2–2.5, 

were integrated to analyze the gene expression profiling data of four cell types with three 
smoking statuses. The data on each cell type were analyzed in the same pipeline. First, the 
data were analyzed by eight feature ranking algorithms, yielding eight feature lists. Then, 
each list was fed into the IFS method to extract essential genes, classification rules, and 
construct best classifiers. At this stage, several feature subsets were generated according 
to the given feature list. On each feature subset, the data were processed by via SMOTE 
to tackle the imbalanced problem, and then DT and RF were used to build classifiers on 
the balanced data. The entire procedure is illustrated in Figure 1. 

 
Figure 1. Flow chart of the entire analysis process. We analyzed gene expression profiling data from 
43,539 lung endothelial cells, 234,349 lung epithelial cells, 189,843 lung immune cells, and 16,031 
lung stromal cells, which included three smoking states: active smoker, former smoker, and never 
smoker. Using eight feature ranking algorithms, we generated ordered feature sets based on their 
significance to smoking and integrated them into the IFS framework to yield essential genes, classi-
fication rules, and classifiers. 

Figure 1. Flow chart of the entire analysis process. We analyzed gene expression profiling data from
43,539 lung endothelial cells, 234,349 lung epithelial cells, 189,843 lung immune cells, and 16,031 lung
stromal cells, which included three smoking states: active smoker, former smoker, and never smoker.
Using eight feature ranking algorithms, we generated ordered feature sets based on their significance
to smoking and integrated them into the IFS framework to yield essential genes, classification rules,
and classifiers.

3. Results

In this study, we thoroughly analyzed the effects of smoking status on lung cells, as
shown in Figure 1. The methodology involved three primary stages: data collection, feature
selection, and the development of classification rules. We sourced single-cell data from
CELLxGENE, as documented by Sikkema et al. Upon data collection, we applied eight
feature ranking algorithms, each assessing the importance of features. A critical element
of our analysis was the implementation of the IFS method, which proved instrumental in
pinpointing crucial biomarkers for differentiating smoking status. The culmination of this
process was the establishment of quantitative classification rules, which were formulated
by synthesizing insights obtained from the IFS with DT. These rules are characterized by
their correlation with specific gene expressions, highlighting the significance of these genes
in identifying various smoking statuses. The following section details the results obtained
at each stage of the study.

3.1. Feature Ranking Results of Features in Order of Importance

In this study, we utilized eight advanced feature-ranking algorithms—namely, Ad-
aboost, CatBoost, ExtraTrees, LASSO, LightGBM, MCFS, RF_ZL, and XGBoost—to identify
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critical gene markers associated with smoking. Each algorithm processed 28,024 gene
features, derived from a total of 483,762 distinct lung cells. These included 43,529 en-
dothelial cells, 234,349 epithelial cells, 189,843 immune cells, and 16,031 stromal cells. The
features were ranked based on their importance. A comprehensive list of these features,
compiled from all algorithms, is presented in Table S2. For convenience, these lists were
called Adaboost, CatBoost, ExtraTrees, LASSO, LightGBM, MCFS, RF_ZL, and XGBoost
feature lists.

3.2. IFS Results and Feature Intersections for Finding Key Features Associated with
Smoking Status

In our study, we focused on the top 200 features as identified by each of the eight
feature ranking algorithms: Adaboost, CatBoost, ExtraTrees, LASSO, LightGBM, MCFS,
RF_ZL, and XGBoost. The IFS method, with a step size of 5, was applied to derive
feature subsets. The model based on each feature subset was assessed via ten-fold cross-
validation. For a comprehensive classification, we used the weighted F1 score to compare
the performance of the RF and DT classifiers. The collective evaluation results of these
classifiers are presented in Table S3, while Figures 2–5 visually depict the IFS outcomes.
Additionally, Figure 6 illustrates the performance comparisons between the three classes.

When assessed using the weighted F1 score, machine learning algorithms exhibited
resilience across varying feature complexities. The best-performing classifiers for lung
endothelial cells were as follows: LightGBM-RF with 70 features (weighted F1: 0.945;
Figure 2A) and similarly for other algorithms and cell types, as detailed. The results consis-
tently showed RF’s superior performance over DT across all eight feature sets. Furthermore,
Figure 6 compares the performance of classifiers for three classes (active smoker, former
smoker, and never smoker), underscoring RF’s dominance over DT. RF’s uniformly high
performance across different feature complexities sets a benchmark for future research.

In our study, the weighted F1 score was utilized as the primary metric for evaluating
classification performance. Pertinent feature subsets, identified by algorithms such as
Adaboost, CatBoost, ExtraTrees, LASSO, LightGBM, MCFS, RF_ZL, and XGBoost, were
located at the maximum points. These subsets comprised 60, 70, 105, 75, 70, 140, 100, and
100 features for lung endothelial cells; 50, 125, 155, 125, 125, 170, 105, and 200 features for
lung epithelial cells; 55, 55, 100, 100, 50, 180, 100, and 170 features for lung immune cells;
and 125, 65, 145, 45, 85, 195, 75, and 125 features for lung stroma cells, respectively. It can
be found that several maximum points need no less than 100 features. For these points,
a relative high point was extracted, which need less features, whereas the weighted F1
was a little lower than the maximum weighted F1. For example, the IFS results with RF
on the ExtraTrees feature list indicated that RF reached the maximum weighted F1 (0.917)
when top 105 features were used (Figure 2C). The relatively high weighted F1 (0.903) was
accessed by using top 50 features, which was also marked in Figure 2C. All such relative
high points were marked in the corresponding IFS curves (Figures 2–5). The corresponding
feature subsets were called essential feature subsets. We conducted an extensive analysis of
the interrelations and overlaps among these subsets, visualizing the intersections in upset
diagrams (lung endothelial cells, Figure 7A; lung epithelial cells, Figure 7B; lung immune
cells, Figure 7C; lung stroma cells, Figure 7D), with detailed data presented in Table S4.
Additionally, we created a network Venn diagram by converting features from ENSEMBL
ID to gene symbols then intersecting the optimal subsets (lung endothelial cells, Figure 8A;
lung epithelial cells, Figure 8B; lung immune cells, Figure 8C; lung stroma cells, Figure 8D),
detailed in Table S5. Black diamond nodes represent the optimal subsets from the eight
feature ranking algorithms. The numbers on these nodes indicate the gene feature sets
selected by the corresponding subsets, with the same color denoting sets chosen by an equal
number of optimal subsets. These numbers also indicate the frequency of selection. The
connecting lines between nodes illustrate the specific optimal subsets involved in selection.
Notably, significant features recurring in multiple subsets were highlighted, emphasizing
their crucial role in classifying smoking status.
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Figure 2. IFS curves for evaluating the performance of the two classification algorithms based on 
the weighted F1 score in endothelial cells: (A) IFS curves based on AdaBoost feature list; (B) IFS 
curves based on CatBoost feature list; (C) IFS curves based on ExtraTrees feature list; (D) IFS curves 
based on Lasso feature list; (E) IFS curves based on LightGBM feature list; (F) IFS curves based on 
MCFS feature list; (G) IFS curves based on RF_ZL feature list; (H) IFS curves based on XGBoost 
feature list. 

Figure 2. IFS curves for evaluating the performance of the two classification algorithms based on the
weighted F1 score in endothelial cells: (A) IFS curves based on AdaBoost feature list; (B) IFS curves
based on CatBoost feature list; (C) IFS curves based on ExtraTrees feature list; (D) IFS curves based
on Lasso feature list; (E) IFS curves based on LightGBM feature list; (F) IFS curves based on MCFS
feature list; (G) IFS curves based on RF_ZL feature list; (H) IFS curves based on XGBoost feature list.
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Figure 3. IFS curves for evaluating the performance of the two classification algorithms based on 
the weighted F1 score in epithelial cells. (A) IFS curves based on AdaBoost feature list; (B) IFS curves 
based on CatBoost feature list; (C) IFS curves based on ExtraTrees feature list; (D) IFS curves based 
on Lasso feature list; (E) IFS curves based on LightGBM feature list; (F) IFS curves based on MCFS 
feature list; (G) IFS curves based on RF_ZL feature list; (H) IFS curves based on XGBoost feature list. 

Figure 3. IFS curves for evaluating the performance of the two classification algorithms based on the
weighted F1 score in epithelial cells. (A) IFS curves based on AdaBoost feature list; (B) IFS curves
based on CatBoost feature list; (C) IFS curves based on ExtraTrees feature list; (D) IFS curves based
on Lasso feature list; (E) IFS curves based on LightGBM feature list; (F) IFS curves based on MCFS
feature list; (G) IFS curves based on RF_ZL feature list; (H) IFS curves based on XGBoost feature list.
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Figure 4. IFS curves for evaluating the performance of the two classification algorithms based on 
the weighted F1 score in immune cells: (A) IFS curves based on AdaBoost feature list; (B) IFS curves 
based on CatBoost feature list; (C) IFS curves based on ExtraTrees feature list; (D) IFS curves based 
on Lasso feature list; (E) IFS curves based on LightGBM feature list; (F) IFS curves based on MCFS 
feature list; (G) IFS curves based on RF_ZL feature list; (H) IFS curves based on XGBoost feature list. 

Figure 4. IFS curves for evaluating the performance of the two classification algorithms based on
the weighted F1 score in immune cells: (A) IFS curves based on AdaBoost feature list; (B) IFS curves
based on CatBoost feature list; (C) IFS curves based on ExtraTrees feature list; (D) IFS curves based
on Lasso feature list; (E) IFS curves based on LightGBM feature list; (F) IFS curves based on MCFS
feature list; (G) IFS curves based on RF_ZL feature list; (H) IFS curves based on XGBoost feature list.
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Figure 5. IFS curves for evaluating the performance of the two classification algorithms based on 
the weighted F1 score in stroma cells: (A) IFS curves based on AdaBoost feature list; (B) IFS curves 
based on CatBoost feature list; (C) IFS curves based on ExtraTrees feature list; (D) IFS curves based 
on Lasso feature list; (E) IFS curves based on LightGBM feature list; (F) IFS curves based on MCFS 
feature list; (G) IFS curves based on RF_ZL feature list; (H) IFS curves based on XGBoost feature list. 

Figure 5. IFS curves for evaluating the performance of the two classification algorithms based on the
weighted F1 score in stroma cells: (A) IFS curves based on AdaBoost feature list; (B) IFS curves based
on CatBoost feature list; (C) IFS curves based on ExtraTrees feature list; (D) IFS curves based on Lasso
feature list; (E) IFS curves based on LightGBM feature list; (F) IFS curves based on MCFS feature list;
(G) IFS curves based on RF_ZL feature list; (H) IFS curves based on XGBoost feature list.
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Figure 6. Performance of the optimal classifier built on eight feature lists in three classes. A grouped 
bar chart is utilized to compare the performance of two classifiers (RF, DT) between three classes 
for each feature set, using the weighted F1 score as the criterion: (A) grouped bar chart based on 
endothelial cells data; (B) grouped bar chart based on epithelial cells data; (C) grouped bar chart 
based on immune cells data; (D) grouped bar chart based on stroma cells data. 
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Figure 6. Performance of the optimal classifier built on eight feature lists in three classes. A grouped
bar chart is utilized to compare the performance of two classifiers (RF, DT) between three classes
for each feature set, using the weighted F1 score as the criterion: (A) grouped bar chart based on
endothelial cells data; (B) grouped bar chart based on epithelial cells data; (C) grouped bar chart
based on immune cells data; (D) grouped bar chart based on stroma cells data.

The identification of key gene features essential for classifying smoking status is
extensively discussed in this study. In particular, the discussion section serves as a valuable
resource for exploring these biological aspects and their impact on lung cells. It provides a
detailed analysis, insights into recent research, and suggests potential directions for future
investigations into the harmful effects of tobacco smoking.
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Figure 7. UpSet diagram of the essential feature subsets obtained using eight feature ranking algo-
rithms. “Set Size” is the count of the number of features in each set, “Intersection Size” is the count 
of the number of features after taking the intersection of the eight feature sets, the black dots indicate 
the unique features of a feature set, and the line between the dots and the dots indicates the unique 
intersection of different feature sets. (A) UpSet diagram on endothelial cells data. (B) UpSet diagram 
on epithelial cells data. (C) UpSet diagram on immune cells data. (D) UpSet diagram on stroma cells 
data. 

Figure 7. UpSet diagram of the essential feature subsets obtained using eight feature ranking
algorithms. “Set Size” is the count of the number of features in each set, “Intersection Size” is the
count of the number of features after taking the intersection of the eight feature sets, the black dots
indicate the unique features of a feature set, and the line between the dots and the dots indicates the
unique intersection of different feature sets. (A) UpSet diagram on endothelial cells data. (B) UpSet
diagram on epithelial cells data. (C) UpSet diagram on immune cells data. (D) UpSet diagram on
stroma cells data.
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timal subsets are aggregated into clusters, each designated by a numerical identifier. Node color-
coding: Each color signifies the number of optimal subsets that have selected the respective gene 
set. The color scheme is as follows: light gray for gene sets chosen by one subset; dark gray for two; 
blue for three; purple for four; pink for five; orange for six; red for seven; yellow for eight subsets. 
Interconnections (connecting lines): These lines depict the interrelationship between the optimal 
subsets and their influence in the selection of gene features. Supplementary Information: For de-
tailed insights, including the specific genes amalgamated within each labeled gene set and the exact 
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Figure 9. Lollipop plot showing the number of rules for identifying smoking status. In the three 
predictive classes, the number of rules obtained via DT based on eight different feature subsets is 
shown. The different colors represent the different feature lists obtained by the eight feature ranking 
algorithms. (A) Lollipop plot on endothelial cells data. (B) Lollipop plot on epithelial cells data. (C) 
Lollipop plot on immune cells data. (D) Lollipop plot on stroma cells data. 

Figure 8. Network Venn diagram of gene feature sets in lung cells to display more detailed intersection.
Network Venn diagram illustrates the intersection of optimal gene subsets for lung cells. Black
diamond nodes: These nodes represent the optimal gene subsets as identified by eight distinct feature
ranking algorithms. Node numbering: Genes that are commonly selected across similar optimal
subsets are aggregated into clusters, each designated by a numerical identifier. Node color-coding:
Each color signifies the number of optimal subsets that have selected the respective gene set. The
color scheme is as follows: light gray for gene sets chosen by one subset; dark gray for two; blue
for three; purple for four; pink for five; orange for six; red for seven; yellow for eight subsets.
Interconnections (connecting lines): These lines depict the interrelationship between the optimal
subsets and their influence in the selection of gene features. Supplementary Information: For detailed
insights, including the specific genes amalgamated within each labeled gene set and the exact optimal
subset responsible for their selection, see Table S5. (A) Network Venn diagram based on endothelial
cells data. (B) Network Venn diagram based on epithelial cells data. (C) Network Venn diagram
based on immune cells data. (D) Network Venn diagram based on stroma cells data.

3.3. Establishing Classification Rules for Identifying Smoking Status

In our study, a DT model, known for its transparency as a white-box machine learning
approach, was utilized to develop classification rules. These rules, derived from various
measurements, play a crucial role in differentiating smoking statuses, including active
smoker, former smoker, and never smoker, as elaborated in Tables S6–S9. Figure 9 demon-
strates the rule generation across subsets created by different feature ranking algorithms in
four lung cell types. Notably, the total number of rules showed a positive correlation with
dataset size, with lung epithelial and immune cells yielding more rules. The most rules
were generated from the subset of optimal features identified by LASSO. Furthermore, the
rules for identifying “never smokers” were the most numerous, while those for “active
smokers” were the fewest. An in-depth analysis of key genetic rules, offering detailed
insights into the impact of smoking on lung cells, is presented in Section 4.2.
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Figure 9. Lollipop plot showing the number of rules for identifying smoking status. In the three
predictive classes, the number of rules obtained via DT based on eight different feature subsets is
shown. The different colors represent the different feature lists obtained by the eight feature ranking
algorithms. (A) Lollipop plot on endothelial cells data. (B) Lollipop plot on epithelial cells data.
(C) Lollipop plot on immune cells data. (D) Lollipop plot on stroma cells data.

4. Discussion
4.1. Analysis of Key Features Associated with Smoking Status

In this study, an exhaustive analysis of single-cell data from four distinct lung cell
types was conducted using eight different feature-ranking algorithms. This comprehensive
methodology enabled the identification of key genetic features that shed light on the impact
of smoking on these cells. These pivotal features, outlined in Table 1, are subject to detailed
analysis in this section, and their relevance to the adverse effects of smoking on the lungs is
corroborated by current studies. This significant finding enhances our understanding of the
mechanisms by which smoking harms the lungs and paves the way for future experimental
research into the consequences of smoking.

Table 1. Key genes associated with tobacco smoking identified by feature ranking algorithms.

Cell Type ENSEMBL ID Gene Symbol Description

lung endothelial cells
ENSG00000166710 B2M beta-2-microglobulin
ENSG00000156508 EEF1A1 eukaryotic translation elongation factor 1 alpha 1
ENSG00000133112 TPT1 tumor protein, translationally-controlled 1

lung epithelial cells ENSG00000087086 FTL ferritin light chain
ENSG00000228253 MT-ATP8 mitochondrially encoded ATP synthase 8

lung immune cells ENSG00000234745 HLA-B major histocompatibility complex, class I, B
ENSG00000204525 HLA-C major histocompatibility complex, class I, C

lung stroma cells ENSG00000166598 HSP90B1 heat shock protein 90 beta family member 1
ENSG00000148346 LCN2 lipocalin 2
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4.1.1. Qualitative Features in Lung Endothelial Cells

The first identified gene significantly associated with smoking is B2M (ENSG00000166710).
β-2-Microglobulin (B2M) is a minor component of the major histocompatibility class I
molecule, present on the membranes of all nucleated cells [55]. The expression levels of
B2M are influenced by various factors such as gender, age, alcohol consumption, and
smoking [56,57]. Notably, serum B2M concentrations have exhibited a strong correlation
with smoking status; they are highest in never smokers, followed by former smokers,
and lowest in current smokers [58]. The underlying mechanism driving this differential
expression remains to be elucidated. The above evidence proves the validity of B2M as a
key feature.

The other two genes, EEF1A1 (ENSG00000156508) and TPT1 (ENSG00000133112),
are not directly linked to smoking. However, both are associated with non-small-cell
lung cancer, exhibiting downregulation in this condition [59]. Smoking is a predominant
risk factor for non-small-cell lung cancer [60]. The EEF1A1 gene encodes an isoform of
the alpha subunit in the elongation factor-1 complex, pivotal in transporting aminoacyl
tRNAs to the ribosome [61]. Moreover, EEF1A1 has been associated with lung cancer
development in smokers [62]. The TPT1 gene produces the cytoplasmic protein TCTP,
a robust anti-apoptotic factor linked with malignant cell transformation [63]. TPT1 has
also been detected in endothelial cells undergoing apoptosis [64], suggesting that TPT1
dysregulation in endothelial cells post-smoking may influence apoptosis. Further research
is needed to elucidate the precise mechanisms and effects of these genes’ dysregulation in
lung endothelial cells following tobacco exposure.

4.1.2. Qualitative Features in Lung Epithelial Cells

The first key feature is the FTL gene (ENSG00000087086), which encodes for the light
subunit of ferritin. Elevated FTL expression levels are linked to irritations caused by
cigarette smoke and the onset of chronic obstructive pulmonary disease (COPD). Notably,
smoking stands as a primary controllable risk factor for COPD [65]. Studies indicate a
pronounced effect of cigarette smoke on small airway epithelial cell populations, evidenced
by notable shifts in expression levels contingent on smoking status. Specifically, there is a
marked increase in FTL expression when stimulated with cigarette smoke extracts [26,66],
whereas expression diminishes post smoking cessation [67]. However, the precise mecha-
nism underlying these differential expression patterns is yet to be determined. Collectively,
changes in FTL expression might serve as an indicator of an individual’s smoking status.

The MT-ATP8 gene (ENSG00000228253) emerged as another significant gene related to
smoking status. Encoded by MT-ATP8 is a protein integral to ATP synthase. This enzyme,
commonly referred to as complex V, constitutes a vital component of the mitochondrial
respiratory chain and is instrumental in catalyzing the transformation of ADP into ATP [68].
It is noteworthy that approximately 20% of smokers are predisposed to develop COPD,
and data suggest an upregulation of the MT-ATP8 gene in COPD patients [69]. Moreover,
exposure to diesel waste correlates with reduced methylation levels of MT-ATP8, with
elemental carbon, organic carbon, and PM2.5 also influencing this effect [70]. Given that
cigarette smoke is a primary source of PM2.5, organic carbon, elemental carbon, and various
detrimental compounds, an association between MT-ATP8 expression and smoking status
is insinuated. Yet, a direct relationship between MT-ATP8 and smoking necessitates further
empirical validation.

4.1.3. Qualitative Features in Lung Immune Cells

In lung immune cells, we extensively analyze two pivotal genes, HLA-B (ENSG00000234745)
and HLA-C (ENSG00000204525), in relation to smoking status. Both HLA-B and HLA-
C are integral to the human leukocyte antigen (HLA) system, a sophisticated gene set
situated on human chromosome 6. This system plays an indispensable role in immune
response, primarily facilitating antigen presentation to T cells [71]. Within the scope of
the HLA system, multiple studies have elucidated intricate interactions between certain
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HLA alleles, like HLA-DR, and cigarette smoking, especially in autoimmune disorders
akin to rheumatoid arthritis [72,73]. Notably, HLA-B and HLA-C are linked to smoking-
associated ailments, including COPD and lung cancer [74,75]. A particular study revealed
that MHC-I molecules, encompassing HLA-B and HLA-C, exhibited reduced expression in
lung adenocarcinoma patients who were non-smokers compared to those who smoked [76].
However, exhaustive investigations are still required to unravel the explicit mechanisms
governing the influence of smoking on HLA-B and HLA-C expression.

4.1.4. Qualitative Features in Lung Stroma Cells

HSP90B1 (ENSG00000166598) emerged as the first smoking-associated feature in
lung stromal cells. The HSP90B1 gene is vital for regulating protein folding within the
endoplasmic reticulum [77], particularly under stressful conditions. Given that tobacco
smoke is replete with reactive oxygen species (ROS) that can induce cellular oxidative
stress [78], this may influence the dysregulation of HSP90B1. Significantly, a heightened
expression of HSP90B1 was observed in non-smoking patients compared to NSCLC patients
with a prior smoking history [79]. While experimental validation is essential to ascertain
the exact mechanisms by which smoking impacts HSP90B1, this gene holds potential as a
diagnostic marker for discerning smoking status.

LCN2 (ENSG00000148346) emerged as another key gene related to lung stromal cells.
This gene is responsible for encoding the NGAL protein, essential in regulating innate
immunity and iron homeostasis [80]. Research indicates that cigarette smoke significantly
alters LCN2 expression, suggesting its potential as a marker for the harmful effects of smoke
exposure [81]. Notably, LCN2 expression markedly increased in rat and mouse lungs after
13 and 6 months of cigarette smoke exposure, respectively [82,83]. Additionally, LCN2 is
posited as a prospective prognostic biomarker, potentially signaling an increased metastatic
disease risk among female smokers [84]. Hence, LCN2 might serve as an insightful genetic
indicator for discerning smoking status.

The discovery of specific genes as indicators of smoking status in lung cells greatly
enhances our grasp of how smoking impacts lung health. This breakthrough paves the way
for early detection of smoking-induced damage, personalized treatments, and targeted
public health strategies based on genetic risk. Additionally, it supports further genetic
research into lung diseases and the development of diagnostic tools for precise evaluation
of smoking’s molecular effects.

4.2. Analysis of Decision Rules for Indicating Smoking Status in Different Lung Cell Types

In this section, we analyze the classification rules set forth for distinguishing between
active smokers, former smokers, and never smokers. Depending on the cell type under
consideration, we scrutinize several key gene parameters that show strong correlation with
differential expression relative to smoking status. Recent scholarly publications support
the reliability of these parameters.

4.2.1. Qualitative Rule Parameters in Lung Endothelial Cells

In lung endothelial cells, we detail three important gene parameters, ENSG00000130208
(APOC1), ENSG00000166710 (B2M), and ENSG00000127528 (KLF2), whose expression levels
help to identify different smoking statuses.

In rules, APOC1 expression is notably down-regulated in active smokers and up-
regulated in former smokers. APOC1, a protein present in lipoproteins, plays a crucial
role in lipid metabolism by facilitating the transport of fats in the body [85,86]. Active
smoking can perturb the equilibrium of lipoproteins, particularly low-density lipopro-
teins [87,88], potentially leading to changes in the expression of genes such as APOC1. A
recent investigation determined that SNP rs4420638, situated downstream of the APOC1
gene [89], is significantly associated with smoking cessation. This underlines the correlation
between APOC1 expression and smoking status, suggesting the potential utility of APOC1
in differentiating between smoking states.
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In rules established to determine smoking status, the expression level of B2M was
observed to be lowest in active smokers, intermediate in former smokers, and highest in
individuals who have never smoked. The relationship between B2M expression levels and
smoking status is detailed in Section 4.1.1, with the outcomes of various studies aligning
with our findings. Consequently, B2M can serve as a pivotal parameter in formulating rules
to discern smoking status.

KLF2 stands out as another pivotal parameter. Its expression is up-regulated in rules
that identify active smokers and down-regulated in those distinguishing former smokers.
KLF2, commonly known as Krüppel-like factor 2, is integral to various processes, including
angiogenesis, regulation of blood vessel tone, ifnflammatory responses, and lymphocyte
development and migration [90]. Cigarette smoke, given its essential role in endothelial
function and its anti-inflammatory and vasoprotective properties [91], impairs endothe-
lial function, affecting the inner lining of blood vessels vital for vascular health [92]. In
summary, KLF2 can be used as an important constituent parameter in rules for recognizing
smoking status.

4.2.2. Qualitative Rule Parameters in Lung Epithelial Cells

In lung epithelial cells, we detail two important gene parameters, ENSG00000170345
(FOS) and ENSG00000229807 (XIST), whose expression levels help to identify different
smoking statuses.

In rules established to determine smoking status, the expression of FOS, when present
as a parameter, was highest in rules for active smokers, intermediate for former smokers,
and lowest for those who have never smoked. FOS is a transcription factor that combines
with JUN to form the AP-1 complex, modulating gene transcription. It is engaged in a
multitude of cellular processes and acts as an immediate early gene, promptly activated in
response to various stimuli [93]. Cigarette smoke, laden with noxious chemicals, induces cel-
lular stress and damage. This may prompt cells to invoke pathways, such as the FOS gene,
either for response and repair mechanisms or for programmed cell death [94]. Furthermore,
smoking systemically incites chronic inflammation in the lungs, potentially stimulating
pathways that elevate FOS (c-Fos) expression as a cellular countermeasure [95,96]. One par-
ticular study underscored that the anomalous lung epithelial–mesenchymal transition and
cell proliferation due to tobacco smoke were linked to the up-regulation of phosphorylated
p38 and phosphorylated c-Fos, substantiating the relationship between FOS expression
and smoking [97]. Hence, FOS is instrumental as a key parameter in formulating rules to
ascertain smoking status.

XIST emerges as another significant parameter. Its expression is up-regulated in rules
identifying former smokers and down-regulated in those distinguishing never smokers.
The XIST gene synthesizes a non-coding RNA responsible for silencing one of the two
X chromosomes in females, thus ensuring gene expression parity between males and
females [98]. Smoking has the potential to modify hormone levels, which, in turn, could
influence genes such as XIST. The differential XIST expression between ex-smokers and
never smokers may be associated with these hormonal fluctuations [99,100]. Chen et al.
reported that XIST enhances apoptosis and inflammatory responses triggered by cigarette
smoke extracts via the miR-200c-3p/EGR3 axis [101]. As a result, ex-smokers might exhibit
increased XIST expression relative to never smokers. Given the established relationship
between XIST expression and smoking, XIST can be rightly considered a vital parameter in
the rules to discern smoking status.

4.2.3. Qualitative Rule Parameters in Lung Immune Cells

In lung immune cells, we detail two important gene parameters, ENSG00000100292
(HMOX1) and ENSG00000149021 (SCGB1A1), whose expression levels help to identify
different smoking statuses.

Expression of HMOX1, a key parameter used in immune cells to recognize smoking
status, was lowest in never smokers and slightly higher in former smokers. Expression of
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HMOX1, a key parameter used in immune cells to recognize smoking status, was lowest
in never smokers and slightly higher in former smokers. HMOX1 (heme oxygenase 1) is
an enzyme that degrades heme, producing biliverdin, free iron, and carbon monoxide,
and plays a protective role against oxidative stress and inflammation in cells [102,103].
Cigarette smoke contains harmful substances that generate oxidative stress in cells [104],
leading to increased expression of HMOX1 as a protective response [103]. Former smokers
may have higher HMOX1 expression due to their cells adapting to past-smoking-induced
oxidative stress. Moreover, smoking can cause long-term lung inflammation [105], and the
increased expression of HMOX1 in smokers or former smokers might be a natural response
to reduce this inflammation due to HMOX1’s anti-inflammatory effects [106]. For these
reasons, HMOX1 can be used as a key parameter for composing rules that recognize former
smokers and non-smokers.

SCGB1A1 stands out as a crucial rule parameter within immune cells, designed to
discern smoking status. Its expression is notably reduced in active smokers compared to
slightly elevated levels in former smokers. Also known as CC10 or Uteroglobin, SCGB1A1
is a protein-coding gene predominantly secreted by Clara cells in the lungs. It boasts
anti-inflammatory, immune-modulating, and phospholipase A2 inhibitory functions [107].
Exposure to tobacco smoke can directly harm Clara cells [108], culminating in a diminished
production of the SCGB1A1 protein. The inflammation induced by smoking, especially
in the lungs, can further compromise Clara cells, leading to a decline in SCGB1A1 expres-
sion [109]. As an immunomodulator, SCGB1A1 safeguards the lungs from toxic injuries and
preserves respiratory balance [110]. Therefore, SCGB1A1’s expression profile offers insights
to differentiate active smokers from former smokers. In essence, the varying expression of
SCGB1A1 is a pivotal marker for formulating criteria related to smoking status.

4.2.4. Qualitative Rule Parameters in Lung Stroma Cells

In lung stroma cells, we detail one important gene parameter, ENSG00000166598
(HSP90B1), whose expression levels help to identify different smoking statuses.

HSP90B1 expression, pivotal in lung stromal cells for consistently determining smok-
ing status, is most pronounced in active smokers, then in former smokers, and least in
never smokers. As HSP90B1 is primarily localized in the endoplasmic reticulum (ER), its
upregulation may be part of the unfolded protein response, aiding in protein folding and
degradation [111]. The variances in HSP90B1 expression across active, former, and never
smokers in lung stromal cells could be a reflection of the body’s adaptive mechanisms
to cope with smoking-induced stress, particularly ER stress [112]. Moreover, evidence
highlighting the elevated expression of HSP90B1 in non-smokers diagnosed with non-
small-cell lung cancer is detailed in Section 4.1.4. In sum, HSP90B1 is a crucial marker
when formulating criteria to discern smoking status within lung stromal cells.

5. Conclusions

In this study, we analyzed gene expression data from four lung cell types using sophis-
ticated machine learning algorithms. This analysis identified a set of genes, including B2M,
FTL, HLA-B, and HSP90B1, potentially associated with smoking in four types of lung cells.
Employing the IFS method within our computational framework, we optimized feature
selection for classification. Additionally, we established quantitative rules to determine
smoking status, encompassing active smokers, former smokers, and never smokers. Our
work not only highlights the precision of machine learning in dissecting lung cell functions
but also deepens our understanding of how smoking influences cellular mechanisms at a
molecular level. By establishing quantitative rules for smoking status identification, we
pave new avenues for targeted research into the cellular consequences of tobacco exposure.
Looking forward, this study sets a solid foundation for future inquiries into tobacco’s
molecular damage, aiming to unravel the intricate web of its effects on lung health and
potential pathways for intervention. Our findings should stimulate a closer examination
of the identified biomarkers, promising a more personalized approach in treating and



Life 2024, 14, 502 22 of 26

preventing smoking-related lung conditions. However, the findings reported in this study
still need solid experiments. They provide valuable clues for experimenters in designing
further investigations.
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