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Abstract: Microarray techniques are used to generate a large amount of information on gene
expression. This information can be statistically processed and analyzed to identify the genes
useful for the diagnosis and prognosis of genetic diseases. Game theoretic tools are applied to
analyze the gene expression data. Gene co-expression networks are increasingly used to explore the
system-level functionality of genes, where the roles of the genes in building networks in addition
to their independent activities are also considered. In this paper, we develop a novel microarray
network game by constructing a gene co-expression network and defining a game on this network.
The notion of the Link Relevance Index (LRI) for this network game is introduced and characterized.
The LRI successfully identifies the relevant cancer biomarkers. It also enables identifying salient
genes in the colon cancer dataset. Network games can more accurately describe the interactions
among genes as their basic premises are to consider the interactions among players prescribed by a
network structure. LRI presents a tool to identify the underlying salient genes involved in cancer or
other metabolic syndromes.

Keywords: co-expression network; colon cancer; cooperative games; microarray; network game;
link relevance index; shapely index

1. Introduction

The occurrence or activity of the gene product from its coding gene can be investigated through
gene expression analyses. The study of gene expression profiling of cells and tissue has become a
major tool for discovery in medicine [1]. It is a profound indicator of biological activity where a change
in a biological process results from a changing gene expression pattern. Gene expression data analysis
requires suitable tools for storing and managing relevant data. Microarrays have been identified
as a promising technology to generate huge amounts of information related to the gene expression
data [2,3].
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DNA microarray experiments permit the portrayal of genome-wide expression variations in
various areas like disease and health. These DNA microarrays store data in a consistent expression
data matrix. Microarrays have been progressively applied in various medical and biological research
activities to solve an array of glitches ranging from human tumor detection to environmental stress
alleviation [4,5]. Along with contemporary sequencing tools, the microarray technique continues
to be an exceptional methodology for large-scale expression analysis and concepts commonly used
in genomic technologies. Microarrays can be utilized for conducting very high-end parallel tests of
DNA, RNA, proteins, etc., for expression analysis, the detection of mutation, or re-sequencing [6].
Microarrays have an inherent capacity to spatially sort molecular species such that their concentrations
can be autonomously estimated [7].

Genes portraying coordinated expression across a wide range of experimental settings indicate
the incidence of functional linkages between genes. Gene co-expression networks can be used for
candidate disease gene prioritization, functional gene annotation, and the identification of regulatory
genes. Co-expression networks are effectively only able to identify correlations; they indicate which
genes are active simultaneously, which often indicates that they are active in the same biological
process, but do not normally confer information about causality or distinguish between regulatory
and regulated genes [8,9]. Thus, co-expression gene networks can associate the genes of unknown
function with biological processes in an intuitive way [10,11]. Co-expression networks are connection
situations based on the extent of correlation between pairs of genes across a gene expression dataset.
There have been a number of studies that support the flexibility of co-expression analysis for inferring
and annotating gene functions [12–15].

The statistical tests for differential gene expression analysis provide the details of the candidate
genes having, individually, a sufficiently low p-value. Nevertheless, it is a challenging task to interpret
each single p-value for complex systems that involve numerous interacting genes. Thus, a method for
gene expression analysis based on game theory is proposed [16], wherein a class of microarray games
is introduced to quantitatively evaluate the relevance of each gene in generating or regulating the
condition of the onset of disease. The main advantage of this approach is the possibility to compute a
numerical index, i.e., a relevance index, which represents the relevance of each gene under a certain
condition taking into account the expression behavior of the other genes under the same condition.

A supplementary feature of this game theoretic approach is that it provides an innovative
property-driven classification of the Shapley value in order to contextualize and validate the use
of the Shapley value as a significance index for genes. In some studies, several salient genes are
identified according to the Shapley value, and their relations with the pathogenesis of neuroblastic
tumors are evaluated [17,18]. Microarray games have been used to quantitatively evaluate the relevant
genes involved in disease manifestation [16,19,20]. The Shapley value attributed to a certain gene in a
given microarray game corresponds to the relevance of that gene for the mechanisms governing the
genomic effects of the condition under study. Further, it provides a characterization of a relevance
index for genes, which is mainly based on the role they play inside gene-regulatory pathways (GRP).
The identification of salient genes that mediate cancer etiology, progression, or therapy response is a
challenging task due to the complexity and heterogeneity in cancer biology.

Gene interactions prescribed by some network structure among the participating genes are a
recent area of study. The potential applications of network analysis include determining protein or gene
function, designing effective strategies for treating various diseases, or providing the early diagnosis of
disorders. The information of microarray data must be statistically processed and analyzed to identify
the genes that are useful for the diagnosis and prognosis of genetic diseases. Various game theoretic
tools are applied to analyze the gene expression data [16,18,21–23]. All these techniques have been
proposed to identify the genes that have various important roles in the onset of a genetic disease.

In this paper, we develop a model of network games to analyze the microarray data of gene
co-expression networks under the cooperative framework. While considering such a network,
both genes and their connecting links play an imperative role in shaping its overall structure,
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and therefore, the Shapley value should be substituted by its network counterpart. The standard values
for network games are the Myerson value, which is a player based value or allocation rule, and the
position value, which is a link based value or allocation rule [24]. The choice of a particular type of
value, player based or link based, depends on the physical problem. If players are more important,
we adopt the player based rule, and if the links are more important, we take the link based rule.
In our present work, we focus on the gene co-expression networks and the network game over such
co-expression networks. Therefore, our emphasis is more towards the linking abilities of the genes that
lead to the introduction of the Link Relevance Index (LRI) as a suitable candidate for explaining the
relevance of the genes rather than the player based values. We argue that network games can more
accurately describe the interactions among genes as they consider not only the cooperation among
agents (genes), but also account for how the agents (genes) are connected in a network. We evaluated
LRI for the gene co-expression networks, which is analogues to the Shapely value. Therefore, our study
involves a more detailed description of genetic markers and their combined effects.

Throughout this paper, we work on a matrix of gene expression values that have been already
pre-processed, according to the previous methods. Firstly, we build the theoretical background of the
gene co-expression network games, propose the LRI of a network game as a solution representing the
significance of each of the genes, and finally, compare the results obtained from the existing methods
with our results. The LRI, as we see later, stresses more the links formed by the genes and their
respective contributions in the network.

2. Materials and Methods

We recall some basic concepts related to the development of our model from [9,16–18,21,23,25–28]
in Sections 2.1–2.3. In Section 2.4, we introduce the microarray network games and the corresponding
LRI. We also obtain a characterization of the LRI in the context of gene expression networks.

2.1. Cooperative Games with Transferable Utilities

Let N = {1, 2, ..., n} be a finite set of players and 2N the power set of N, i.e., the set of all the
subsets of N. A cooperative game with Transferable Utilities (TU) is a pair (N, v), where v : 2N → R is
the characteristic function with v(∅) = 0. Every subset S of N is called a coalition, and its worth is
given by the real number v(S). The set N of all the players is called the grand coalition. The class of
all TU-games on the player set N is denoted by G(N). The main assumption in TU-games is that the
grand coalition N will eventually form. A solution is a function Φ : G(N)→ Rn that assigns a vector
Φ(v) ∈ Rn to each game v ∈ G(N). The Shapley value, which assigns to each player his/her average
marginal contribution over all the coalitions, is perhaps the most popular solution concept that builds
on some standard rationality axioms [29]. Formally, given a TU-game (N, v), for each player i ∈ N,
the Shapley value Φ(v) is defined by,

Φi(v) = ∑
i∈S⊆N

(s− 1)!(n− s)!
n!

[v(S)− v(S\i)] (1)

where s = |S| and n = |N| are the cardinalities of coalitions S and N, respectively.
An alternative representation of the Shapley value can be given as:

Φi(v) = ∑
i∈S⊆N

λS(v)
s

for each i ∈ N, (2)

where the coefficients (λS(v))(S∈2N) are called the Harsanyi dividends [30] and given by,

λS(v) = ∑
T⊆S

(−1)s−tv(T).
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2.2. Microarray Games

Microarray games were defined as TU-games in [16] that account for the relevance of groups of
genes in relation to a specific condition. A Microarray Experimental Situation (MES), which is the basis
of the microarray games, is defined as follows (see [16] for more details).

Let N = {1, 2, · · · , n} be a set of n genes, SR = {sR
1 , ..., sR

r } a set of r reference samples, i.e.,
the set of cells from normal tissues, and SD = {sD

1 , ..., sD
d } be the set of cells from tissues with a

genetic disease. In a microarray experiment, each sample j ∈ SR ∪ SD is associated with an expression
profile A(j) = (Aij)i∈N , where Aij ∈ R represents the expression value of the gene i in sample j.
These expression values are called the dataset of the microarray experiment. The dataset allows for
comparison among the expression intensities of genes from different samples. These datasets are
presented as two real-valued expression matrices ASR = (ASR

ij )i∈N;j∈SR and ASD = (ASD
ij )i∈N;j∈SD .

An MES is the tuple E =< N; SR; SD; ASR ; ASD >. In practice, the genes from the samples in SD that
are abnormally expressed with respect to the set SR are distinguished according to some discriminant
function m. The overexpressed genes pertaining to the discriminant function m are assigned one
and the normal ones zero. Thus, each MES can be represented by a Boolean matrix B ∈ {0, 1}n×k,
where k ≥ 1 is the number of arrays with the Boolean values (zero and one). A coalition S ⊆ N that
realizes the association between the expression property and the condition on a single array is called a
winning coalition for that array. Let B.j be the jth column of B. The support of B.j, denoted by sp(B.j)

is the set sp(B.j) = {i ∈ {1, ..., n} such that Bij = 1}.
The microarray game corresponding to B is the TU-game (N, v), where v : 2N → R is such that

v(T) denotes the rate of occurrences of coalition T as a winning coalition, i.e., as a superset of the
supports in the Boolean matrix B. Formally, for each T ∈ 2N \ {∅}, v(T) is the value given by,

v(T) =
|Θ(T)|
|SD|

(3)

where |Θ(T)| is the cardinality of the set Θ(T) = {j ∈ K : sp(B.j) ⊆ T, sp(B.j) 6= ∅}. The class of
microarray games is denoted by the symbolM. The Shapley value is shown to be a solution to the
microarray games by genetically interpreting its properties.

2.3. Network Game

Let N = {1, 2, ..., n} be a nonempty set of players that are connected in some network relationship.
A link is an unordered pair of players {i, j}, where i, j ∈ N. For simplicity, write ij to represent the link
{i, j}. The set gN ={ij : i, j ∈ N, i 6= j} of all subsets of N of size two is called the complete network.
Let G = {g : g ⊂ gN} denote the set of all possible networks on N. With an abuse of notation, by ij ∈ g,
we mean that i and j are linked under the network g. For instance, if N = {1, 2, 3}, then g = {12, 23} is
the network where there is a link between Players 1 and 2 and another link between Players 2 and 3,
but there is no link between Players 1 and 3. Therefore, with the above notation, we have 12 ∈ {12, 23}
and similarly 23 ∈ {12, 23}. Let N(g) be the set of players who have at least one link in g; that is,
N(g) = {i | ∃ j ∈ N; such that ij ∈ g}. Let n(g) = |N(g)| denote the number of players involved in g.
Take |g| to be the number of links in g. By gi, we denote the set of links that player i is involved in
g, so that gi = {ij | ∃ j ∈ N : ij ∈ g}. The number of elements in N(gi) given by n(gi) is also called
the degree of the node i ∈ N in the network g and is denoted by deg(i). For any g1, g2 ∈ G, denote by
g1 + g2 the network obtained through adding networks g1 and g2 and by g1 \ g2 the network obtained
from g1 by subtracting its subnetwork g2. With an abuse of notation, we use g \ ij to denote g \ {ij}
for every link ij ∈ g. A path in a network g ∈ G between players i and j is a sequence of players
i1, ..., ik such that ikik+1 ∈ g for each k ∈ {1, ..., n− 1}, with i1 = i and ik = j. The path relationships
in a network naturally partition a network into different maximally connected subgraphs that are
commonly referred to as components. A component of a network g is a non-empty subnetwork g′ ⊆ g
such that:
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• if i ∈ N(g′) and j ∈ N(g′) where j 6= i, then there exists a path in g′ between i and j and
• if i ∈ N(g′) and ij ∈ g, then ij ∈ g′.

Thus, the components of a network are the maximally connected subgraphs of a network. The set
of components of g is denoted by C(g). Note that g =

⋃
g′ for all g′ ∈ C(g). In our framework, we do

not consider the isolated players, i.e., the nodes without any link as components.

Definition 1. A function v : G → R with the condition v(∅) = 0 is called a value function where ∅ denotes
the empty network. The set of all value functions on G is denoted by V. Under the standard addition and scalar
multiplication of functions, namely (v + w)(g) = v(g) + w(g) and (αv)(g) = αv(g) for each v, w ∈ V and
α ∈ R, V is a linear space.

Definition 2. Given g ∈ G, each of the following special value functions makes a basis for V.

vg(g′) =

{
1 if g ⊆ g′

0 otherwise
(4)

v̂g(g′) =

{
1 if g ⊂

6=
g′

0 otherwise
(5)

and,

v∗g(g′) =

{
1 if g = g′

0 otherwise
(6)

Note that the notion of a basis in V is critical to axiomatizing the solution concepts. Since each
value function is a linear combination of its basis vectors, the corresponding characterization of a
solution in terms of the basis vectors ensures the same characterization of the original game.

Definition 3. A value function v ∈ V is component additive if:

v(g) = ∑
g′∈C(g)

v(g′), for any g ∈ G.

Definition 4. A network game is a pair, (N, v), where N is a set of players and v is a value function on V.
If the player set N is fixed, we denote a network game (N, v) simply by the value function v.

Definition 5. An allocation rule is a function Y : G× V→ Rn that assigns a value Yi(g, v) to each player
i ∈ N.

Thus, an allocation rule in a network game describes how the value generated by the network
is allocated among the players. For a survey on the alternative allocation rules for network games,
we recommend [25,31]. An allocation rule Y is link based if there exists a function Ψ : G × V →
Rn(n−1)/2 such that:

∑
ij∈gN

Ψij(g, v) = v(g) and Yi(g, v) = ∑
i 6=j

Ψij(g, v)
2

(7)

Thus, a link based allocation rule allocates the total worth of a network to the players in two steps:
the value is first allocated among the links treating them as players, and then, it is divided equally
between the nodes (players) forming each such link. The position value [25,27,28,32] is one of the
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popular link based allocation rules that is based on the Shapley value [29] of the links in a network.
It is denoted by YPV

i and given by (see [28]),

YPV
i (g, v) = ∑

i 6=j,ij∈g

 ∑
g′⊆g

1
2
(v(g′)− v(g′\ij))

 (|g′| − 1)!(|g| − |g′|)!
|g|! (8)

An equivalent form of the position value using the unanimity coefficients λg(v) due to [28] is
given below.

YPV
i (g, v) = ∑

g′⊆g,i∈N(g′)

|g′i |
2|g′|λg′(v) (9)

Observe that the position value in a network game (N, v) receives half of the Shapley value of each
of the links in which the player is involved. In what follows next, we present a recent characterization
of the position value due to [28]. As an a priori requirement, we state the following definitions.

Definition 6. An allocation rule Y defined on G×V is additive if:

Y(g, v1 + v2) = Y(g, v1) + Y(g, v2),

for each pair (N, v1), (N, v2) of network games with component additive value functions v1 and v2.

Definition 7. For i, j ∈ N, the link ij ∈ g is superfluous in the network game (N, v) if:

v(g′) = v(g′\ij),

for each network g′ ⊆ g.

Definition 8. An allocation rule Y defined on G×V satisfies the superfluous link property if:

Y(g, v) = Y(g\ij, v)

for each network game (N, v) with a component additive value function v and all links ij that are superfluous in
(N, v).

The superfluous link property states that if a link in the network is insignificant in terms of the
value the network accrues, the allocation rule also does not consider that link for the computation of
the value for each player. This idea is similar to the null-player property of TU-games [25].

Definition 9. A value function v is link anonymous on g if v(g′) = v(g′′) ∀ g′, g′′ ⊆ g such that |g′| = |g′′|.

Link anonymity states that when all the links in a network are interchangeable for the purpose of
determining the values of the subnetworks, the relative allocations of the players in the network are
determined by the respective number of links in which each player is involved. This idea is similar to
that of the symmetry axiom of the Shapley value for TU-games [25].

Definition 10. An allocation rule Y on G × V is link anonymous if for every network g ∈ G and link
anonymous value function v ∈ V on g, there exists an α ∈ R such that:

Yi(g, v) = α|gi|, ∀ i ∈ N.

Definition 11. An allocation rule Y satisfies efficiency if ∑i∈N Yi(g, v) = v(g) for all network games (N, v).
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In [28], the following characterization theorem of the position value is proven. This result is used
in a later part of this paper.

Theorem 1. ([28], p. 16) The position value YPV is the unique allocation rule on the domain of all value
functions that satisfies efficiency, additivity, the superfluous link property, and link anonymity.

2.4. Microarray Network Games and the Link Relevance Index

To obtain a microarray network game, we construct a gene co-expression network and then
define a value function on this network. Recall from Section 1 that the co-expression networks
are connection situations based on the extent of correlation between pairs of genes across a gene
expression dataset. Here, nodes are genes and connections are defined by the co-expression of
two genes. Often, we consider the Pearson correlation coefficient as the initial measure of gene
co-expression [8]. This measure is then transformed into an adjacency matrix, according to different
alternative statistical procedures. When the network game is fully described, we obtain this network
game. The LRI of the nodes are indicative of the salient genes responsible for the onset of a disease.
In the following, we first describe how the gene co-expression network is obtained.

2.4.1. Construction of Gene Co-Expression Networks

We follow a general framework for the construction of gene co-expression networks (for details,
see [33]). In such networks, each gene corresponds to a node, and nodes are connected if the
corresponding genes are significantly co-expressed across appropriately chosen tissue samples.
In reality, it is tricky to define the connections between the nodes in such networks. To correlate
the degrees of two nodes i and j, we use the Pearson Correlation Coefficient (PCC). The PCC (or the
r-value) between two nodes is defined as the covariance of the two nodes divided by the product of
their standard deviations. If N is the number of samples and xi and yi the expression values of genes i
and j of the corresponding samples, then the PCC is calculated as follows.

cor(i, j) =
N ∑ xiyj −∑ xi ∑ yi√

N ∑ x2
i − (∑ xi)

2
√

N ∑ y2
i − (∑ yi)

2
(10)

Consider the MES E =< N; SD; SR; ASD ; ASR >. Construct a real matrix R(E,m) using a
discriminant function m on the entries of ASD and ASR . In R(E,m), zeroes represent the normal genes,
and the nonzero entries represent the diseased genes with different expression levels of respective
samples, which is unlike the Boolean matrix B of a microarray game. From R(E,m), we obtain the
adjacency matrix for the gene co-expression network based on some biologically motivated criterion
(referred to as the scale-free topology criterion). This is done by defining first a similarity measure
sij between each pair of genes i and j. Denote by sij the absolute value of the Pearson correlation
coefficient, |cor(i, j)|. Note that sij ∈ [0, 1]. Genes with no correlation are assigned a value near 0.0,
while genes that are strongly correlated are assigned a value near 1.0. We denote the similarity matrix
by S = [sij]. S can be considered to be a weighted network.

To transform the similarity matrix into an adjacency matrix, an adjacency function needs to be
defined. The adjacency function is a monotonically increasing function that maps the interval [0, 1] into
{0, 1}. The most widely used adjacency function is the signum function, which involves the threshold
parameter τ; see [33]. The signum function is defined as follows,

aij = signum
(
si,j, τ

)
=

{
1 if si,j ≥ τ

0 if si,j ≤ τ
(11)

There are several approaches for choosing the threshold parameter τ. Sometimes, information
gets lost due to hard thresholding. For example, if two genes are correlated with coefficient 0.79,



Diagnostics 2020, 10, 586 8 of 21

they are considered to be disconnected with regard to a hard threshold τ = 0.8. The signum adjacency
function forms an unweighted network. Thus, the gene co-expression network is represented by the
adjacency matrix A =[aij], where aij is one if the connection between two nodes i and j exists and
zero otherwise, so the diagonal elements should be zero. Let us denote by gE the gene co-expression
network with respect to the MES E =< N; SD; SR; ASD ; ASR >.

The following example is a slight modification of Example 1 in [16] (pg 259), which highlights the
process of obtaining a gene co-expression network from an MES.

Example 1. Consider the MES E =< N; SD; SR; ASD ; ASR > such that the normal sample ASR and the
diseased sample ASD are reported in the following tables, respectively.

ASR Sample 1 Sample 2 Sample 3 Sample 4
Gene 1 0.4 0.2 0.3 0.6
Gene 2 −12 10 4 5
Gene 3 4.8 3.5 5.5 6.3
Gene 4 12 14 17 19
Gene 5 3.1 4.6 7.2 5.6

ASD Sample 1 Sample 2 Sample 3
Gene 1 0.9 0.4 0.1
Gene 2 −11 13 18
Gene 3 2.7 1.9 5.6
Gene 4 10 20 15
Gene 5 2.1 6.3 1.6

The dataset of a microarray experiment is presented in terms of the logarithms of the relative
gene expression ratios of the target sample with the reference sample. A positive number indicates
a higher gene expression in the target sample than in the reference one, whereas a negative number
indicates a lower expression in the target sample.

Now, construct a real matrix from the expression matrices by using a discriminant method m such
that for each i ∈ N and each j ∈ SD:

(
m
(

ASD , ASR
))

ij
=

{
0 if minh ASR

ih ≤ ASD
ih ≤ maxh ASR

ih such that h = {1, 2, 3}
ASD

ij otherwise
(12)

The corresponding real matrix is:

R(E,m) =


0.9 0 0.1
0 13 18

2.7 1.9 0
10 20 0
2.1 0 1.9


In this matrix, zero represents the normal genes, and the real numbers represent the diseased

genes with different expression levels of the respective samples. The similarity matrix S with respect
to R(E,m) is given by:

S = [sij] =


1.0 0.93 0.65 0.10 0.65
0.93 1.0 0.88 0.26 0.33
0.65 0.88 1.0 0.68 0.10
0.10 0.26 0.68 1.0 0.81
0.65 0.33 0.10 0.81 1.0
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Considering soft threshold β = 1, it follows that S represents a weighted network where all
genes are connected to each other with some weights. Choosing the power β, the resulting network
displays an approximate scale-free topology. However, one potential drawback of the soft threshold
is that the network becomes too complex to track the relationship among the nodes. Therefore,
the selection of a suitable threshold that allows the connection weights up to a certain level is a critical
step. After applying a threshold, we obtain the resulting matrix as an unweighted network. Let us
take τ = 0.8 for the sake of illustration. Then, the adjacency matrix corresponding to S becomes:

A = [aij] =


0 1 0 0 0
1 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0


Thus, gE = {12, 23, 45} is the required gene co-expression network over the microarray

experiment situation E and N(gE) = {1, 2, 3, 4, 5}. Similarly, for τ = 0.6, the corresponding network
will be gE= {12, 13, 15, 23, 34, 45}.

2.4.2. Microarray Network Games

Once the co-expression network gE has been constructed, i.e., the adjacency matrix has been
formed, we have to define a value function v on G, the set of all possible networks on N. Let N(gE)

and n(gE) denote, respectively, the set of genes and the number of genes that form the network gE.
For instance, in Example 1, N(gE) = {1, 2, 3, 4, 5} and n(gE) = 5.

Definition 12. Given the co-expression network gE ∈ G, let the support sp(i) of gene i ∈ N in gE be defined
as the set of links in gE that gene i is involved in, i.e., sp(i) = {ij : ij ∈ gE for j ∈ N(gE)}. Therefore,
following the standard notations, we have sp(i) = gE

i .

Consider the network gE = {12, 23, 45} in Example 1. The supports of the respective genes
are sp(1) = gE

1 = {12}, sp(2) = gE
2 = {12, 23}, sp(3) = gE

3 = {23}, sp(4) = gE
4 = {45},

and sp(5) = gE
5 = {45}.

Definition 13. Let N = {1, 2, ..., n} be the set of genes. Given an MES E =< N; SD; SR; ASD ; ASR > and the
corresponding gene co-expression network gE, a microarray network game with respect to E and gE is the triple
(N, v, gE) where (N, v) is a network game with the value function v that assigns to each g ∈ G the average
number of genes having connections in gE. Formally, we define the value function v : G → R as:

v(g) =
|Ĉ(g)|
n(gE)

(13)

where Ĉ(g) = {i ∈ N(gE) : ∅ 6= gE
i ⊆ g} for each g ∈ G.

Thus, the value function v determines the collective influence of a set of genes who are connected
through a co-expression network. In practice, v(g) is the average number of genes added over all
components that are contained in the set of links where both the genes are involved together in the
onset of the disease determined by the network g. It follows that an equivalent form of the value
function v as a sum of the basis games vg defined in Equation (4) in a microarray network game
(N, v, gE) is given by:

v = ∑
∅ 6=g⊆gN

αg(v)vg = ∑
∅ 6=g⊆gN

ᾱg(v)
n(gE)

vg =
1

n(gE) ∑
i∈N(gE),gE

i 6=∅

vgE
i

(14)
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where we choose the coefficients αg(v) =
ᾱg(v)
n(gE)

such that ᾱg(v) = |{i ∈ N(gE) : gE
i = g}|. If no

ambiguity on N arises, we denote a microarray network game by the pair (v, gE). The class of
microarray network games with player set N is denoted byMN .

Example 2. In Example 1, recall that gE = {12, 23, 45} is the gene co-expression network and
N = {1, 2, 3, 4, 5} the set of genes. The value function v of the microarray network game (v, gE) is given by,

v(g) =
1
5
{u{12}(g) + u{12,23}(g) + u{23}(g) + u{45}(g) + u{45}(g)} (15)

Thus we have, v({12}) = v({23}) = 1
5 , v({45}) = 2

5 , v({12, 23}) = v({12, 45}) =v({23, 45})= 3
5 ,

v(gE) = v({12, 23, 45}) = 1, and v(g) = 0 for all g ∈ G.

The value function v of the microarray network game (v, gE) picks up the information that can
be used to define the role of each link in each co-expression of genes by applying suitable solution
concepts of network games. The value function v specifies the total value that is generated by a given
network structure. The calculation of the value may involve both costs and benefits in networks and is
a richer object than a characteristic function of the microarray game. This is because the value depends
on the network structure in addition to the coalition of players involved [26].

2.4.3. LRI for Microarray Network Games and Its Characterization

In the previous subsection, we discussed the allocation rules for network games. An allocation
rule for microarray network games describes how the value generated by a network is allocated among
the genes. We call it the LRI. Define the function F : G×MN → Rn on the class of microarray network
games as follows.

Fi(g, v, gE) = ∑
g′⊆g,i∈N(g′)

|g′i |
2|g′|αg′(v)

=
1

n(gE) ∑
g′⊆g,i∈N(g′)

|g′i |
2|g′| ᾱg′(v) (16)

where αg′(v) and, hence, ᾱg′(v) are defined as in Equation (14). The following example shows the
relevance of F in Example 2.

Example 3. Let us consider the network gE = {12, 23, 45} in Example 2. Using Equation (16), we compute F
for different g as follows:

For g = gE = {12, 23, 45}, F(g, v, gE) = (
3
20

,
6

20
,

3
20

,
4
20

,
4

20
).

For g = {12}, F(g, v, gE) = (
1

10
,

1
10

, 0, 0, 0).

For g = {12, 23}, F(g, v, gE) = (
3

20
,

6
20

,
3
20

, 0, 0).

The numerical values are indicative of the individual contributions of the genes in the network g, given the
microarray network game (v, gE).

In what follows next, we define the LRI based on properties similar to the ones that are used
to characterize the position value. Recall that the superfluous link property states that the presence
or absence of a link between players that has no influence on the value of any network also has no
influence on the allocations of respective players in a network. The interpretation of the superfluous link
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property in the genetic context is simple and intuitive. If a link is deleted from the gene co-expression
network, i.e., the expression of two genes along this link is controlled, then the corresponding allocation
rule also does not consider the effects of their link. Thus, a link ij ∈ g is superfluous in the microarray
network game (v, gE) if v(g) = v(g\ij) for all networks g ∈ G.

Definition 14. An allocation rule Y on G×MN satisfies the superfluous gene link property if Y(g, v, gE) =

Y(g\ij, v, gE) for all microarray network games (v, gE) ∈ MN and all links ij that are superfluous in (v, gE).

Proposition 1. F given by Equation (16) satisfies the superfluous gene link property.

Proof. The proof follows from the simple fact that in a microarray network game (v, gE) ∈ MN ,
the superfluous links are those links that are not in gE.

Recall that link anonymity states that when all the links in a network are interchangeable for the
purpose of determining the values of the sub-networks, the relative allocations of the players in the
network are determined by the relative number of links in which each player is involved. In the context
of gene co-expression networks, the anonymity property says that the value of a gene co-expression
network is derived from the structure of the network and not the labels of the genes who occupy
various positions. Owing to this property, genes survive, swapping from one organism to the other,
as recently observed in [34].

Definition 15. Let the microarray network game (v, gE) ∈ MN be link anonymous, i.e., v(g′) = v(g′′)
for every pair of g′, g′′ ⊆ g such that |g′| = |g′′|. An allocation rule Y on G ×MN satisfies the gene link
anonymity if there exists αi ∈ R for each i ∈ N such that Yi(g, v, gE) = αi|gi| for each link anonymous
microarray network game (v, gE) ∈ MN .

Proposition 2. F given by Equation (16) satisfies link anonymity.

Proof. Since F is a function of the respective sizes of the networks g, gE, and gE
j (j ∈ N(gE)), the result

follows immediately from the definition.

Now, we define the LRI for the class of microarray network games as follows.

Definition 16. An allocation rule Y : G×MN → Rn is called an LRI on the class of microarray network
games if it satisfies efficiency, additivity, the superfluous gene link property, and the gene link anonymity.

The following is a characterization theorem of the LRI.

Theorem 2. F given by Equation (16) is the unique LRI on G×MN .

Proof. The additivity of F easily follows from the well-known fact that the unanimity coefficients
are additive in value functions. Using Proposition 1 and a result in graph theory that states that
|g| = 1

2 ∑i∈N |gi|, we have,

∑
i∈N

Fi(g, v, gE) = ∑
i∈N

1
n(gE) ∑

g′⊆g

|g′i |
2|g′| ᾱg′(v)

= ∑
g′⊆g

αg′(v) ∑
i∈N

|g′i |
2|g′|

= ∑
g′⊆g

αg′(v)

= v(g)
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Thus, we see that F satisfies all the axioms of an LRI. For the converse part, let the function
Y : G×MN → Rn satisfy these properties. Then, Y can be extended to a function Ỹ : G×V → Rn

that also satisfies these properties. It is straight forward to show that Ỹ is the position value on
G×V such that Ỹ|G×MN = F. Thus, by the uniqueness of the position value, Y = F. This completes
the proof.

Remark 1. In particular, when g = gE in Equation (16), an equivalent form of the LRI Fi(gE, v, gE) can be
obtained as follows. Take Ni(gE) = N(gE

i ) \ {i} and nj(gE) = n(gE
j )− 1. Thus, Ni(gE) denotes the set of

neighbors of i in gE (i.e., all the nodes j 6= i that are directly connected to i) and nj(gE) the number of neighbors
of node j (that is the degree of j in the graph). Next, consider the game vgE

i
(refer to Equation (5)) with gE

i 6= ∅.

By Theorem 2, F(gE, vgE
i
, gE) satisfies gene link anonymity. Therefore, we have:

Fk(gE, vgE
i
, gE) =


1
2

1
|gE

i |
, if k ∈ N(gE

i )

0, otherwise.

Moreover, by Equation (14) and the additivity of F, we have that:

F(gE, v, gE) =
1

n(gE) ∑
i∈N(gE),gE

i 6=∅

F(gE, vgE
i
, gE),

Observe that if gE
i 6= ∅, Fi(gE, vgE

i
, gE) = ∑ij∈gE

i

1
2n(gE)

1
|gE

i |
= |gE

i |
1

2n(gE)
1
|gE

i |
= 1

2n(gE)
,

while Fi(gE, vgE
j
, gE) = 1

2n(gE)
1
|gE

j |
= 1

2n(gE)
1

nj(gE)
, for all j ∈ Ni(gE

i ). It follows that,

Fi(gE, v, gE) =
1

2n(gE)
(1 + ∑

j∈Ni(gE)

1
nj(gE)

) for all i ∈ N. (17)

Equation (17) suggests that, according to the LRI, a node is more important if connected to too many nodes
that are not very well connected. This formula is very close (at least in the interpretation) to the Shapley values
given in [19,20] for TU-games defined on a gene network. However, the two approaches are completely different
both in the game formulation and in the definition of the index. Another important difference between them is
that in Equation (17), each node contributes to its relevance a fixed amount of one, whereas in the formula of the
Shapley value in [19,20], it contributes with the value of 1

n(gE
i )+1

.

3. Results and Discussions

We tested our model on a previously reported colon cancer dataset [4,16,35,36] (http://genomics-
pubs.princeton.edu/oncology/affydata/index.html.) containing the expression of 2000 genes with
highest minimal intensity across 62 tissues. In the expression data measured using Affymetrix
oligonucleotide microarrays, forty tumor samples and a set of 22 normal samples exist. An adjacency
matrix is obtained using the signum function based hard thresholding approach, which encodes edge
information for each pair of nodes in the network. A pair of genes is said to be connected by an edge if
their similarity value, which is calculated using the Pearson correlation, is greater than a threshold.
We considered the threshold value to be 0.9 for our experiment.

A network (Figure 1) was constructed employing the LRI on the colon cancer dataset (refer
Section 3). The network was made utilizing the igraph [37] package in R [38] by using the adjacency
matrix generated after removing isolated points. The colors of the nodes connote the link relevance
index varying from least (green) to highest (blue). Affy IDs of the top 15 genes are used to label the
highest LRI nodes. The top fifteen genes selected by their highest LRI and its corresponding Shapley

http://genomics-pubs.princeton.edu/oncology/affydata/index.html.
http://genomics-pubs.princeton.edu/oncology/affydata/index.html.
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values reflect various cellular mechanisms (Table 1). Most of them were previously observed to be
associated with the colon cancer.

Figure 1. The graph represents the genes in colour based on LRI value. Affy-id of top fifteen genes in
colon cancer dataset exhibiting highest LRI values are also labelled.

We further analyzed if the genes were similarly ranked by the two methodologies viz., the LRI
and the Shapely value. The LRI and the Shapely value depict no overlap between the top 100 genes
(Figure 2A). However, the top 200, 300, 400, and 500 genes (Figure 2B–E) exhibit 3, 11, 30, and 134 gene
overlaps, respectively, between the two indices, suggesting there is a difference in the relative scoring
of the genes using the two methodologies and therefore less similarity in the top selected gene sets.

The LRI and the corresponding Shapely value of top 50 genes are plotted to analyze any
link/similarity between them (Figure 3). We found that the distribution of the LRI score of the top genes
was not only different than the Shapely value, but also their distribution may follow a varied trend due
to the likely difference in the background ranking method. Furthermore, Pearson’s correlation also
suggests no significant correlation (R2 = 0.0833) between the LRI and Shapely value. The two methods
were found to be separate in terms of their overall findings, and therefore, the LRI was considered to
be a unique approach rather than a derived one.
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Table 1. Top 15 genes with highest LRI and its corresponding Shapley value.

SlNo. Gene No. Annotation LRI Shapley Value

1 H43908 Transforming growth factor beta 2 precursor (Gallus gallus) 0.001398 0.000482

2 D17400 Human mRNA for 6-pyruvoyl-tetrahydropterin synthase 0.00134 0.000264

3 D12686 Human mRNA for eukaryotic initiation factor 4 gamma (eIF-4 gamma) 0.001339 0.000212

4 D00762 Proteasome component C8 (human) 0.001303 0.00035

5 U07695 Human Tyrosine Kinase (HTK) mRNA 0.001261 0.00029

6 J03569 Human lymphocyte activation antigen 4F2 large subunit mRNA 0.001261 0.00019

7 R46069 Merozoite surface antigens precursor (Plasmodium falciparum) 0.001225 0.000152

8 X17097 Human PSG9 mRNA for pregnancy specific glycoprotein 9. 0.001223 0.000476

9 M31679 Human Gastric Inhibitory Polypeptide (GIP) gene, exon 6. 0.001208 0.000484

10 H07899 Vascular endothelial growth factor precursor (Homo sapiens) 0.001188 0.000353

11 M19283 Human cytoskeletal gamma-actin gene 0.001174 0.000274

12 X14767 Human mRNA for GABA-A receptor, beta 1 subunit 0.001157 0.000271

13 M97370 Human Adenosine receptor (A2) gene 0.001122 0.000408

14 M69238 Human Aryl hydrocarbon Receptor Nuclear Translocator (ARNT) mRNA 0.001121 0.000417

15 T77537 Plasminogen (Sus scrofa) 0.00112 0.000397

Figure 2. Venn diagrams exhibiting overlaps between the top 100 (A), 200 (B), 300 (C), 400 (D), and 500
(E) ranked gene sets identified by the LRI (cornflower blue) and Shapley (S) (dark orchid) methods.
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Figure 3. The relationship between the LRI and its corresponding Shapely value of the genes. The LRI
(red hollow circle) of the top 50 genes and corresponding Shapely value (black solid circle) are plotted
to analyze any similarity between them.

We retrieved the list of all marker genes from the CellMarker database [16,39] that were well
characterized and validated through the experimental setup and not just through theoretical estimation.
Thereafter, we mined these marker genes to corresponding gene names and mapped them against the
probe in the microarray platform. Three IDs viz. “Hsa.1240”, “Hsa.654”, and “Hsa.663“ corresponding
to genes ALDH1A1(M31994), CD24 (L33930), and CD44(M59040), respectively, were selected for
further analysis, as can be seen in Figure 4.

Figure 4 exhibits the distribution of the LRI of 2000 genes from highest to lowest in a rank-wise
manner for each gene. We also plot the position of the three biomarkers, namely (CD44) M59040,
(ALDH1A1) M31994, and (CD24) L33930, to show their relative position in this distribution.
Shapely values of corresponding microarray games, arranged from highest to lowest, are also presented
to compare the distribution pattern and relative position of the three biomarkers. LRI was able to
correctly estimate the expected relative position of these colon cancer biomarkers. On the one hand,
the Shapely value exhibited an exponential increase in the score, the LRI, which is based on the
contribution of each gene in the co-expression network, exhibited a nonlinear curve in the distribution
of the scores of 2000 genes.

Colon Cancer Stem Cells (CCSCs) not only have the potential of self-renewal and differentiation,
but also exhibit “tumorigenicity” when transplanted into an animal host. CD44 (M59040) expressed
on the surface of the CCSC is reported to have a major role in the progression, survivability,
and “tumorigenicity” of such CCSCs, thereby making it a potent biomarker and target for diagnosis,
biosensing, prognosis, and therapeutics in the case of colon cancer [40–43]. Du L et al. (2008) [41]
reported the relevance of CD44 as a superior marker and its functional significance in contributing to
CCSCs for cancer initiation and progression.

We found the LRI was able to estimate the higher relevance of CD44 (M59040) by means of
estimating its contribution in the co-expression network by assigning it higher index of relevance.
On the other hand, the same gene scored poorly in the Shapely value, which undermines its relevance.
This validates that the LRI is better able to estimate the relevance of the gene compared to the Shapely
value (Table 2, Figure 4).
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Figure 4. The LRI and Shapley Value score of gene sets arranged in a rank-wise manner and the
position of the three biomarkers relative to each other.

Table 2. List of well-validated biomarkers for colon cancer stem cells from the validated experimental
setup (along with a review for more reference and importance) retrieved from the CellMarker
database [39] and populated thereafter (for the ease of reading).

Tissue Cell Type
Cell Marker

Source Details (PubMed ID)
CD44 CD24 ALDH1A1 Others

* * * Experiment 26399781, 29277789

* * Experiment 25625240, 22310487

* * * Experiment 26185996

Cancer * * * Experiment 21196254

Colon stem * * Experiment 27806848

cell * * * Experiment 27789195

* Experiment 27323782

* * * Experiment 28986882

* * Review 22459349

Asterisk in table means a yes mark.

The gene M31994 encodes Aldehyde dehydrogenase 1A1 (ALDH1A1), which catalyzes aldehydes
to their corresponding carboxylic acids through the oxidation process [44]. It has also been enunciated
that a considerable amount of ALDH1A1 enrichment occurs in colon cancer [45,46]. ALDH1A1 has
been successfully used as a CCSC marker along with many other cancers, including breast
cancer [47,48]. However, studies evaluating the association/relationship between ALDH1A1
expression with colon cancer initiation and progression for prognosis and therapeutics remain
inconclusive [49–53]. Scientists have argued about the significance of the role of ALDH1A1 in colorectal
cancer. Furthermore, clinical evidence equivocally suggests ALDH1A1’s application as a prognostic or
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predictive biomarker in colon cancer [50]. Moreover, most of the aforementioned research articles did
mention the role of CD44 along with ALDH1A1 in cancer initiation, progression, and metastasis.

The gene M31994’s (ALDH1A1) relevance in the control case dataset of colon cancer was found to
be moderate using the LRI. However, for the Shapely value, the same gene scored very high along
with L33930 (CD24). The LRI method was better able to estimate its position relative to M59040 (CD44)
compared to the Shapely value.

CD24 is the product of the L33930 gene and is anchored on the exterior side of the cell
membrane. The positive expression and overabundant distribution of CD24 in colorectal cancer
is under dispute [52]. A few previous studies reported that CD24 was expressed higher in a fraction
of the colorectal cancer population [54,55]. Furthermore, researchers asserted CD24 expression to be
limited to only a small fraction of colon cancer cell lines [56]. However, none of these previous reports
refuted the significant role of CD44 in colon cancer cell lines. Instead, experimental evidence indicated
that CD44 expression was highly significant in the considered colon cancer cell lines, thus highlighting
its importance in colon cancer development and progression, but maintaining that only a fraction of
these cells exhibited the expression of CD24 [52,54–56]; in the authors own words, at “a fair level of
5–10%” [56]. They reported that HCT116 and SW480 colon cancer cells were CD44+ cells and that only
a subpopulation of these CD44+ cells exhibited CD24 [56]. Evidence based on clinical studies not only
highlighted the marginal contribution of CD24 [52,56], but also stressed CD44 expression in CCSC in
initiating cancer, thus making it a better biomarker for colon cancer [41,52].

While comparing the three biomarkers, LRI rightfully estimated the marginal contribution of
L33930 (CD24) in colon cancer development and progression; however, the Shapely value scored it
very high compared to M59040 (CD44). The Shapely values scored L33930 (CD24) highest among all
three genes, despite the previous experimental evidences suggesting its relatively lower relevance.
The LRI, however, was able to predict the relative relevance of this gene and positioned it after M59040
(and M31994). In fact, the LRI was able to predict that L33930’s (CD24) role is only incidental and that
its expression has no or marginal contribution to colon cancer.

Compared to the Shapley value, the LRI was able to identify the relative contribution/position
of the three colon cancer biomarkers. The relevance of same three biomarkers is also evident
from experimental studies, including high-throughput single cell RNA seq, as mentioned in the
PanglaoDB [57].

3.1. Pseudocodes for the Gene Co-Expressions Networks’ Formation

The symbols given in Table 3 are useful in describing our method. The pseudocodes of the
proposed method is presented in Algorithm 1.

Algorithm 1: Pseudocode of the gene co-expression network’s construction.

INPUT: D and τ

OUTPUT: gE

1. for gi ∈, do

2. Compare ASD with ASR

3. end for

4. R is constructed after comparing

5. for For i = 1 to n, do

6. S is constructed using Pearson correlation

7. end for

8. for For i=1 to m, do

9. A is obtained by taking τ = 0.9

10. end for

11. gE is obtained from A
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Table 3. Symbol table.

Symbols Term

D The gene expression dataset
ASD Disease dataset
ASR Normal dataset
R Real matrix
S Similarity matrix
gE Link matrix
τ Similarity threshold
gi ith gene in D

4. Conclusions

The identification of salient genes that mediate cancer etiology, progression, or therapy response is a
challenging task due to the complexity and heterogeneity in cancer data. In a network game, the challenge
is to find how players form a network, accrue a value due to the formation of the network, and finally,
allocate the value of the network among the participating players. In this paper, we introduced the notion
of a microarray network game to highlight the application of network games in gene expression analysis
related to disease onset. We obtained the Link Relevance Index (LRI) to highlight the significance of
the genes in a Microarray Experimental Situation (MES). By analyzing a real-world dataset, we made
a comparison of our model with the existing game theoretic model in identifying the salient genes
responsible for colon cancer. Indexing of genes according to the Shapely values rarely identified genes
according to the expectation. The LRI model was validated by its ability to identify the relative relevance
of three biomarkers of colon cancer. The results of the analysis on these biomarkers established not just
the validity of the Link Relevance (LR) method, but also its advantage compared to the Shapely value
in its ability to find the salient genes. In all three biomarker cases, the LR was able to score the genes
according to their relative relevance and thus was able to identify salient genes in comparative expression
studies. Moreover, in comparison to the Shapely value, the results of the LR method are close to actual
immuno-histo-chemical assays and cancer genetic experiments reported previously. These results suggest
that our proposed model is superior, and the top genes in the network show their contribution towards
the development of colon cancer. The proposed model can be extended to study similar problems related
to other genetic or metabolic syndromes.
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Abbreviations

The following abbreviations are used in this manuscript:

ALDH1A1 Aldehyde dehydrogenase 1A1
CD Cluster of Differentiation
CCSCs Colon Cancer Stem Cells
MES Microarray Experimental Situation
LRI Link Relevance Index
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