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Abstract: Allostatic load reflects the cumulative strain on organic functions that may gradually
evolve into overt disease. Our aim was to evaluate the allostatic parameters in the context of aging,
and identify the parameters that may be suitable for an allostatic load index for elderly people
(>60 years). From previously published studies, 11 allostatic (bio)markers could be identified that
sustain sufficient variability with aging to capture meaningful changes in health status. Based on
reported statistics (prevalence of a biomarker and its associated outcome, and/or an odds/risk ratio
relating these two), seven of these could be adopted in a Bayesian Belief Network (BBN), providing
the probability of “disturbed” allostasis in any given elder. Additional statistical analyses showed that
changes in IL-6 and BMI contributed the most to a “disturbed” allostasis, indicating their prognostic
potential in relation to deteriorating health in otherwise generally healthy elderly. In this way,
and despite the natural decline in variance that irrevocably alters the prognostic relevance of most
allostatic (bio)markers with aging, it appeared possible to outline an allostatic load index specifically
for the elderly. The allostatic parameters here identified might consequently be considered a useful
basis for future quantitative modelling in the context of (healthy) aging.

Keywords: allostasis; allostatic load; allostatic load index; aging; biomarkers; Bayesian belief network;
elderly; IL-6; BMI

1. Introduction

Healthy aging is conceptualized by one’s ability to adapt and efficiently respond to
endogenous and/or exogenous stressors that occur throughout one’s lifespan (e.g., infec-
tions, surgery, and other major life events, like bereavement or divorce) [1–3]. The concept
of allostasis—“achieving stability through adaptive changes”—describes the dynamic, plu-
riform, though to some extent orchestrated, neurophysiological and psychophysiological
responses that aim to match such demands [4–6]. One of the key features of investigating
the nature of allostasis is the response of a (pre-defined) range of (bio)markers to health
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challenges threatening internal homeostasis. These adaptive responses can be either physi-
cal, endocrine, immune, neuroendocrine, cardiorespiratory, and/or psychosocial, each of
which provides the opportunity to measure and/or monitor changes over time in health
status by commonly assessed clinical (bio)markers [1,5,7]. Amongst others, Seeman and
Juster and their colleagues [1,5,8] designed multiple methods to define an “Allostatic Load
Index” (ALI) as parameter of overall health and resilience by combining and interpreting
such markers. Extending on these previous studies, and within the context of the Physical
Activity and Nutritional Influence in Aging EU consortium [9], the present study aimed to
design an allostatic probability model indicating health status in specifically the elderly.

In their landmark paper, Juster et al. [1] published an extensive overview of parameters
that are repeatedly used in studies describing allostasis and allostatic load. The latter
is defined as the cumulative strain, or “wear and tear” of severe or chronic stress on
one’s health. Quite fundamentally, however, there are some challenges associated with
the concept of allostasis, specifically in (relatively high-risk) populations like the elderly.
Primarily, the gradual and progressive deterioration of health might be considered a
fundamental factor in “aging” [10]. Although this process might initially be reflected in
subtle—allostatic—disturbances, these disturbances may over time evolve into full-blown
syndromes like dementia, metabolic syndrome, diabetes, chronic infections, cardiovascular
disease, and/or cancer [11–16].

The process of aging typically implies a funnel of steadily declining (neuro)endocrine,
physiological, and psychophysiological variance components: with time, the natural vari-
ance in independent (bio)markers decreases significantly, and consequently, the cumulative
overall variance (e.g., captured in constructs like Allostatic Load), reflecting a steadily
decrease of the adaptive capability of an individual. This process will inevitably lead
to critical transitions in health status (towards (chronic) disease and/or mortality), that
might likely, though not yet proven, follow specific mathematical trajectories of decay [17],
and is recently even linked to (epi-)genetic effects [18–20]. However, this would render
biomarkers typically used to define an Allostatic Load Index less useful for application
in elderly populations, as sufficient systemic variance to effectively monitor changes in
health status declines over time. Dopamine markers (tyrosine hydroxylase, dopamine, and
various associated receptors), for example, culminate in a 40–50% reduction between 18
and 88 years; while aldosterone concentrations can be reduced as much as 50% by the age
of 70; and testosterone concentrations decline on average by 25% between 25 and 75 years
of age in healthy aging men [21–23]. Nevertheless, the concepts of allostasis, allostatic
load, and ALI appear to be applied quite liberally in the emerging context of personalized
medicine and in relation to aging [10,24,25].

Consequently, previously published studies do not necessarily incorporate all
identified—allostatic—parameters (typically being 26, as firstly advocated by Juster [1])
in reported subsets and/or different versions of Allostatic Load Indices [8,14,26]. Only a
selected subset of these markers was, for example, used in a study to define the 25th and
75th percentile in burn-out and exhaustion profiles in generally healthy adults [8]. Studies
like these underline the general applicability of the overall ALI design, although they seem
to hinder standardization and consequently the interpretation of results: the incorporated
parameters are typically selected pragmatically, using a selection that seems to be based on
the parameters that are routinely assessed within the collaborating institute(s) [14,26].

Finally, in the elderly, major life events (e.g., stroke, surgery, loss) might have a signifi-
cant impact on their already relatively ‘frail’ health status, with full ‘allostatic’ recovery
becoming ever less likely when aging progresses. Consequently, accurately monitoring
even subtle changes in health status, for example anticipating and/or in response to major
life events, specifically in populations with a natural decline in adaptive capability, might
be considered highly relevant, as illustrated by Thomas and colleagues [27]. To tackle this
challenge, the concept of ALI might provide a useful starting point for the development of
a more or less standardized ALI in the elderly (ALIE).
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For these reasons, the present paper aimed to outline a model quantifying the like-
lihood of allostatic state being “disturbed”, or an allostatic load being built up, in any
given elder. This implies that the resulting coefficient (ALIE) should be able to capture
meaningful changes in the health status of specifically elderly, and/or adequately quantify
inter-individual differences in health prognosis. Consequently, we hypothesize that only
those allostatic markers with sufficient natural variance in aging populations provide a
significant contribution to such a coefficient and should be adopted.

2. Materials and Methods
2.1. Search Strategy

To design a concept of Allostatic Load that can be usefully applied to the elderly, the
shortlist of allostatic markers published by Juster [1] was used as reference. Using these
allostatic markers, in combination with other potentially relevant terms (“major life event”,
“trauma”, “surgery”, “stress”, and “ageing”/”aging”) a comprehensive literature search
was performed on PubMed. For example, “Ageing”/“Aging” AND “Cortisol”, or “Stress”
AND “BMI”. These terms were combined exhaustively until all pairs of terms had been
searched.

2.2. Study Selection

A manual search of abstracts from the collected studies was performed to assess the
relevance of the studies found for the present aim. After a first evaluation and selection
of appropriate studies, an additional and extensive search in PubMed and Scopus was
conducted for those allostatic markers that were not yet, or not yet satisfactory, covered.
For each defined relation in the eventual model, only the statistics of the methodologically
strongest study were used (e.g., based on sample size, statistical method, and/or accurate
reporting of results). This means that due to methodological (Bayesian) restrictions, only
a small subset of the initial library could be incorporated (i.e., no additional efforts were
conducted to calculate meta-data from multiple studies on specific variables).

For every included study, the following criteria were used to establish eligibility for our
modeling efforts: studies should include a (sub)sample of subjects >60 years of age; should
incorporate at least one of the 26 allostatic parameters as published by Juster [1]; and should
report accurate statistics for Bayesian modelling methods (prevalence of states prior and
posterior, and risk ratio (RR) or odds ratio (OR) related to the state of the defined parameter
following disease onset). For these reasons, the studied allostatic (bio)markers should be
related to the development over time of well-defined health outcomes, for example type II
diabetes, stroke, or long-term mortality. The identified syndromes and/or disease types
were imputed as separate nodes in the probabilistic model as they were considered to
contribute significantly to “disturbed allostasis”, or the retrospective conformation of an
“allostatic load” having been building up.

Exclusion criteria were: the defined allostatic (bio)marker significantly declines with
aging, and consequently the expected proportional variance factor in the model rapidly
decreases in the elderly (becoming “rigid”, non-responsive, or even absent) [28]; outcome
measures associated with neurodegenerative disorders like dementia (e.g., Alzheimer’s
disorder), schizophrenia, and the like, as they are considered to be fundamentally patho-
logical progressive syndromes; or no appropriate statistics were provided in published
studies to implement them in the proposed Bayesian model.

2.3. Bayesian Belief Networks

A Bayesian belief network (BBN) is a probabilistic graphical model that represents
statistical relationships among variables [29,30]. To establish the weight or contribution
of each selected allostatic marker on the likelihood of a disturbed health status of an
elderly individual (typically defined as allostatic load), a discrete BBN approach was
applied. The Bayesian network approach appears the most suitable modeling method, as
the outcomes can provide probabilities, or the likelihood that an allostatic load is present
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in any given individual. This provides the additional opportunity to monitor whether
allostatic states are changing: either within subjects (e.g., over time) or between subjects
with other combinations of the state of incorporated allostatic biomarkers. In the present
study, the relationships between the events in the network were consequently defined as
discrete conditional probability distribution, thus every event (e.g., “stroke recovery”) is a
discrete state (either “yes” or “no”) of any variable it is associated with (e.g., C-Reactive
Protein: “normal” versus “elevated”). Such a relationship of a biomarker to an associated
outcome, each with two discrete states results in a network of two nodes connected by an
arc, with four possible discrete sets of evidence. The direction of the arc connecting nodes
indicates the dependency of the relationship between the biomarker and outcome, which is
defined in the literature from which the conditional distributions are taken (Figure 1). The
fundamental advantage of this approach is that the conditional probability distributions can
be constructed using commonly reported statistics, in this case RR, OR, interquartile range,
and prevalence. This differs from other common AI models in that it does not require data
for training or testing, as the conditional probability distributions are entirely self-contained
and are deterministic with respect to a complete set of evidence for the network. In this
way, it is possible to construct a probabilistic prototype graphical model that represents
statistical relationships among variables based on their conditional dependencies, with a
disturbed allostatic state as the overall dependent outcome.

Figure 1. BBN with two nodes in an unobserved state, with Outcome being conditionally dependent
on Biomarker state. Using GeNIe software Version 2.3 Graphical User Interface (GUI), the BBN is
built up relationship by relationship and can immediately produce predictions based on observed or
unobserved states using built-in functionality.

Such a model can be constructed node by node using the component marginal and
conditional probabilities by utilizing the generalized form of Bayes Theorem:

P(Ai|B) =
P(Ai)P(B|Ai)

∑ P(Ai)P(B|Ai)

where P(Ai), P(B), and P(Ai|B) are the probabilities of event Ai, B, and Ai given event
B, respectively. Bayes Theorem allows us to instantaneously update the joint probability
distribution representing the outcome obtained from the model whenever new evidence is
provided, a functionality that is handled automatically via the GeNIe software Graphical
User Interface (GUI) (see Figure 1).

2.4. Modeling

The approach used to build the BBN can be seen as an additive or “bottom up” in
that, instead of building a Bayesian network that fits collected data, a network was built
one node at a time from published data, including prevalence and distributions of both
biomarkers and related medical outcomes. This was made possible through the use of
the GeNIe Version 2.3 (https://www.bayesfusion.com/), which through a Graphical User
Interface (GUI) allows for the creation of the network structure (nodes and arcs) as well
as populating those nodes with conditional probabilities between nodes represented by
prevalence and conditional distributions. Due to the sparse amount of published data on
the biomarker components of allostatic load in elderly, a stepped model approach was
chosen:

https://www.bayesfusion.com/
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Model 1, a BBN model: using published data collected from elderly populations
(approximately >60 years of age), where proper statistics were available, along with well-
defined cutoffs for biomarkers.

Model 2, an extended version of model 1: considering any published data relating the
relevant allostatic markers to each other, but specifically in the context of aged populations.
This implies the exclusion of particular parameters that either decline or increase to an
extent that their natural variance does not contribute (any more) to the effective monitoring
of meaningful changes in health status in elderly. For example over time or circumstances
(e.g., due to aging or overt disease states).

Overall, this resulted in a shortlist of allostatic biomarkers that should be valid and
applicable, e.g., in more conservative formats of Allostatic Load Indices, in the elderly.

3. Results

Our search strategy resulted in 38 studies covering elderly populations, of which 11
met the Bayesian requirements of published prevalence of deviated values of the relevant
(allostatic) (bio)markers directly related to well defined outcome states (like specific dis-
eases, or mortality within a defined period of time) (see Figure 2 and Table 1). Typically, the
studies could be clustered in a mathematical and/or in a theoretical framework: (1) studies
providing the required statistics in elderly populations to design a Bayesian (probability)
network model (model #1, mathematical); and (2) studies providing insights in relevant
relations (e.g., by means of correlations and/or regression coefficients) within the concept
of allostasis; however, no appropriate statistics were published to incorporate them in
the Bayesian model (model #2, theoretical). Additionally, due to age-related decline in
variance, some established allostatic markers (e.g., aldosterone, albumin) were regarded
too rigid to provide useful information on changes in health status in elderly populations.
These were consequently excluded from both models. See Table 1 for an overview.

Figure 2. The results of our literature search to allostatic (bio)markers related to health status of
well-defined disease states in the elderly (see Table 1).
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Table 1. Allostatic parameters identified by Juster [1], with in- and exclusion criteria for adoption in either the probability model 1 (see Figures 2 and 3), or the more theoretical framework
(see Figure 5), both aiming to capture health status in specifically elderly (aged >60 years).

No Allostatic Biomarker Included in
Models 1 and 2

Included in Model 2
(
√

), or Excluded (X) Effects of Aging Associated Health Outcomes References

Neuroendocrine

1 Cortisol
√ Stable or increasing; remains highly

responsive Depressed mood; anxiety; hostility; and adiposity.

Ai et al., 2014 [31]
Jackson et al., 2017 [32]
Heaney et al., 2014 [33]
Peeters et al., 2008 [34]

2 Dehydroepiandrosterone (DHEA)
√ Significant decline with aging; age

70–80 years ~20% compared to those aged
20–30 years

Musculoskeletal disorders; Cognitive disorders;
Mood disorders; Cardiovascular disease; Sexual

functioning; Menopause symptoms.

Heaney et al., 2014 [33]
Samaras et al., 2013 [35]
Baulieu et al., 2000 [36]

3 Epinephrine (EPI)
√ Higher basal plasma concentrations and

higher responses to acute stressor. Pascualya et al., 1999 [37]

4 Norepinephrine (NE)
√ Higher basal plasma concentrations and

higher responses to acute stressor. Pascualya et al., 1999 [37]

5 Dopamine X Averaged 6–10% loss per decade, resulting
in 40–50% loss between 18 and 88 years. Parkinson; dementia. Bäckman et al., 2006 [21]

Reeves et al., 2002 [38]

6 Aldosterone X Reduced (plasma) concentrations up to
50% at age 70 years.

Associated with progress of coronary artery
disease. Bauer, 1993 [22]

Immune

7 Interleukin-6
√ Age-related pro-inflammatory state due to

intrinsic dysregulation of the
immune system.

Inflammation; morbidity;
cardiovascular disease; diabetes mellitus,

sarcopenia, dementia; depressed mood; anxiety;
and hostility.

Ai et al., 2014 [31]
Li et al., 2017 [39]

8 Tumor necrosis factor-alpha
(TNF-α)

√
Increasing circulating levels of TNF-α. Atherosclerosis. Bruunsgaard et al., 2000 [40]

9 C-reactive protein or high
sensitivity C-reactive protein

√ General risk factor associated with
aging-related diseases.

Cardiovascular disease; hypertension; diabetes
mellitus; kidney disease; atherosclerosis; depressed

mood; anxiety; and hostility.

Ai et al., 2014 [31]
Bruunsgaard et al., 2000 [40]

Tang et al., 2017 [41]

10 Insulin like growth factor-1
(IGF-1) X Declining

(up to 60%). Bone loss; and osteoporotic fractures. Seck et al., 1998 [42]
Garnero et al., 2000 [43]

11 Fibrinogen
√

Increase in 25 mq/dl per decade. Cardio- and cerebrovascular disease. Hager et al., 1994 [44]

Metabolic

12 HDL-cholesterol
√

Seems stable. Cardiovascular diseases. Holzer et al., 2013 [45]
13 LDL-cholesterol

√
Increases with aging. Cardiovascular diseases. Holzer et al., 2013 [45]

14 Triglycerides X Increases with aging Cardiovascular diseases. Holzer et al., 2013 [45]

15 Glycosylated hemoglobin
(HbA1c)

√
Increases with aging. Cardiovascular & ischemic heart diseases;

and diabetes. Dubowitz et al., 2014 [46]

16 Glucose
√ Glucose hemostasis gets disturbed

with aging. Primarily, though not exclusively, diabetes. Van den Beld et al., 2018 [23]

17 Insulin
√

Decreases with aging. Diabetes and associated health problems. Van den Beld et al., 2018 [23]
18 Albumin X Decreases with aging. Loss of appendicular muscle mass; sarcopenia. Visser et al., 2005 [47]
19 Creatinine

√
Decreases with aging. Renal function. Friedlander et al., 2014 [48]

20 Homocysteine X Increases with aging. Alzheimer’s disease; lower cognitive
performance; stroke.

Pařízková et al., 2017 [49]
Matsui et al., 2001 [50]
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Table 1. Cont.

No Allostatic Biomarker Included in
Models 1 and 2

Included in Model 2
(
√

), or Excluded (X) Effects of Aging Associated Health Outcomes References

Cardiovascular & Respiratory

21 Systolic blood pressure *
√ High incidence of hypertension

(>140 mm Hg) in elderly.
Hypertension; cardiovascular problems;

cerebrovascular morbidity; mortality. Rigaud et al., 2001 [51]

22 Diastolic blood pressure *
√ High incidence of hypertension

(>90 mm Hg) in elderly.
Hypertension; cardiovascular problems;

cerebrovascular morbidity; mortality. Rigaud et al., (2001) [51]

23 Peak expiratory flow X Decreases with aging. Asthma; COPD; decreased lung function. Janssens et al., 1999 [52]
24 Heart rate *

√
Cardiovascular morbidity and mortality.

Anthropometric

25 Waist-to-hip ratio
√

Increases with aging. Cardiovascular disease; diabetes mellitus.
Stevens et al., 2010 [53]
Huxley et al., 2010 [54]
Woo et al., 2002 ** [55]

26 Body mass index (BMI)
√ Many health-related issues, e.g., ischemic heart

disease; stroke; and overall mortality.

Prospective Studies
Collaboration, 2009 [56]

Song et al., 2004 [57]
Visscher et al., 2001 [58]

Note: COPD = Chronic obstructive pulmonary disease; DHEA = Dehydroepiandrosterone; HDL-C = High-density lipoprotein cholesterol; LDL-C = Low-density lipoprotein cholesterol. * At rest. ** According to
Woo et al. (2002) Waist-to-hip ratio may not be a useful predictor of negative health outcomes in elderly.
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3.1. Model 1: A Probabilistic Allostatic Model in Elderly

The 11 published studies covering any type of allostatic markers in the elderly, pro-
viding statistics to contribute to the proposed Bayesian model, are represented in Table 1.
The reported outcome states are typically related to metabolic syndromes, type II diabetes,
postoperative complications, general mortality within a defined timeframe (typically six to
10 years), stroke, and stroke recovery (during the six weeks following the incident itself)
(see Figure 3). Table 2 provides the underlying prevalence and distribution statistics (with
appropriate references), and Table 3 provides the derived probabilities, initially for the
identified medical conditions or states, though with the cumulative overall “outcome”
being (re)defined as “allostatic load” (see Figure 3). “Stable” indicates that an individual’s
current health state does not predispose him or her to a higher risk of negative health
outcomes, whereas “disturbed” means that the instantaneous risk of developing adverse
health conditions is comparatively higher due to deviating values of the (bio)markers
included in the equation.

Figure 3. A graphical representation of the probability—allostatic—model for the elderly (>60 years), eventually based on
11 independently published statistical sources (see Table 2). Showing prognostic probabilities on the eventual “overall”
outcome, being defined as “allostatic load” (likelihood for progressively deteriorating health). Percentages represent the
probability of observing the given level or outcome, in this case, when all states are unobserved. Generated in GeNIe Version
2.3. Note: BMI = Body mass index; BP = Blood pressure; CRP = C-reactive protein; DHEA = Dehydroepiandrosterone;
HDL-C = High-density lipoprotein cholesterol; IL-6 = Interleukin-6.
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Table 2. Applied statistics for the probability model (see Figure 3), including references.

Biomarkers or
Outcomes

Reported Health
Outcome(s) or Interactions Cutoff Criteria Reported or

Calculated Risk Ratio References

Dehydroepiandrosterone Metabolic syndrome

1.44 µmol/L 1

Chen et al., 2010 [59]
2.31 µmol/L 1.66

3.4 µmol/L 1

13.5 µmol/L 2.68

C-reactive protein

Stroke recovery

≤8 mg/L

1.36

Rigaud et al., 2001 [51]Interleukin-6 1.97

Systolic blood pressure 1.18

Interleukin-6 Mortality ≤1.8 pg/mL 1.49 Li et al., 2017 [39]
Lee et al., 2012 [60]

Body mass index
Postoperative complications 18.5–24.9 kg/m2 1.6 Barone et al., 2017 [61]

Lee et al., 2012 [60]C-reactive protein 1.4

Stroke HDL-C Boolean 1.24
Sacco et al., 2001 [62]

Bruckert et al., 2006 [63]
Boix et al., 2006 [64]

Metabolic syndrome
Type II diabetes Boolean 4.42 Sattar et al., 2008 [65]

Body mass index Boolean 6.76 Lee et al., 2012 [60]

Note: HDL-C = High-density lipoprotein cholesterol.

Table 3. Probabilities of BNN when an outcome is observed, including associated medical conditions
in elderly populations. These conditions being intermediate to the eventual overall outcome, being
defined as “allostatic load” specified for elderly (>60 years of age) and statistically robust (due to the
strictly applied criteria in Bayesian modeling).

Allostatic Load
* Stable * Disturbed

Mortality within 8 years
Yes 0% 59%

No 100% 41%

Stroke Yes 4% 7%
No 96% 93%

Stroke recovery Positive 100% 96%
Adverse 0% 4%

Postoperative complications Yes 0% 68%
No 100 32%

Type II diabetes Yes 0% 16%
No 100% 84%

Interleukin-6 Elevated 38% 50%
Normal 62% 50%

C-reactive protein Elevated 20% 24%
Normal 80% 76%

Body mass index Obese 26% 48%
Normal 74% 52%

Metabolic syndrome Yes 19% 37%
No 81% 63%

DHEA

Q1 27% 25%
Q2 25% 25%
Q3 25% 25%
Q4 23% 25%

Note: DHEA = Dehydroepiandrosterone. * Observed model outcome state.

Sensitivity Analysis for the Allostasis Model for Elderly

A sensitivity analysis was performed using built-in functionality in GeNIe Version 2.3
to determine the influence of the individual nodes in our BBN. Sensitivity analysis allowed
us to determine the influence of observing the states of specific nodes, which implies the
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proportional importance of the node in relation to the overall outcome that was defined as
allostatic load.

In Figure 4, a visual representation of specific states of nodes on the outcome of the
model being stable is presented. Stable means a (on average) static and low-to-absent
allostatic load, indicating the likelihood of a generally good overall health, given the
defined states of the associated parameters. The influence of the various medical outcomes
and conditions were ignored, since they are seen as intermediate outcomes of our model
and as such should exert a disproportionately large influence on the model. Following
from previous published statistics the most influential parameters on allostatic load in
the elderly appear to be, in order of statistical significance, Body Mass Index (BMI) and
interleukin-6 (IL-6). This parametric behavior can also be seen in Table 3: of all investigated
parameters, observed changes in BMI and IL-6 concentrations seem to be strongest related
to the probable development of allostatic load.

Figure 4. Tornado plot of sensitivity analysis performed in GeNIe software. Label represents observed state, length of
color bar represents magnitude of influence on model outcome achieved by changing specified state, with the green side
of the bar representing the resulting probability that P(Allostatic_Load = Stable) for the states represented, and the red
side representing the resulting probability after reversing the observed state (e.g., Metabolic Syndrome absent/present).
For example, following this model, the probability of a stable/undisturbed allostatic load given a normal BMI and the
established absence of Metabolic Syndrome, with no information on any of the other parameters, would be 29%; while with
BMI = obese, though yet no diagnosed Metabolic syndrome, this likelihood would decrease to 16%. Note: BMI = Body mass
index; CRP = C-reactive protein; DHEA = Dehydroepiandrosterone; IL-6 = Interleukin-6.
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3.2. Model 2: An Extended Framework Covering Allostasis in Elderly

Our effort to develop a statistically sound (Bayesian) probability model to quantify
the probability of disturbed allostasis in elderly (aged >60 years) provided a well-founded
framework (model #1, see Figure 3 and Tables 2 and 3), but yet incorporated only a very
small subset of pre-identified allostatic markers. Apart from a significant decrease in
variability along with aging, the justification to exclude other established (bio)markers (like
high-density lipoprotein (HDL)- cholesterol, and/or blood pressure (BP)), were typically
the strict requirements of published statistics for Bayesian modeling. However, other
statistically significant relationships found between allostatic (bio)markers and the health
status of elderly are summarized in Figure 5 and Table 4.

Figure 5. Although not all found studies provided data that could be used in a Bayesian network, based on the collected
body of literature an additional (theoretical) model of allostasis in the elderly could nevertheless be constructed (see Table 4
as well). It shows that the biomarker clusters proposed by Juster et al. [1] seem to be valid in elder populations, while for
example the cortisol/DHEA ratio [66,67] gains more prominence (as compared to the mathematical (Bayesian) model). The
latter finding may call for additional studies to further disclose the actual contribution of such biomarkers in the overall
health of elderly.
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Table 4. Allostatic biomarkers with typical yet significant variability in elderly to capture adaptive or immediate reactive
responses to exogenous stressors in elderly.

Parameter Short Comment(s) References Reported
Age Ranges

Cortisol Highly responsive up until high age typically use in
cortico-DHEA ratio in aging studies

Heaney et al., 2014 [33] 65–88

Peeters et al., 2008 [34] 65+

Epinephrine Significant response to an acute stressor: helps a
person to cope with physical and emotional stress Pascualya et al., 1999 [37] 24–26, 69–71, 83–85

Norepinephrine
Insignificant response to acute stressor; however, in
elderly this increase is due to increase concentration
of plasma concentration and decrease in clearance

Pascualya et al., 1999 [37] 24–26, 69–71, 83–85

Interleukin-6

Due to any dysregulation in the immune systems,
circulating interleukin-6 levels are independently
associated with greater risk of cardiovascular and

all-cause mortality in the general elderly population

Li et al., 2017 [39] 60+

C-reactive protein Important risk factor in elderly

Ai et al., 2014 [31] 35+

Bruunsgaard et al., 2000 [40] 19–31, All 81 (n = 130)

Tang et al., 2017 [41] Review: 80+

Fibrinogen Increases by 25 mg/dL/decade: good indicator for
variance in an older population Hager et al., 1994 [44] 23–96

High-density lipoprotein-
cholesterol

Good indicator for variance, does not change
significantly with aging Holzer et al., 2013 [45] 25–28, 65–69

Creatinine 24-hr urine creatinine decreases with aging Friedlander et al., 2014 [48] <45–65+

Systolic and diastolic blood
pressure

Indicator of hypertension; however, variance
component is not that much Rigaud et al. 2001 [68] 60–84

Note: DHEA = Dehydroepiandrosterone.

4. Discussion

The present study aimed to quantify allostatic load on a continuous, probabilistic
scale, specifically in elderly. Although it appears to be among the first of its kind, the results
presented here are based on the allostatic shortlist published by Juster [1], and by previous
efforts to outline a composite—allostatic—assessment, for example by Seeman [5] and
Freire [25]. Our study aimed to extend these by focusing both on the elderly and providing
a probabilistic model for disturbed allostasis as a required step in the development of
clinical decision-making applications. The relevance of empirically validated, reliable,
though efficient health assessment protocols, for example for specific high-risk populations
like the elderly, has clearly been emphasized by the present Covid-19 pandemic. To live up
to their potential (e.g., under pandemic conditions) such applications should consequently
be relatively easy to apply on an extensive scale, for example in living environments and
communities.

Because Bayesian networks offer the greatest amount of flexibility given the type of
data we expected to find in literature, this method was adopted to investigate and explore
previously defined allostatic markers in elderly. An additional and significant advantage
of this methodology is that it provides prognostic outcomes for individuals as output,
simplifying the translation of the results in clinical decision-making applications, meaning
that when the data of any given individual is implemented (in the present format typically
being binary: low/high versus normal; or in case of DHEA providing quartile scores),
the model will automatically provide a personalized probability for a potentially present
allostatic load.

The study’s aim and methodology provided two significant challenges. Firstly, the
adopted methodology prescribed strict statistical/data requirements, implying that only a
few allostatic markers as defined by Juster [1] could be adopted in our probabilistic model,
as useful, published data (especially in elderly samples) appeared to be rare. Nevertheless,
all defined allostatic domains, being neuroendocrine, immune, metabolic, cardiorespiratory,
and anthropometric, were represented by at least one parameter in model 1 (see Figure 3),
therefore supporting the validity of this “proof of concept”.
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Secondly, the natural rate of degradation in variance of many allostatic (bio)markers
may actually diminish their relevance in elderly populations. This finding may very well
be closely associated with the abovementioned methodological challenge of notably few
studies published on specific allostatic (bio)markers in the elderly. This may be due to an
either gradual or abrupt, though progressive and significant, reduction in the proportional
contribution of quite some biomarkers on changing health status in aging [22,33,35].

4.1. The Concept of Allostasis in Aging Populations

Aldosterone, for example, appears to slowly decrease with aging [22], although
some individuals develop hyperaldosteronism, which might be due to increased ACTH
stimulation of the adrenal glands, likely caused by genetic predispositions [69]. Serum
concentrations of dehydroepiandrosterone (DHEA) and its sulfate (DHEA-S) have been
reported to peak in young adulthood, followed by a steady decline over the following
decades (between 40 and 80 years of age) by approximately 60%. Combined with in-
creasing levels of cortisol [33,34,70], and small, but significant, decreases in the serum
concentrations of progesterone, it is suggested that adrenal functioning is particularly
affected by aging [71], and may actually constitute an alternative and composite allostatic
(sub)structure (e.g., cortisol–DHEA ratio) in aging populations. Importantly, the steady
increase in cortisol–DHEA ratio with aging is suggested to relate to immune deficits and in
this way to the prevalence of infectious diseases [66,67]. For this reason, the contribution
of the cortisol–DHEA ratio in quantifying allostatic load in elderly, despite the declin-
ing singular contribution of especially DHEA, may nevertheless appear relevant. Many
other associated (bio)markers interact either within the specified domains of allostasis,
or between them. C-reactive protein, for instance, has been suggested to interact with
both metabolic and cardiorespiratory processes, apart from its established status as an
immune marker (see Table 1 and Figure 5). Likewise, IL-6 and fibrinogen interact with
neuroendocrine and cardiovascular processes, respectively. Representative examples on
how such relationships with allostatic load can be captured in computational models are
earlier presented [72,73].

It seems valid, however, to conclude that with aging, the contribution of most allostatic
(bio)markers on health irrevocably changes and in some cases might even diminish, as
measurable concentrations may progressively decline and become insignificant, a process
that might be a very fundamental component of aging in itself. Not necessarily surprisingly,
the present study provides ample evidence that their potential as health-related parameters,
either independently or incorporated in any kind of allostatic index, seems to gradually
decline. This means that from a normative perspective, the allostatic load will steadily
increase with age, whilst the standardized variance over this cumulative load is likely to
substantially decrease. This is a process with significant inter-individual differences in
progression, which are likely directly associated with exogeneous factors like exposure to
infections, lifestyle, medical procedures, major life events, and/or psychological strain. It
seems a valid conclusion that studies unraveling such allostatic dynamics associated with
generally good or slowly declining health in elderly remain relevant.

Based on the present findings, in the elderly, allostatic markers seem to be categorized
in three classes: (1) markers that gradually decline with aging, with insufficient variance
left in elderly to adequately capture changes in health status over time (like aldosterone);
(2) allostatic markers that maintain significant variance to show an adaptive response to
repetitive or severe stress (e.g., BMI and some immune markers), likely associated with
allostatic processes and overall health status; (3) markers with a yet highly significant
variability and reactivity in response to immediate stressors (e.g., cortisol, epinephrine,
and creatinine), being more or less representative for the sustained systemic flexibility and
variability [28], and in this way potentially contributing to the quantification of allostasis
in elderly populations. The last two categories obviously are, at least theoretically, still
useful for monitoring health status and/or impact of and recovery from significant events
or health threats in the elderly (see Table 4).
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Importantly, the present results are supported by a recent study of Freire et al. who
used a selection of allostatic (bio)markers in the elderly that showed a remarkable re-
semblance to the results presented here (Table 3 as compared to Table 4 in the present
study). Although a conventional method was used to calculate Allostatic Load (compared
to the here-used probabilistic approach), their findings may consequently be considered a
relevant cross-validation of the here-identified allostatic parameters for elderly [25].

4.2. Limitations

Due to the aforementioned statistical requirements, a mathematically robust but yet
condensed probabilistic allostasis model could be constructed. However, as acknowledged
by the authors, from an allostasis perspective, it seems far from complete. Apart from the
previously mentioned restrictions, it implies that allostatic parameters that are directly
associated with very specific disorders are less useful in this context, as their variance
contribution is disproportionately mediated and/or moderated by the presence or absence
of the associated disorder. For example, due to its significant relation with dementias
specifically, dopamine was excluded from the models. Consequently, in its current form,
the two models outlined here represent the potentially changing health status of (yet)
generally healthy elderly people.

Secondly, a BBN model can only go as far as to provide the instantaneous probability
of an individual suffering from a disturbed allostatic load based on the biomarker data
collected in references to the overall (population based) statistics. However, it does not
provide predictive power regarding causation, and only when frequently assessed might
provide some information on relevant changes over time. To capture “allostatic dynamics”
on an individual level, more advanced types of mathematical/data driven approaches
seem essential. For example machine learning methods using dynamic (time-series) data
based on repeated measures designs, with relatively high sampling frequencies of the
relevant (bio)markers. Such exercises might be of significant importance to progress in the
personalized medicine of aging, although they are not found in the literature so far. In this
perspective, it is worthwhile to note that only few previous efforts have been made to use
Bayesian modeling in the context of allostasis, with the study of Stephan [74] a notable
exception. This might be considered somewhat surprising in the context of “precision
medicine”, because accurate probability and/or prognostic models seem to be essential to
designing effective personalized monitoring and prevention strategies, not least so in the
elderly.

The identified categories of variance components in relation to a developing allostatic
load in elderly (rigid or absent; adaptive variance related to mid-term changes in health
status; or responsive variance in an immediate reaction to stressors) underline another
tangible matter: disparate phase patterns in response to exogenous stressors in the elderly.
Whilst some parameters rapidly respond and recover (within seconds to minutes: “respon-
sive”), others might become disturbed more extensively with considerably longer recovery
trajectories over time. Consequently, when allostatic load is considered as a more continu-
ous scale, it may be concluded that the overall “allostatic” variance in any given individual
contains quite different variance ranges, both in time and extent, originating from the
heterogenous combination of incorporated parameters. Patterns of multilevel frequencies
of variance may very well follow general mathematical outlines for early warning signals
for upcoming critical transitions, as addressed above [17]. In the context of personalized
medicine, more advanced analytics of the different variance components might for that
reason be highly relevant to progress from the typical instantaneous snapshot provided
with the presently applied frameworks.

Finally, of course other frameworks and/or parameters could be considered to capture
(challenged) health status in elderly. Al Saedi [75], for example, provided a very compre-
hensive overview of biomarkers associated with frailty in aging, including parameters that
have been extensively utilized in aging literature (e.g., muscle mass, grip strength, and
metabolites associated with oxidation processes). However, since the theory of allostasis is



Diagnostics 2021, 11, 157 15 of 18

one of the few that provides a validated and comprehensive framework for the assessment
of health status, and based on the general consensus on the relevance of the parameters
published by Juster [1], it was decided to start from there.

4.3. Conclusions

Apart from other mathematical approaches to model and quantify Allostatic Load [73],
the present study provided one of the first probabilistic allostatic models, notably in the
elderly. Although the natural decline in variance irrevocably alters the prognostic relevance
of most allostatic (bio)markers, in this way, it appeared possible to outline an allostatic
load index specifically modified for the elderly (ALIE). Together with the 11 allostatic
parameters identified here, this “proof of concept” may therefore be considered as a useful
basis for future quantitative modeling in healthy aging, not least because allostasis and
allostatic load are often referred to in studies of the elderly, but primarily as a theoretical
concept. Consequently, future efforts may focus on further developing probabilistic and/or
prognostic models in the elderly based on the concept of allostasis, and in this way refine
their applicability in the context of personalized medicine.
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49. Pařízková, M.; Andel, R.; Lerch, O.; Marková, H.; Gažová, I.; Vyhnálek, M.; Hort, J.; Laczó, J. Homocysteine and Real-Space
Navigation Performance among Non-Demented Older Adults. J. Alzheimer’s Dis. 2017, 55, 951–964. [CrossRef]

50. Matsui, T.; Arai, H.; Yuzuriha, T.; Yao, H.; Miura, M.; Hashimoto, S.; Higuchi, S.; Matsushita, S.; Morikawa, M.; Kato, A.; et al.
Elevated plasma homocysteine levels and risk of silent brain infarction in elderly people. Stroke 2001, 32, 1116–1119. [CrossRef]

51. Rigaud, A.S.; Forette, B. Hypertension in Older Adults. J. Gerontol. Ser. A 2001, 56, M217–M225. [CrossRef]
52. Janssens, J.P.; Pache, J.C.; Nicod, L.P. Physiological changes in respiratory function associated with ageing. Eur. Respir. J. 1999, 13,

197–205. [CrossRef]
53. Stevens, J.; Katz, E.G.; Huxley, R.R. Associations between gender, age and waist circumference. Eur. J. Clin. Nutr. 2010, 64, 6–15.

[CrossRef]
54. Huxley, R.; Mendis, S.; Zheleznyakov, E.; Reddy, S.; Chan, J. Body mass index, waist circumference and waist:hip ratio as

predictors of cardiovascular riska review of the literature. Eur. J. Clin. Nutr. 2010, 64, 16–22. [CrossRef] [PubMed]
55. Woo, J.; Ho, S.C.; Yu, A.L.M.; Sham, A. Is waist circumference a useful measure in predicting health outcomes in the elderly? Int.

J. Obes. 2002, 26, 1349–1355. [CrossRef] [PubMed]
56. Prospective Studies Collaboration Body-mass index and cause-specific mortality in 900,000 adults: Collaborative analyses of 57

prospective studies. Lancet 2009, 373, 1083–1096. [CrossRef]
57. Song, Y.M.; Sung, J.; Smith, G.D.; Ebrahim, S. Body Mass Index and Ischemic and Hemorrhagic Stroke: A Prospective Study in

Korean Men. Stroke 2004, 35, 831–836. [CrossRef] [PubMed]
58. Visscher, T.L.S.; Seidell, J.C.; Molarius, A.; van der Kuip, D.; Hofman, A.; Witteman, J.C.M. A comparison of body mass index,

waist–hip ratio and waist circumference as predictors of all-cause mortality among the elderly: The Rotterdam study. Int. J. Obes.
2001, 25, 1730–1735. [CrossRef]

59. Chen, Y.C.; Chang, H.H.; Wen, C.J.; Lin, W.Y.; Chen, C.Y.; Hong, B.S.; Huang, K.C. Elevated serum dehydroepiandrosterone
sulphate level correlates with increased risk for metabolic syndrome in the elderly men. Eur. J. Clin. Investig. 2010, 40, 220–225.
[CrossRef]

60. Lee, J.K.; Bettencourt, R.; Brenner, D.; Le, T.A.; Barrett-Connor, E.; Loomba, R. Association between serum interleukin-6
concentrations and mortality in older adults: The rancho bernardo study. PLoS ONE 2012, 7. [CrossRef]

61. Barone, M.; Viggiani, M.T.; Losurdo, G.; Principi, M.; Leandro, G.; Di Leo, A. Systematic review with meta-analysis: Post-
operative complications and mortality risk in liver transplant candidates with obesity. Aliment. Pharmacol. Ther. 2017, 46, 236–245.
[CrossRef]

http://doi.org/10.1073/pnas.97.8.4279
http://www.ncbi.nlm.nih.gov/pubmed/10760294
http://doi.org/10.1016/S0197-4580(99)00036-6
http://doi.org/10.1002/gps.606
http://doi.org/10.1016/j.archger.2017.08.007
http://doi.org/10.1046/j.1365-2249.2000.01281.x
http://doi.org/10.1111/1440-1681.12758
http://doi.org/10.1210/jc.83.7.2331
http://doi.org/10.1016/S0140-6736(99)05463-X
http://doi.org/10.1007/BF03324226
http://www.ncbi.nlm.nih.gov/pubmed/7918730
http://doi.org/10.1016/j.bbalip.2013.06.004
http://doi.org/10.1111/dme.12459
http://www.ncbi.nlm.nih.gov/pubmed/24698119
http://doi.org/10.1093/ajcn.82.3.531
http://www.ncbi.nlm.nih.gov/pubmed/16155264
http://doi.org/10.1089/end.2014.0002
http://www.ncbi.nlm.nih.gov/pubmed/24571654
http://doi.org/10.3233/JAD-160667
http://doi.org/10.1161/01.STR.32.5.1116
http://doi.org/10.1093/gerona/56.4.M217
http://doi.org/10.1183/09031936.99.14614549
http://doi.org/10.1038/ejcn.2009.101
http://doi.org/10.1038/ejcn.2009.68
http://www.ncbi.nlm.nih.gov/pubmed/19654593
http://doi.org/10.1038/sj.ijo.0802080
http://www.ncbi.nlm.nih.gov/pubmed/12355330
http://doi.org/10.1016/S0140-6736(09)60318-4
http://doi.org/10.1161/01.STR.0000119386.22691.1C
http://www.ncbi.nlm.nih.gov/pubmed/15001798
http://doi.org/10.1038/sj.ijo.0801787
http://doi.org/10.1111/j.1365-2362.2009.02248.x
http://doi.org/10.1371/journal.pone.0034218
http://doi.org/10.1111/apt.14139


Diagnostics 2021, 11, 157 18 of 18

62. Sacco, R.L.; Benson, R.T.; Kargman, D.E.; Boden-Albala, B.; Tuck, C.; Lin, I.F.; Cheng, J.F.; Paik, M.C.; Shea, S.; Berglund, L.
High-Density Lipoprotein Cholesterol and Ischemic Stroke in the ElderlyThe Northern Manhattan Stroke Study. JAMA 2001, 285,
2729–2735. [CrossRef]

63. Bruckert, E. Epidemiology of low HDL-cholesterol: Results of studies and surveys. Eur. Heart J. Suppl. 2006, 8, 17–22. [CrossRef]
64. Boix, R.; del Barrio, J.L.; Saz, P.; Reñe, R.; Manubens, J.M.; Lobo, A.; Gascón, J.; de Arce, A.; Díaz-Guzmán, J.; Bergareche, A.;

et al. Stroke prevalence among the Spanish elderly: An analysis based on screening surveys. BMC Neurol. 2006, 6. [CrossRef]
[PubMed]

65. Sattar, N.; McConnachie, A.; Shaper, A.G.; Blauw, G.J.; Buckley, B.M.; de Craen, A.J.; Ford, I.; Forouhi, N.G.; Freeman, D.J.;
Jukema, J.W.; et al. Can metabolic syndrome usefully predict cardiovascular disease and diabetes? Outcome data from two
prospective studies. Lancet 2008, 371, 1927–1935. [CrossRef]

66. Butcher, S.K.; Killampalli, V.; Lascelles, D.; Wang, K.; Alpar, K.E.; Lord, J.M. Raised cortisol: DHEAS ratios in the elderly after
injury: Potential impact upon neutrophil function and immunity. Aging Cell 2005, 4, 319–324. [CrossRef] [PubMed]

67. Phillips, A.C.; Burns, V.E.; Lord, J.M. Stress and exercise: Getting the balance right for aging immunity. Exerc. Sport Sci. Rev. 2007,
35, 35–39. [CrossRef]

68. Porges, S.W. Orienting in a defensive world: Mammalian modifications of our evolutionary heritage. A Polyvagal Theory.
Psychophysiology 1995. [CrossRef]

69. Gupta, D.; Morley, J.E. Hypothalamic-Pituitary-Adrenal (HPA) Axis and Aging. Compr. Physiol. 2014, 4, 1495–1510.
70. Buford, T.W.; Willoughby, D.S. Impact of DHEA(S) and cortisol on immune function in aging: A brief review. Appl. Physiol. Nutr.

Metab. 2008, 33, 429–433. [CrossRef]
71. Belanger, A. Changes in serum concentrations of conjugated and unconjugated steroids in 40- to 80-year-old men. J. Clin.

Endocrinol. Metab. 1994, 79, 1086–1090. [CrossRef]
72. Goldwater, D.; Karlamangla, A.; Merkin, S.S.; Seeman, T. Compared to non-drinkers, individuals who drink alcohol have a more

favorable multisystem physiologic risk score as measured by allostatic load. PLoS ONE 2019, 14, e0223168. [CrossRef]
73. Galen Buckwalter, J.; Castellani, B.; Mcewen, B.; Karlamangla, A.S.; Rizzo, A.A.; John, B.; O’donnell, K.; Seeman, T. Allostatic load

as a complex clinical construct: A case-based computational modeling approach. Complexity 2016, 21, 291–306. [CrossRef]
74. Stephan, K.E.; Manjaly, Z.M.; Mathys, C.D.; Weber, L.A.E.; Paliwal, S.; Gard, T.; Tittgemeyer, M.; Fleming, S.M.; Haker, H.;

Seth, A.K.; et al. Allostatic self-efficacy: A metacognitive theory of dyshomeostasis-induced fatigue and depression. Front. Hum.
Neurosci. 2016, 10. [CrossRef] [PubMed]

75. Al Saedi, A.; Feehan, J.; Phu, S.; Duque, G. Current and emerging biomarkers of frailty in the elderly. Clin. Interv. Aging 2019, 14,
389–398. [CrossRef] [PubMed]

http://doi.org/10.1001/jama.285.21.2729
http://doi.org/10.1093/eurheartj/sul036
http://doi.org/10.1186/1471-2377-6-36
http://www.ncbi.nlm.nih.gov/pubmed/17042941
http://doi.org/10.1016/S0140-6736(08)60602-9
http://doi.org/10.1111/j.1474-9726.2005.00178.x
http://www.ncbi.nlm.nih.gov/pubmed/16300484
http://doi.org/10.1097/jes.0b013e31802d7008
http://doi.org/10.1111/j.1469-8986.1995.tb01213.x
http://doi.org/10.1139/H08-013
http://doi.org/10.1210/jc.79.4.1086
http://doi.org/10.1371/journal.pone.0223168
http://doi.org/10.1002/cplx.21743
http://doi.org/10.3389/fnhum.2016.00550
http://www.ncbi.nlm.nih.gov/pubmed/27895566
http://doi.org/10.2147/CIA.S168687
http://www.ncbi.nlm.nih.gov/pubmed/30863033

	Introduction 
	Materials and Methods 
	Search Strategy 
	Study Selection 
	Bayesian Belief Networks 
	Modeling 

	Results 
	Model 1: A Probabilistic Allostatic Model in Elderly 
	Model 2: An Extended Framework Covering Allostasis in Elderly 

	Discussion 
	The Concept of Allostasis in Aging Populations 
	Limitations 
	Conclusions 

	References

