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Abstract: The new coronavirus disease (COVID-19), pneumonia, tuberculosis, and breast cancer
have one thing in common: these diseases can be diagnosed using radiological studies such as X-rays
images. With radiological studies and technology, computer-aided diagnosis (CAD) results in a
very useful technique to analyze and detect abnormalities using the images generated by X-ray
machines. Some deep-learning techniques such as a convolutional neural network (CNN) can help
physicians to obtain an effective pre-diagnosis. However, popular CNNs are enormous models and
need a huge amount of data to obtain good results. In this paper, we introduce NanoChest-net,
which is a small but effective CNN model that can be used to classify among different diseases
using images from radiological studies. NanoChest-net proves to be effective in classifying among
different diseases such as tuberculosis, pneumonia, and COVID-19. In two of the five datasets
used in the experiments, NanoChest-net obtained the best results, while on the remaining datasets
our model proved to be as good as baseline models from the state of the art such as the ResNet50,
Xception, and DenseNet121. In addition, NanoChest-net is useful to classify radiological studies
on the same level as state-of-the-art algorithms with the advantage that it does not require a large
number of operations.

Keywords: X-ray classification; radiological images; convolutional neural network; deep learning;
computer vision

1. Introduction

The new coronavirus disease (COVID-19) has achieved historical records. Until
8 March 2021, the World Health Organization (WHO) had registered more than 116 million
confirmed cases and over 2.5 million deaths [1]. COVID-19 is an infectious disease caused
by SARS-CoV2 virus that affects severely the lungs of people infected, and the virus is
easily propagated in the air and by contact. COVID-19 can cause complications and lead to
development of pneumonia and other symptoms that can be confused with other diseases [1].

In addition, pneumonia is also an infectious disease that affects the lungs and can be
caused by bacteria such as Streptococcus pneumoniae and Haemophilus influenzae, and viruses
apart from the one that provokes COVID-19. It has been a major disease and cause of death
for children and senior people around the world. According to the WHO, pneumonia
causes 15% of all deaths of children under 5 years old [2]. Moreover, pneumonia killed
808,694 children in 2017.

On the other hand, tuberculosis disease, caused by Mycobacterium tuberculosis is also
an infectious disease that causes antimicrobial resistance and death of tissue on different
parts of the body, affecting principally the lungs. According to the WHO, tuberculosis is
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the top infectious killer around the world and causes around 1.5 million deaths every year.
In 2019 alone, an estimated 10 million people fell ill with tuberculosis [3].

At the same time, according to the World Cancer Research Fund (WCRF) breast cancer
is the most common cancer in women, and until 2018 it was the second most common cancer
overall in the world, with over 2 million new cases in the same year [4]. Consequently,
COVID-19, pneumonia, tuberculosis, and breast cancer have one thing in common: they
can be diagnosed using radiological studies such as X-ray images. Lung infections can be
detected by taking a chest X-ray of the patient; breast cancer can be detected by taking an
X-ray image of the breast of a woman, called mammography [5]. In the case of COVID-19,
radiological features include peripheral damage in one or both lungs, and a crazy paving
pattern is commonly found in chest X-ray images from infected patients [1]. On the other
hand, pneumonia not caused by COVID-19 causes pus and fluid in the lung, identifying
radiopaque segments in the X-ray images without a specific pattern [6]. Tuberculosis
presents radiolucent segments on the X-ray images due to solid necrosis in the center of
the affected area (tubercles) [7]. As breast cancer concerns, mammography images show
nodules and microcalcifications (radiopaque segments) near the mammary glands [8].

X-ray images usually are not as accurate as computed tomography (CT) and mag-
netic resonance imaging (MRI), but developing countries do not always have specialized
equipment available to acquire CT and MRI. Therefore, X-ray images become a crucial
tool to help physicians to diagnose diseases. With radiological studies and technology,
computer-aided diagnosis (CAD) results in a very useful technique to analyze and detect
abnormalities using the images generated by X-ray machines [9].

Prior to deep learning (DL) frameworks, medical image classification was based on
traditional feature extraction and classification algorithms. For example, Livieris et al. [10]
presented a framework that consisted in an ensemble of semi-supervised learning (SSL)
algorithms to identify and classify lung abnormalities. In this work, authors used a
tuberculosis dataset and different configurations of SSL such as self-training, co-training,
and tri-training, obtaining accuracies under 74% for tuberculosis classification. Another
popular work was presented by Minaee et al. [11] in which they manually extracted
features from MRI to track the damage on patients with brain injuries. They used feature
selection and linear regression as classification algorithms. Nowadays, CAD is mostly
aided by computer vision (CV)-specialized algorithms from DL such as a convolutional
neural network (CNN) [12]. CNNs are the most popular type of DL algorithms and the
most used for medical image diagnosis. We can find several works from segmentation of
lesions [13–15] to classification of different diseases [16–19].

As a major relevance for this work, we can find works that use radiological studies to
classify among different diseases. Rajan et al. [20] presented a few-shot learning approach to
classify among 14 chest diseases using X-ray images, and they proposed a solution to train a
CNN with few data and solve the problem of acquiring a vast amount of medical imaging data.

As COVID-19 concerns, Sharma et al. [21] presented a CNN called CORONA-19 NET
in which they used transfer learning to classify with a MobileNetV2 between normal
and sick patients using a small dataset of 20 images. In addition, Zebin and Rezvy [22]
used multiple pretrained CNNs as feature extractors to classify among patients. Moreover,
Yu et al. [23] presented a framework that used four pretrained CNNs as baseline to classify
among patients using CT scans, obtaining accuracies superior to 94%. Luján-García et al. [24]
used an Xception CNN to classify among COVID-19 and pneumonia patients using a
pretrained model on ImageNet. They showed that the Xception network was the fastest
among several baselines. More recently, Yazdani et al. [25] presented a CNN with an attention
mechanism to classify COVID-19 patients, obtaining a sensitivity of 90% using CT scans.
Finally, Gupta et al. [26] presented a framework called InstaCovNet-19, which consists in
using five pretrained baselines and stacking them to classify patients using X-ray images,
and this obtained excellent results of almost 100% accuracy compared with other researches.

Pneumonia classification also plays an important role in radiological classification
studies. Zhang et al. [27] presented a confidence-aware framework that uses a CNN as a
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feature extractor, a confidence module, and a prediction module achieving a sensitivity
of 71.70%. Rahman et al. [28] presented a comparison between several baseline models to
classify images of children infected with pneumonia, achieving up to 99% of sensitivity,
and Luján-García et al. [29] used the same dataset but added a preprocessing technique
and used a different pretrained baseline.

Recently, Rajpurkar et al. [30] presented a DL assistance tool to classify tuberculosis
from patients with human immunodeficiency virus (HIV) using a CNN and a linear
classifier to predict six clinical findings. On the other hand, Pasa et al. [31] presented a
new small CNN to classify X-ray images from two small datasets, and they achieved good
results despite the fact that no pretrained models were used. Moreover, using the same
dataset as Pasa et al., Khatibi et al. [32] used an ensemble of CNNs to achieve classification
accuracies up to 99.2%.

On the other hand, breast cancer has been improved using DL techniques. Shen et al. [33]
used pretrained baselines on a large mammography dataset to classify among malign and
benign mass and calcification, obtaining a sensitivity of 96%. Moreover, Agarwal [34] used
a pretrained CNN to detect masses in mammography images, which achieved a better
result, compared to Shen et al., with a sensitivity of 98% on the same dataset. Finally,
Wu et al. [35] presented a custom ResNet-based CNN to classify over 1 million images
from multiple views of patients with benign and malign masses, achieving an area under
the curve score of 0.895.

Nonetheless, popular CNNs are enormous models and need a large amount of data
for the purpose of being trained properly to get good results. Therefore, we aim to preset a
small but effective CNN model that can be used to classify among different diseases using
images from radiological studies.

2. Materials and Methods

In this section, datasets used for this research are described. In addition, we briefly
introduce some of the CNN baseline models used for comparison purposes. Finally, metrics
used for evaluating the algorithms are detailed.

2.1. Datasets
2.1.1. Tuberculosis Dataset

The tuberculosis dataset is a collection of two sets of chest X-ray images from two
different hospitals presented by the National Institute of Health of the United States [36].
The tuberculosis dataset is divided in two sets: the Montgomery County set and the
Shenzhen set.

The Montgomery County set contains 138 frontal chest X-ray images, in which 80 of them
are normal cases and 58 are from tuberculosis patients. Similarly, the Shenzhen set contains
662 frontal chest X-ray images, of which 326 are normal cases and 336 are tuberculosis patients.

2.1.2. Pneumonia Children Dataset

The Pneumonia children dataset was published by Kermany et al. [37]. The dataset
contains 5856 chest X-ray images of healthy and sick children up to five years old. All images
are given as a training set, with 5232 images and an official test set of 624 images. From the
5232 images, 3883 are from patients infected with pneumonia. The remaining 1349 images
are from healthy children. On the other hand, the test set is divided as follows: 390 images
are from pneumonia-infected children, and 234 images are from healthy children.

2.1.3. COVID-19 Dataset

Presented by Cohen et al. [38], The COVID-19 Image Data Collection was one of
the first open available datasets that contained chest X-rays from patients infected with
COVID-19. We initially used the dataset from November 2020, which contained 930 images
from different diseases such as pneumonia, severe acute respiratory syndrome (SARS),
and middle east respiratory syndrome (MERS), among others. At this time, only 478 images
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were from patients infected with COVID-19. These images were used to generate two
different sets of images to perform experiments, explained in the next section.

2.1.4. RSNA Pneumonia Challenge Dataset

The RSNA Pneumonia Challenge (RSNA-PC) is the only competition (from Kag-
gle.com) to classify and provide bounding boxes for damaged areas of the lung caused by
pneumonia. The dataset contains 26,684 unique chest X-ray images of both normal (29%)
and not normal/opacities (71%) for the training set, and 3000 images for the test set.

2.1.5. BCDR Dataset

The Breast Cancer Digital Repository (BCDR), by Moura and Guevara [39], offers
multiple datasets for both digital and scanned mammography in which principal classes
are malign and benign tumors. For this work, we have used only the two datasets of
digital mammography.

The BCDR-D01 contains full-field digital mammography and is composed of 79 biopsy-
proven lesions of 64 women, rendering 143 segmentations for 80 unique images of patients
with benign tumors, and 57 patients with malign tumors.

The BCDR-D02 contains full-field digital mammography and is composed of 230 biopsy-
proven lesions of 162 women, rendering 455 segmentations for 359 unique images of
patients with benign tumors, and 48 patients with malign tumors.

2.2. CNN Models from the State of the Art

Back in 2015, since the formal introduction of Deep Learning [40], the research commu-
nity has dedicated a lot of attention and effort on developing DL algorithms for different
purposes, such as image recognition, CV, CAD systems, and natural language process-
ing, among others. Due to the capacity of extracting features withing the algorithm itself
from different kind of signals (including images), CNNs have achieved magnificent re-
sults. Nowadays, a huge number of CNN models exist and are used for distinct purposes.
As a result, we can find custom models [16,19,31] and the ones that use key baselines for
classification of different diseases [17,22,24,29,41–43].

For this research, we have compared the proposed method with the most popular
CNNs used for computer vision tasks such as the ResNet50 [44], the Xception network [45],
and the DenseNet121 [46].

2.3. Metrics

In a binary classification problem, we can measure the performance according to
the examples correctly classified that belong to each class as true positives (tp) and true
negatives (tn), and we take into account the mistakes or errors when classifying instances
such as the false positives (fp) and false negatives (fn). Normally, tp, tn, fp, and fn are
shown in tabular form as a confusion matrix (Figure 1).
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From the confusion matrix, we can compute a variety of metrics. Accuracy is com-
monly used when we have a classification task among two or more different classes.
Moreover, we can also compute other metrics such as precision, sensitivity, specificity, F1-
Score, and the area under the ROC curve (AUC) [47]. Following, we can find the definition
of the metrics used in this work (Equations (1)–(5)).

Accuracy =
tp + tn

tp + f n + f p + tn
(1)

Precision =
tp

tp + f p
(2)

Sensitivity =
tp

tp + f n
(3)

Speci f icity =
tn

f p + tn
(4)

F1 − Score =
2 tp

2 tp + f p + tn
= 2

precision × recall
precision + recall

. (5)

In general, accuracy not always represents an unbiased performance measurement due
to different imbalances within the instances of a dataset. Therefore, precision, sensitivity,
specificity, F1-Score, and AUC are always helpful to measure the performance of a model.
For this work, an AUC using thresholds was computed.

3. Proposal

In this section, a detailed description of the proposed custom CNN model is given.
Moreover, final datasets and their partitions are explained. On the other hand, preprocess-
ing and data augmentation techniques are described. Finally, hyperparameters used to
train the models are mentioned.

3.1. DL Model

Inspired by the Separable Convolutions from the Xception network, we have designed
the NanoChest-net to classify between images from radiological studies, such as X-ray
images. The complete block diagram of our CNN model is shown in Figure 2. A complete
specification of each layer of the CNN is described in Table 1.
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We have used the depth multiplier of Separable Convolution layers to increment the
number of output channels on each layer. In addition, we have used a dilation rate of
2 to increment the size of the spatial perception field on each layer. As a result, Table 1
shows us the total number of layers of our proposal, which is 28. If we count the set of a
convolutional layer, the batch normalization layer, and its activation as a complete layer (as
commonly used in the literature), then our proposal is composed of a very small number of
14 layers. Moreover, if we only focus on weighted layers, then our proposal is as small as
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10 layers in depth. In comparison, baseline models such as VGG-16, which comes next in
layer size, contain 19 weighted layers and have an average of 136.4 million parameters [48].
Therefore, our proposal has the advantage of halving the depth according to weighted
layers, and it has 40 times fewer parameters with only 3.4 million.

Table 1. Layer specification of NanoChest-net.

Layer Type Specifications

Input Size = (250, 250, 3)

Convolution

Number of filters = 64
kernel size = (3, 3)
dilatation rate = 2
padding = valid

Relu Nonlinearity relu

Convolution

Number of filters = 64
kernel size = (3, 3)
dilatation rate = 2
padding = valid

Relu Nonlinearity relu

Max Pooling Pool size = (3, 3)

Separable
Convolution

Number of filters = 128
kernel size = (3, 3)
dilatation rate = 2

depth multiplier = 3
padding = valid

Batch
Normalization Normalization

Relu Nonlinearity relu

Separable
Convolution

Number of filters = 256
kernel size = (3, 3)
dilatation rate = 2

depth multiplier = 3
padding = valid

Batch
Normalization Normalization

Relu Nonlinearity relu

Max Pooling Pool size = (3, 3)

Separable
Convolution

Number of filters = 256
kernel size = (3, 3)
dilatation rate = 2

depth multiplier = 3
padding = valid

Batch
Normalization Normalization

Relu Nonlinearity relu

Separable
Convolution

Number of filters = 512
kernel size = (3, 3)
dilatation rate = 2

depth multiplier = 3
padding = valid

Batch
Normalization Normalization
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Table 1. Cont.

Layer Type Specifications

Relu Nonlinearity relu

Separable
Convolution

Number of filters = 1024
kernel size = (3, 3)
padding = same

Batch
Normalization Normalization

Relu Nonlinearity relu

Separable
Convolution

Number of filters = 2048
kernel size = (3, 3)
padding = same

Batch
Normalization Normalization

Relu Nonlinearity relu

Global Average
Pooling Global Pooling

Dropout Keeping rate = 0.25

Logistic-Output Units = 2
activation = Softmax

As consequence, the aforementioned reasons are motive to call this small model as
NanoChest-net due to the minimal number of layers on the CNN model and its application
to radiological studies, primarily of the chest.

3.2. Datasets Splitting and Validation Method
3.2.1. Splitting and Final Datasets

We have maintained the original examples for Shenzhen, Montgomery, Pneumonia
children, BCDR-D01, and BCDR-D02. Nonetheless, we have generated two new subsets
using the COVID-19 dataset and the RSNA-PC dataset. We took the 478 COVID-19 images
from the COVID-19 dataset and 478 images of healthy patients of the RSNA-PC to generate
the COVID-NORMAL dataset. Moreover, we took the same 478 images from COVID-
19 dataset, but now 478 images of pneumonia-sick patients from the RSNA-PC to generate
the COVID-PNEUMONIA dataset. Table 2 shows the final datasets used for this research.

Table 2. Number of images of each class from each dataset.

Dataset Classes Images per Class Official Test Set

Montgomery County {NORMAL,
TUBERCULOSIS} 80, 58 -

Shenzhen {NORMAL,
TUBERCULOSIS} 326, 336 -

Pneumonia children {NORMAL,
PNEUMONIA} 1349, 3883 234, 390 [37]

COVID-NORMAL {COVID, NORMAL} 478, 478 -
COVID-PNEUMONIA {COVID, PNEUMONIA} 478, 478 -

BCDR-D01 {BENIGN, MALIGN} 80, 57 -
BCDR-D02 {BENIGN, MALIGN} 359, 48 -

3.2.2. Validation Method

Hold-out validation was performed in order to obtain the training, development
(Dev), and test set for each dataset. Hold-out validation consists of randomly dividing the
original number of images on the training, Dev, and test set. Figure 3 shows the behavior
of the hold-out validation method.
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A hold-out 70-10-20 was used over each dataset, except for the Pneumonia children,
in which an official test set was established by the authors. Therefore, partitions for each
dataset are as follows (Table 3).

Table 3. Partitions for each dataset.

Dataset Partition Class 1 Class 2

Montgomery County
Training set 56 40

Dev set 8 5
Test set 16 13

Shenzhen
Training set 228 235

Dev set 32 33
Test set 66 68

Pneumonia children
Training set 1214 3494

Dev set 135 389
Test set 234 390

COVID-NORMAL
Training set 334 334

Dev set 47 47
Test set 97 97

COVID-
PNEUMONIA

Training set 334 334
Dev set 47 47
Test set 97 97

BCDR-D01
Training set 56 40

Dev set 8 6
Test set 16 11

BCDR-D02
Training set 251 34

Dev set 36 5
Test set 72 9

3.3. Preprocessing and Data Augmentation

All images were normalized before feeding the CNN models. In addition, all datasets
were resized to 500 × 500 pixels to avoid resizing each image from its original size to the
input size of each CNN model on each step of the training. Moreover, we fed the models
with the original input size. Then, the input size of each model is as follows (Table 4).

Table 4. Input size for each CNN model.

Model Input Size

ResNet50 224 × 224 × 3
Xception 299 × 299 × 3

DenseNet121 224 × 224 × 3
NanoChest-net 250 × 250 × 3
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Tuberculosis Montgomery County Dataset

For the Montgomery County dataset, first we cropped the central region of the images
with the intention of deleting black bars from the original images (Figure 4). We followed
the algorithm by Pasa et al. [31]. Then, we applied preprocessing and data augmenta-
tion techniques.
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On the other hand, data augmentation techniques were applied to each dataset aiming
to obtain a better generalization of the models. For tuberculosis datasets, pneumonia
dataset, and COVID-19 dataset we applied horizontal flip, magnification in a range of
0.90 to 1.2, random width and height shift with a factor of 0.20, random rotation of 20 de-
grees, and brightness changes in a factor range of 0.80 to 1.05. In the case of the BCDR
datasets, we changed the random rotation to 30 degrees and added vertical flip.

3.4. Hyperparameter Tuning

We conducted the same experiments using the state-of-the-art CNNs and our pro-
posed method. Equivalent hyperparameters were used through all models, except for the
input size. We used the original input size for each model, as mentioned in Section 4.3.
We trained all models using a logistic layer of two units with Sigmoid activation to get
the probability of having each of two classes per dataset. Binary cross-entropy was used
as a cost function (computed as in [29]) and Adam [49] as optimization algorithm with
parameters β1 = 0.9, β2 = 0.999 (recommended values from original paper). In addition,
we performed several experiments with different optimizers to see the impact in the
training of our proposal as seen in Table 5 (best results are highlighted in bold).

From Table 5, we can see that the stochastic gradient descent (SGD) [50] did not
obtain good results in any dataset. On the other hand, Adam obtained the best scores
25 times, and RMSProp (introduced by Hinton in 2012) obtained the best scores 17 times.
Adam was selected due to the fact it is a combination of SGD (using momentum) and
RMSProp (squared gradients). As a result, we also performed experiments to see the
impact of changing the learning rate for training using Adam optimizer as seen on Table 6
(best results are highlighted in bold).

From previous results (Table 6) we can see that using a learning rate of 0.001 pro-
vided the best scores 16 times. Nonetheless, using a learning of 0.0005, the best scores
were obtained 23 times. A learning rate of 0.0005 was selected because it showed better
performance than a larger one. Moreover, a small learning rate on the order of 10–4 benefits
all models when training on small datasets.

As a result, a learning rate of 0.0005 was selected to perform all experiments with
all datasets. In the same way, the Adam algorithm, which is a combination of SGD and
RMSProp, was selected as an optimization algorithm. Moreover, the number of epochs was
selected according to the size of each dataset and our technological capabilities. In addition,
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the batch size was selected considering the size of each dataset and its partitions. Learning
rate, epochs, and batch size configurations are shown in Table 7.

Table 5. Results using different optimizers for NanoChest-net.

Dataset Optimizer Accuracy Precision Sensitivity Specificity F1 AUC

Montgomery
County

SGD 0.552 0.000 0.000 1.000 0.000 0.587
RMSProp 0.862 0.765 1.000 0.750 0.867 0.981

Adam 0.931 0.867 1.000 0.875 0.929 0.928

Shenzhen
SGD 0.739 0.739 0.750 0.727 0.745 0.861

RMSProp 0.881 0.906 0.853 0.909 0.879 0.932
Adam 0.828 0.792 0.897 0.758 0.841 0.928

Pneumonia
children

SGD 0.894 0.860 0.992 0.731 0.921 0.984
RMSProp 0.920 0.886 1.000 0.786 0.940 0.994

Adam 0.931 0.904 0.995 0.825 0.947 0.992

COVID-
NORMAL

SGD 0.732 0.696 0.825 0.639 0.755 0.844
RMSProp 0.871 0.860 0.887 0.856 0.873 0.930

Adam 0.933 0.912 0.959 0.907 0.935 0.970

COVID-
PNEUMONIA

SGD 0.694 0.679 0.735 0.653 0.706 0.787
RMSProp 0.786 0.780 0.796 0.776 0.788 0.881

Adam 0.816 0.860 0.755 0.878 0.804 0.919

BCDR-D01
SGD 0.483 0.250 0.182 0.667 0.211 0.379

RMSProp 0.724 0.636 0.636 0.778 0.636 0.768
Adam 0.621 0.500 0.818 0.500 0.621 0.702

BCDR-D02
SGD 0.639 0.161 0.556 0.649 0.250 0.679

RMSProp 0.614 0.189 0.778 0.595 0.304 0.707
Adam 0.687 0.185 0.556 0.703 0.278 0.664

Table 6. Results using Adam optimizer and different learning rates for NanoChest-net.

Dataset Learning
Rate Accuracy Precision Sensitivity Specificity F1 AUC

Montgomery
County

0.001 0.793 0.684 1.000 0.625 0.813 1.000
0.0005 0.931 0.867 1.000 0.875 0.929 0.928

Shenzhen
0.001 0.858 0.866 0.853 0.864 0.859 0.937
0.0005 0.828 0.792 0.897 0.758 0.841 0.928

Pneumonia
children

0.001 0.931 0.906 0.992 0.829 0.947 0.992
0.0005 0.931 0.904 0.995 0.825 0.947 0.992

COVID-
NORMAL

0.001 0.861 0.830 0.907 0.814 0.867 0.927
0.0005 0.933 0.912 0.959 0.907 0.935 0.970

COVID-
PNEUMONIA

0.001 0.847 0.886 0.796 0.898 0.839 0.869
0.0005 0.816 0.860 0.755 0.878 0.804 0.919

BCDR-D01
0.001 0.690 0.583 0.636 0.722 0.609 0.657
0.0005 0.621 0.500 0.818 0.500 0.621 0.702

BCDR-D02
0.001 0.458 0.109 0.556 0.446 0.182 0.545
0.0005 0.687 0.185 0.556 0.703 0.278 0.664

Table 7. Hyperparameters for each dataset.

Dataset Learning Rate Epochs Batch Size

Montgomery County 0.0005 200 4
Shenzhen 0.0005 200 8

Pneumonia children 0.0005 100 16
COVID-NORMAL 0.0005 200 16

COVID-PNEUMONIA 0.0005 200 16
BCDR-D01 0.0005 200 4
BCDR-D02 0.0005 200 8
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We applied weights to BCDR-D01 and BCDR-D02 datasets to combat class imbalance.
We used 0.8636 and 1.1875 for benign and malign on BCDR-D01, and 0.568 and 4.1765 for
benign and malign on BCDR-D02.

4. Results

In this section, the experimental framework is described. In addition, performance and
comparison between models are presented. Furthermore, statistical analysis is presented,
considering metrics and time measurements.

4.1. Experimental Framework

Experiments for this research were conducted on a PC with AMD Ryzen 3700x proces-
sor; 16 GB of RAM; 512 SSD + 2 TB of storage; GPU Nvidia RTX 2070 Super with 8 GB GDDR5;
Python 3.7.9 was used as programming language; TensorFlow 2.1.0 with Keras as high-level
DL framework; sci-kit learn 0.23.2 [51] as machine learning (ML) library; and OpenCV
3.4.2 [52] as main image processing library. Moreover, we set a fixed seed for TensorFlow,
Python random generator, and NumPy library to get the repeatability of the experiments.

In addition, we want to clarify that all baseline CNN models have been randomly
initialized with the intention of making a fair comparison with our proposal. Neither
transfer learning nor finetuning were performed in these tests. Apart from state-of-the-art
works [13–30,32–35] pretrained in several medical image datasets and ImageNet, our pro-
posal received no extra training and only took the training partition of each presented
dataset. Our source code is available on https://github.com/zotrick/NanoChest-net.

4.2. Test Sets Results

We trained all baseline models and the proposed NanoChest-net using the same
hyperparameters (apart from the input size) on all the datasets specified in Section 2 and
computed the performance metrics. The results over the respective test set for each dataset
can be found in Table 8 (best results are highlighted in bold).

Table 8. Metrics of CNN models over all datasets.

Dataset Model Accuracy Precision Sensitivity Specificity F1 AUC

Montgomery
County

ResNet50 0.862 1.000 0.692 1.000 0.818 0.885
Xception 0.690 0.611 0.846 0.563 0.710 0.851

DenseNet121 0.793 0.818 0.692 0.875 0.750 0.755
NanoChest-net 0.931 0.867 1.000 0.875 0.929 0.928

Shenzhen

ResNet50 0.813 0.864 0.750 0.879 0.803 0.871
Xception 0.851 0.800 0.941 0.758 0.865 0.937

DenseNet121 0.776 0.788 0.765 0.788 0.776 0.883
NanoChest-net 0.828 0.792 0.897 0.758 0.841 0.928

Pneumonia
children

ResNet50 0.921 0.892 0.995 0.799 0.941 0.990
Xception 0.917 0.886 0.995 0.786 0.937 0.992

DenseNet121 0.921 0.894 0.992 0.803 0.940 0.989
NanoChest-net 0.931 0.904 0.995 0.825 0.947 0.992

COVID-
NORMAL

ResNet50 0.845 0.802 0.918 0.773 0.856 0.953
Xception 0.887 0.871 0.907 0.866 0.889 0.960

DenseNet121 0.866 0.890 0.835 0.897 0.862 0.924
NanoChest-net 0.933 0.912 0.959 0.907 0.935 0.970

COVID-
PNEUMONIA

ResNet50 0.796 0.796 0.796 0.796 0.796 0.843
Xception 0.837 0.824 0.857 0.816 0.840 0.872

DenseNet121 0.776 0.755 0.816 0.735 0.784 0.857
NanoChest-net 0.816 0.860 0.755 0.878 0.804 0.919

BCDR-D01

ResNet50 0.586 0.474 0.818 0.444 0.600 0.662
Xception 0.655 0.571 0.364 0.833 0.444 0.732

DenseNet121 0.759 0.667 0.727 0.778 0.696 0.854
NanoChest-net 0.621 0.500 0.818 0.500 0.621 0.702

https://github.com/zotrick/NanoChest-net
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Table 8. Cont.

Dataset Model Accuracy Precision Sensitivity Specificity F1 AUC

BCDR-D02

ResNet50 0.590 0.143 0.556 0.595 0.227 0.659
Xception 0.627 0.156 0.556 0.635 0.244 0.565

DenseNet121 0.735 0.190 0.444 0.770 0.267 0.673
NanoChest-net 0.687 0.185 0.556 0.703 0.278 0.664

As seen in Table 8. The proposed model behaved similar to the baseline ones. A de-
tailed discussion will be given in the next section.

4.3. Training Time Results

Apart from evaluating the metrics, we also measured the time taken for each model
at training time. We measured the total time taken by each model, the average time per
epoch, the time of each model to process a single example, and the time taken in achieving
the best result through all the training epochs. Therefore, results can be found in Table 9
(best results are highlighted in bold).

Table 9. Time measurements of CNN models over all datasets.

Dataset Model Total Training
Time (s)

Epoch Avg
Time (s)

Time per
Example (s)

Convergence
Time (s)

Montgomery
County

ResNet50 251.8598 1.2593 0.0131 166.2275
Xception 490.9686 2.4548 0.0256 198.8423

DenseNet121 268.7426 1.3437 0.0140 143.7773
NanoChest-net 227.5804 1.1379 0.0119 216.2014

Shenzhen

ResNet50 955.6777 4.7784 0.0105 793.2125
Xception 2112.3239 10.5616 0.0232 1193.4630

DenseNet121 997.1672 4.9858 0.0109 623.2295
NanoChest-net 1071.1402 5.3557 0.0117 599.8385

Pneumonia
children

ResNet50 4649.3123 46.4931 0.0099 4416.8467
Xception 9404.9841 94.0498 0.0200 7241.8378

DenseNet121 4898.9102 48.9891 0.0104 4115.0845
NanoChest-net 5474.7824 54.7478 0.0116 3941.8433

COVID-
NORMAL

ResNet50 1317.2370 6.5862 0.0100 1172.3409
Xception 2691.6571 13.4583 0.0205 753.6640

DenseNet121 1384.6404 6.9232 0.0106 851.5538
NanoChest-net 1518.7023 7.5935 0.0116 1260.5229

COVID-
PNEUMONIA

ResNet50 1387.4420 6.9372 0.0106 1200.1374
Xception 2796.1585 13.9808 0.0213 503.3085

DenseNet121 1423.2266 7.1161 0.0108 1095.8845
NanoChest-net 1581.9784 7.9099 0.0121 450.8638

BCDR-D01

ResNet50 245.4158 1.2271 0.0133 158.2932
Xception 472.3512 2.3618 0.0257 340.0929

DenseNet121 271.2206 1.3561 0.0147 269.8645
NanoChest-net 225.8349 1.1292 0.0123 195.3472

BCDR-D02

ResNet50 574.5628 2.8728 0.0103 255.6805
Xception 1239.4353 6.1972 0.0221 1171.2663

DenseNet121 594.5677 2.9728 0.0106 335.9307
NanoChest-net 630.9567 3.1548 0.0113 498.4558

Despite the fact our proposal did not seem be faster among the CNN models, we will
perform further analyses in the next section.

4.4. Size of the Models

With the final structure of each CNN model, and after training them, we measured
the total number of parameters of each one. In addition, as the best-performance model for
all CNNs was saved, we measured the size of storage of each model. Results can be found
in Table 10 (smaller number of parameters and size are highlighted in bold).



Diagnostics 2021, 11, 775 13 of 17

Table 10. Size comparison of the CNN models.

Model Total Parameters Size (MB)

ResNet50 23,591,810 270
Xception 20,865,578 239

DenseNet121 7,039,554 81.8
NanoChest-net 3,393,986 38.9

4.5. Statistical Analysis

We performed the Friedman test [53] over computed metrics for each model on each
dataset (Table 11). The Friedman test tells with a 95% confidence if a significant statistical
difference exists between five or more instances ranked in order of significance. If p < 0.05
is found, then significant differences exist. We arranged the results of the Friedman test in
Table 11 (best results are highlighted in bold).

Table 11. Friedman test over each metric for all models.

Model Accuracy Precision Sensitivity Specificity F1-Score AUC

Friedman Test

0.183672 0.418818 0.170754 0.440227 0.085801 0.087436

Ranking

NanoChest-
net 1.71 1.8571 1.9286 2 1.4286 1.6429

Xception 2.42 2.8571 2.1429 2.9286 2.7143 2.2143
DenseNet121 2.64 2.4286 3.3571 2.2143 2.8571 2.8571
ResNet50 3.21 2.8571 2.5714 2.8571 3 3.2857

From Table 11, we can observe that p-values were greater than 0.05 (confidence level
of 95%). Therefore, the null hypothesis for equality on the performance of compared
algorithms was not rejected.

As for time per example, statistical analysis showed that the Friedman test obtained
a p-value of 0.001213, being the ResNet50 the best of the ranking. As a result, the null
hypothesis was rejected. However, after applying the Holm test [54], we obtained the
results as shown in Table 12.

Table 12. Adjusted p-values for time per example obtained through the post hoc method (Friedman).

i Algorithm Unadjusted p

1 Xception 0.000084
2 NanoChest-net 0.09769
3 DenseNet121 0.147299

From Table 12, we can observe that the Holm test rejected the hypothesis with unad-
justed p-values smaller than 0.001213. Therefore, neither DenseNet121 nor NanoChest-net
was rejected. On the contrary, only the Xception network was rejected, showing significant
differences (inferior performance) compared with the other algorithms. Consequently,
we will perform further analyses in the next section.

5. Discussion

In this section, advantages of the proposal are highlighted. An evaluation of the
classification results on the different datasets is performed, as well as the time analysis of
the training.

From the classification results (Table 8), our proposal obtained good results through
all the datasets. On the Montgomery County dataset, our model obtained the best results
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on accuracy, sensitivity, F1-Score, and AUC, with scores of 0.931, 1.000, 0.929, and 0.928,
respectively. For the Shenzhen dataset, our model obtained the second-best scores on
accuracy (0.828), sensitivity (0.897), F1-Score (0.841), and AUC (0.928) only behind the
Xception network. On the Pneumonia children dataset, our method achieved the best
results among all CNN models, with an accuracy of 0.931, precision of 0.904, sensitivity
of 0.995, specificity of 0.825, F1-Score of 0.947, and an AUC score of 0.992. Again, for the
COVID-NORMAL dataset, our proposal achieved the best scores of all models with an
accuracy of 0.933, precision score of 0.912, sensitivity score of 0.959, specificity score of
0.907, F1-Score of 0.935, and an AUC score of 0.970. On the other hand, for the COVID-
PNEUMONIA dataset, the NanoChest-net obtained the best results for precision (0.860),
specificity (0.878), and AUC (0.919), and the remaining metrics had good results, only be-
hind the Xception network. Nevertheless, for the BCDR-D01 dataset, we fell behind to
third place behind DenseNet121 and Xception networks, except for sensitivity (best result).
We obtained the following scores: accuracy of 0.621, precision of 0.500, sensitivity of 0.818,
specificity of 0.500, F1-Score of 0.621, and AUC of 0.702. Finally, for the BCDR-D02 dataset
we obtained the best results for sensitivity (0.556) and F1-Score (0.278). For the remain-
ing metrics, we obtained second place only behind the DenseNet121 with an accuracy
of 0.687, precision of 0.185, specificity of 0.703, and an AUC of 0.664. Finally, from the
statistical analysis for metrics (Table 9), the Friedman test did not show evidence to reject
the hypothesis. Therefore, there were no statistically significant differences among the
models. However, the scores from the test placed our proposal at the top of the ranking
on each metric, showing a superior behavior compared to the state-of-the-art baseline
models. In addition, if we used a confidence level of 90%, then there will exist differences
on F1-Score and AUC in favor of NanoChest-net due to its first position in the ranking.

On the other hand, time measurement results (Table 9) showed that in the Montgomery
County and BCDR-D01 our proposal obtained the lowest values for total training time,
epoch average time, and time per example. For Shenzhen, Pneumonia children, COVID-
NORMAL, COVID-PNEUMONIA, and BCDR-D02, our method was always in third place,
behind the ResNet50 and DenseNet121 networks. Nonetheless, from the Friedman test and
Holm results (Tables 11 and 12) we can observe that there were no significant differences
among ResNet50, DenseNet121, and our method. The Xception network was the only
worse model considering the time taken per example.

At the same time, our proposal took an important step further on a crucial aspect.
Apart from showing decent classification and time results, our method was significantly
smaller in parameter count and storage size. From Table 10, we can observe that our method
had less than half the parameters and size compared to DenseNet121, and 6 to 7 times
fewer parameters and smaller size when compared to Xception and ResNet50 models.
Consequently, our model could be used in computers, embedded devices, and mobile
devices with limited storage, memory, and computation capabilities.

6. Conclusions

In this paper, we have introduced a new, full custom, and small convolutional neural
network model called NanoChest-net. Our proposed model is used to classify medical
images from radiological studies such as X-rays from the chest and mammography from
the breasts of women. As a result, our model proves to be effective in classifying among
different diseases like tuberculosis, pneumonia, and COVID-19. Moreover, NanoChest-net
obtained the best results on both the Pneumonia children and COVID-NORMAL datasets.
On the remaining datasets, our model proved to be as good as baseline models from the
state of the art such as the ResNet50, Xception, and DenseNet121, finding no statistically
relevant differences among models, neither in performance nor training time. On the
contrary, we can find an abrupt difference on the number of parameters and storage
size of our model, being two to seven times smaller compared with baseline models.
In short, the NanoChest-net model is useful to classify radiological studies on the same
level as state-of-the-art algorithms and without computing large numbers of operations
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and occupying more than 40 MB of storage, making our proposal suitable for embedded
and mobile devices.

As future work we plan to further study the correlation of radiological features
between pneumonia caused by COVID-19 and other viruses or bacteria. In addition,
we plan to train the NanoChest-net on ImageNet and perform a comparison with state-of-
the-art frameworks for medical image classification.
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