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Abstract: Objective: A nomograph model of mortality risk for patients with coronavirus disease
2019 (COVID-19) was established and validated. Methods: We collected the clinical medical records
of patients with severe/critical COVID-19 admitted to the eastern campus of Renmin Hospital of
Wuhan University from January 2020 to May 2020 and to the north campus of Shanghai Ninth
People’s Hospital, Shanghai JiaoTong University School of Medicine, from April 2022 to June 2022.
We assigned 254 patients to the former group, which served as the training set, and 113 patients were
assigned to the latter group, which served as the validation set. The least absolute shrinkage and
selection operator (LASSO) and multivariable logistic regression were used to select the variables
and build the mortality risk prediction model. Results: The nomogram model was constructed
with four risk factors for patient mortality following severe/critical COVID-19 (≥3 basic diseases,
APACHE II score, urea nitrogen (Urea), and lactic acid (Lac)) and two protective factors (percentage
of lymphocyte (L%) and neutrophil-to-platelets ratio (NPR)). The area under the curve (AUC) of the
training set was 0.880 (95% confidence interval (95%CI), 0.837~0.923) and the AUC of the validation
set was 0.814 (95%CI, 0.705~0.923). The decision curve analysis (DCA) showed that the nomogram
model had high clinical value. Conclusion: The nomogram model for predicting the death risk of
patients with severe/critical COVID-19 showed good prediction performance, and may be helpful in
making appropriate clinical decisions for high-risk patients.

Keywords: COVID-19; death; nomogram; prognosis

1. Introduction

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has been defined by the World Health Organization (WHO) as a “public health emergency
of international concern”, seriously threatening the safety of human life [1]. Studies
have shown that the 28 d mortality rate of patients with severe COVID-19 has been as
high as 61.5% [2]. Therefore, early identification of critical patients and early accurate
treatment can effectively reduce COVID-19-related mortality rates [3]. In recent years,
many risk models for predicting the death of patients with COVID-19 have been published
internationally [4–8], but most of them had only internal validation, without external
validation across regions. In March 2022, an epidemic of the Omicron mutant broke out
in Shanghai. On 17 April 2022, the intensive-care team for Shanghai aid from Remmin
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Hospital of Wuhan University entered the ICU ward of the north campus of Shanghai
Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine. In the course
of treatment, we learned from the valuable experience of anti-epidemic approaches taken
in Wuhan and summarized the characteristics of the anti-epidemic approach taken in
Shanghai. Based on the clinical analysis of common test results and the universality
of detection in patients, we constructed a nomogram model of mortality risk using the
data of severe/critical COVID-19 patients in Wuhan, and externally verified the data of
severe/critical COVID-19 patients in Shanghai.

2. Materials and Methods
2.1. General Data

This study was a double-center, retrospective, and observational study. It was ap-
proved by the ethics committee of Renmin Hospital of Wuhan University and Shanghai
Ninth People’s Hospital, affiliated with Shanghai JiaoTong University School of Medicine.
The study obtained ethics exemption. We collected the clinical medical records of patients
with severe/critical COVID-19 admitted to the eastern campus of Renmin Hospital of
Wuhan University from January 2020 to May 2020 and those admitted to the north campus
of Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine
from April 2022 to June 2022. The data of the patients admitted to the former hospital
were used as the training set (n = 254), and data of the patients in the latter were used as
the validation set (n = 113). The patients with severe/critical COVID-19 were taken as the
starting point and the patients who died in hospital or were followed-up for 28 days were
taken as the end point. The follow-up date was 26 June 2022.

2.1.1. Inclusion Criteria

The inclusion criteria for this study were as follows: (1) age ≥ 18 years old; (2) patients
with complete case data; (3) positive for the novel coronavirus nucleic acid detected by
fluorescence quantitative PCR.

Enrollment Criteria for Patients in Wuhan

According to recommendations in the first edition of the COVID-19 diagnosis and
treatment guidelines [9], those who met one of the following criteria were diagnosed
as severe cases: (1) respiratory distress—respiratory rate ≥30 beats/min (RR ≥ 30 bpm);
(2) pulse oxygen saturation (SpO2) ≤ 93% on room air at rest state or arterial partial pressure
of oxygen (PaO2)/Fraction of inspiration O2 (FiO2) ≤300 mmHg (1 mmHg = 0.133 kPa);
(3) pulmonary imaging showing multi-lobar lesions or lesion progression in >50% within
24~48 h; (4) quick sequential organ failure assessment (qSOFA) score ≥1, or combined
with pneumothorax; (5) other clinical conditions requiring hospitalization. Those who met
one of the following criteria were diagnosed as critically ill cases: (1) respiratory failure;
(2) septic shock; (3) combined with other organ failure.

Enrollment Criteria for Patients in Shanghai

According to recommendations in the ninth edition of the COVID-19 diagnosis and
treatment guidelines [10], those who met one of the following criteria were diagnosed as
severe cases: (1) shortness of breath—RR ≥ 30 bpm; (2) SpO2 ≤ 93% on room air at rest
state; (3) PaO2/FiO2 ≤ 300 mmHg; (4) progressive aggravation of clinical symptoms, and
with > 50% lesions progression within 24~48 h in pulmonary imaging. Those who met
one of the following criteria were diagnosed as critically ill cases: (1) respiratory failure
occurred and mechanical ventilation was required; (2) shock occurred; (3) complications
with other organ failure that require monitoring and treatment.

2.1.2. Exclusion Criteria

The exclusion criteria for this study were as follows: (1) age < 18 years old; (2) pregnant
or lactating; (3) treatment period less than 3 days; (4) patients and their families who
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requested cessation of active treatment and could not receive routine comprehensive
treatment; (5) patients who lost contact during follow-up.

2.2. Data Collection and Grouping

The general information, physical examination, and auxiliary examination data for the
patients were collected, and the classification was determined according to the recommen-
dations of the guidelines [9,10]. The worst blood samples of patients with severe/critical
COVID-19 within 24 h after admission were collected, including blood routine, blood
biochemistry, coagulation function, blood gas analysis, and other related indexes, and the
scores of acute physiology and chronic health evaluation II (APACHE) were calculated.

2.3. Statistical methods

SPSS 26.0 and R 4.1.3 were used for statistical analysis and mapping. The measurement
data of this study did not obey the normal distribution, and are represented by the median
(quartile) (M (QL, QU)). Comparison between groups is expressed by Mann–Whitney U
test. The count data are expressed as [n (%)], and the Chi-square test, the Chi-square test of
continuous correction, or Fisher’s precision probability test were used for the comparison
between groups. Whether or not death occurred within 28 days after the diagnosis of
severe/critical COVID-19 (secondary outcome index) was taken as the dependent variable.
Lasso regression was used to screen the independent variables, and multivariate logistic
regression analysis was used to screen the risk factors. The nomogram prediction model
was constructed by using R software rms package, and the ability of the model to the
predict a prognosis of death was evaluated by ROC. The bootstrap method was used to
repeatedly sample 1000 times for internal validation, and the difference of C-index was
compared. Furthermore, a calibration curve and DCA were used to evaluate the prediction
model. The difference was statistically significant (p < 0.05).

3. Results
3.1. Analysis of Baseline Data of Patients

Of the 254 patients in the training set, 74 (29.13%) eventually died; among these
patients, 57 (22.44%) were still COVID-19-positive at the time of death, but 17 (6.69%)
patients were COVID-19-negative according to two consecutive coronavirus nucleic acid
tests before death (sampling time at least 24 h apart). Of the 113 patients in the validation set,
21 (18.58%) eventually died; among these patients, 5 (4.42%) were still COVID-19-positive
according to the novel coronavirus nucleic acid test at the time of death, and 16 (14.16%)
patients were COVID-19-negative according to two consecutive novel coronavirus nucleic
acid tests before death (at least 24 h apart at the time of sampling). The causes of death were
other irreversible serious complications or basic diseases. The baseline data are shown in
Table 1. In the training set and the validation set, the patients in the death group were older,
more critically ill, had more than three basic diseases, and had higher APACHE II scores (p
< 0.05). As shown in Table 2, leukocyte count, the neutrophil-to-lymphocyte ratio (NLR),
NPR, procalcitonin, direct bilirubin, Lac, B-type natriuretic peptide, troponin, and D-dimer
were higher in the group of deceased patients in the training set; however, hemoglobin and
albumin were lower in the validation set (p < 0.05).
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Table 1. Demographic and clinical features of study population by mortality.

Characteristic

Training Set (n = 254) Validation Set (n = 113)

Death Group
(n = 74)

Survival
Group

(n = 180)
Z/χ2

Value p-Value Death Group
(n = 21)

Survival Group
(n = 92)

Z/χ2

Value p-Value

Male/Female (cases) 48/26 102/78 1.458 0.227 12/9 43/49 0.714 0.389
Age [n (%)] 70.0 (56.8, 78.5) 62.0 (69.0, 77.0) −4.002 <0.001 86.0 (76.5, 91.0) 82.0 (72.0, 89.0) −1.332 0.183
18–65 Years 24 (31.6%) 88 (48.9%) 6.506 0.011 4 (19.0%) 65 (70.7%) 19.150 <0.001≥65 Years 50 (68.4%) 92 (51.1%) 17 (81.0%) 27 (29.3%)

COVID-19 Severe/Critical
(cases) 12/62 107/73 39.354 <0.001 10/11 79/13 14.954 <0.001

Course of Disease
[d, M (QL, QU)] 16.0 (11.8, 24.0) 28.0 (17.0, 42.0) −4.662 <0.001 11.0 (7.0, 15.0) 8.0 (7.0, 13.5) −0.836 0.403

Time of Nucleic Acid
Turning Negative (d) 12.0 (10.0, 19.0) 13.0 (9.0, 19.0) −0.027 0.979 6.5 (5.0, 7.3) 5.0 (5.0, 7.0) −1.416 0.157

Clinical Manifestation [n (%)]
Fever 60 (81.1%) 156 (86.7%) 1.286 0.257 14 (66.7%) 39 (42.4%) 4.046 0.044

Cough 36 (48.6%) 123 (68.3%) 8.679 0.003 15 (71.4%) 58 (63.0%) 0.526 0.468
Weakness 23 (31.1%) 77 (42.8%) 3.006 0.083 8 (38.1%) 28 (30.4%) 0.462 0.497
Diarrhea 10 (13.5%) 18 (10.0%) 0.660 0.417 1 (4.8%) 3 (3.3%) 0.000 a 1.000
Dyspnea 25 (33.8%) 30 (16.7%) 9.057 0.003 4 (19.0%) 9 (9.8%) 1.442 0.230

Consciousness Disorder 5 (6.8%) 6 (3.3%) 1.483 0.223 10 (47.6%) 20 (21.7%) 5.872 0.015
Other 7 (9.5%) 15 (8.3%) 0.084 0.772 2 (9.5%) 3 (3.3%) 0.451 a 0.502

Comorbidities [n (%)]
Chronic Lung Disease 11 (14.9%) 18 (10.0%) 1.227 0.268 18 (85.7%) 46 (48.9%) 9.407 0.002

Hypertension 30 (40.5%) 63 (35.0%) 0.694 0.405 11 (52.4%) 51 (55.4%) 0.064 0.800
Diabetes 13 (24.1%) 31 (17.2%) 1.277 0.258 8 (38.1%) 26 (28.3%) 0.786 0.375

Cardiovascular Disease 11 (14.9%) 24 (13.3%) 0.104 0.748 12 (57.1%) 31 (33.7%) 3.988 0.046
Cerebrovascular Disease 7 (9.5%) 15 (8.3%) 0.084 0.772 10 (47.6%) 28 (30.4%) 2.262 0.133
Chronic Kidney Disease 12 (16.2%) 15 (8.3%) 3.430 0.064 11 (52.4%) 14 (15.2%) 13.706 <0.001

Malignancy 9 (12.2%) 24 (13.3%) 0.064 0.801 2 (9.5%) 3 (3.3%) 0.451 a 0.502
≥3 Basic Diseases 14 (18.9%) 17 (9.4%) 4.393 0.036 13 (61.9%) 21 (22.8%) 12.412 <0.001
Treatment [n (%)]

Mechanical Ventilation 31 (41.9%) 18 (10.0%) 34.257 <0.001 14 (66.7%) 19 (20.7%) 17.509 <0.001
ECMO 3 (4.1%) 4 (2.2) 0.151 a 0698 2 (9.5%) 0 (0.0%) - 0.033 b

APACHE II score
[points, M (QL, QU)] 17.0 (16.0, 21.0) 16.0 (15.0, 18.0) −3.495 <0.001 20.0 (17.5, 26.0) 16.0 (12.0, 18.0) −4.843 <0.001

Note: ECMO—extracorporeal membrane oxygenation; APACHE II score—acute physiology and chronic health
evaluation II score; a—the chi-square value of continuous correction; b—Fisher’s test.

Table 2. Comparison of the worst laboratory indicators within 24 h for severe/critical COVID-19
patients in the training set and the validation set.

Characteristic
[M (QL, QU)]

Training Set (n = 254) Validation Set (n = 113)

Death Group
(n = 74)

Survival Group
(n = 180) Z Value p-Value Death Group

(n = 21)
Survival Group

(n = 92) Z Value p-Value

WBC (×109/L) 13.3 (9.9, 17.2) 5.7 (4.2, 7.7) −9.407 <0.001 9.9 (6.8, 14.2) 6.1 (4.5, 10.8) −2.160 0.031
N% 88.6 (82.3, 93.9) 73.2 (62.2, 82.6) −7.734 <0.001 83.0 (65.2, 87.0) 79.7 (64.3, 88.2) −0.212 0.832

N (×109/L) 12,0 (8.1, 16.5) 4.3 (2.6, 6.6) −9.496 <0.001 6.9 (4.3, 10.5) 4.7 (2.7, 9.5) −1.725 0.084
L (×109/L) 0.7 (0.4, 1.1) 0.9 (0.6, 1.2) −3.393 0.001 0.6 (0.3, 0.9) 0.8 (0.5, 1.4) −0.793 0.428

L% 5.1 (2.9, 7.7) 12.7 (8.4, 18.6) −8.802 <0.001 12.0 (6.9, 21.6) 14.1 (9.7, 20.6) −0.793 0.428
NLR 18.0 (9.3, 34.1) 4.3 (2.4, 8.0) −9.115 <0.001 10.0 (5.0, 20.9) 5.4 (2.0, 15.8) −2.361 0.018

Hb (g/L) 108.0 (89.0, 127.3) 124.0 (111.0, 135.0) −4.273 <0.001 99.0 (86.0, 125.0) 121.0 (102.0, 136.0) −2.000 0.046
PLT (×109/L) 131.5 (64.3, 203.0) 191.0 (143.0, 257.0) −4.648 <0.001 115.0 (79.5, 187.0) 183.0 (133.0, 231.0) −2.592 0.010

NPR 0.2 (0.1, 0.4) 0.02 (0.01, 0.03) −10.018 <0.001 0.05 (0.03, 0.13) 0.03 (0.02, 0.05) −3.088 0.002
CRP (mg/L) 31.4 (11.8, 70.6) 12.6 (0.5, 61.9) −2.612 0.009 95.0 (27.5, 171.0) 25.4 (7.1, 88.0) −2.394 0.017
SAA (mg/L) 134.7 (63.6, 200.0) 47.7 (11.5, 126.9) −4.426 <0.001 146.2 (52.7, 248.1) 82.0 (10.4, 225.1) −1.601 0.109
PCT (µg/L) 2.3 (0.8, 5.6) 0.1 (0.04, 0.19) −10.414 <0.001 1.6 (0.3, 8.0) 0.5 (0.4, 1.0) −4.493 <0.001
ALT (U/L) 51.0 (21.8, 121.0) 30.0 (21.0, 51.0) −3.583 <0.001 26.0 (14.0, 40.5) 19.0 (14.5, 29.5) −1.174 0.240
AST (U/L) 81.0 (40.0, 159.8) 33.0 (23.0, 45.8) −7.115 <0.001 41.0 (23.5, 52.5) 30.0 (20.5, 49.5) −1.324 0.185

TBIL (µmol/L) 21.0 (16.0, 37.1) 10.4 (8.4, 15.6) −7.012 <0.001 14.7 (11.5, 16.9) 11.2 (9.3, 16.6) −1.590 0.112
DBIL (µmol/L) 10.7 (7.4, 21.0) 4.0 (3.0, 5.8) −8.266 <0.001 5.6 (3.2, 7.8) 2.8 (2.2, 3.9) −3.573 <0.001

ALB (g/L) 30.2 (27.9, 33.2) 36.0 (32.8, 38.4) −7.728 <0.001 30.0 (28.5, 33.5) 37.0 (30.0, 39.0) −3.094 0.002
Urea (mmol/L) 16.7 (9.1, 31.2) 4.9 (3.9, 7.3) −9.112 <0.001 12.3 (7.7, 21.0) 8.3 (5.6, 11.7) −3.023 0.003

Cr (µmol/L) 121.5 (62.8, 337.8) 61.0 (51.0, 78.0) −5.987 <0.001 102.0 (69.5, 137.0) 77.0 (63.0, 105.5) −2.632 0.008
eGFR (ml/min) 51.7 (15.3, 93.2) 98.9 (85.9, 107.4) −7.383 <0.001 56.0 (39.5, 80.0) 80.0 (54.0, 91.5) −2.358 0.018
Lac (mmol/L) 2.9 (2.1, 4.2) 1.9 (1.4, 2.5) −6.942 <0.001 2.6 (2.1, 4.1) 1.5 (1.1, 2.0) −4.442 <0.001
BNP (ng/L) 1619.0 (392.1, 2196.5) 326.9 (133.7, 682.2) −6.314 <0.001 638.0 (197.0, 899.0) 115.0 (45.5, 238.0) −4.543 <0.001
cTnI (gl/L) 0.7 (0.1, 3.5) 0.1 (0.1, 0.3) −3.647 <0.001 0.2 (0.1, 0.3) 0.1 (0.1, 0.2) −3.583 <0.001

PT (s) 12.4 (12.6, 16.8) 13.0 (11.8, 83.8) −0.132 0.895 12.9 (12.3, 13.3) 11.7 (11.0, 12.4) −3.797 <0.001
APTT (s) 32.0 (26.2, 36.3) 28.9 (26.2, 32.6) −2.923 0.003 33.7 (27.3, 36.3) 30.6 (28.2, 34.8) −0.716 0.474

D-dimer (mg/L) 6.4 (2.3, 22.6) 1.4 (0.6, 4.1) −6.524 <0.001 4.5 (1.7, 8.4) 1.1 (0.5, 3.4) −3.827 <0.001

Note: WBC—white blood cell; N%—percentage of neutrophils; N—neutrophils; L—lymphocytes; L%—percentage
of lymphocytes; NLR—neutrophil-to-lymphocyte ratio; Hb—hemoglobin; PLT—platelet; NPR—neutrophil-to-
platelets ratio; CRP—C-reactive protein; SAA—serum amyloid A; PCT—procalcitonin; ALT—alanine amino-
transferase; AST—aspartate aminotransferase; TBIL—total bilirubin; DBIL—direct bilirubin; ALB—albumin;
Urea—urea nitrogen; Cr—creatinine; eGFR—estimated glomerular filtration rate; Lac—lactic acid; BNP—B-type
natriuretic peptide; cTnI—troponin; PT—prothrombin time; APTT—activated partial thrombin time.
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3.2. Lasso and Logistic Regression Analysis

A total of 51 potential death-related risk factors were included in the study. The
variables of the training set were dimensionally reduced by lasso regression, and the most
representative characteristic variables were selected. When selecting the optimal lambda
parameters, 5-fold cross-validation was used, and the lambda value with the smallest
cross-validation error was taken as the optimal value of the model (Figures 1 and 2),
and the number of variables at this time was counted. The results of Lasso regression
analysis showed that 11 independent variables, including age ≥65 years, ≥3 basic diseases,
APACHE II score, L%, Urea, D-dimer, Lac, NLR, NPR, leukocyte count, and troponin, were
the characteristic variables affecting the death of patients with COVID−19. Taking the
occurrence of death as the dependent variable and the 11 characteristic variables screened by
lasso regression as the independent variables, the results of multivariate logistic regression
analysis (Table 3) show that ≥3 basic diseases, APACHE II score, Urea, and Lac were the
independent risk factors for death, while L% and NPR were protective factors against death.
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Table 3. Multifactor logistics regression analysis of mortality of severe/critical COVID-19 patients.

Variable β SE Wald p OR 95%CI

Age ≥ 65 1.424 0.74 3.697 0.054 4.153 0.973~17.728
≥3 Basic Diseases 1.732 0.757 5.242 0.022 15.653 1.283~24.904
APACHE II Score 0.190 0.095 4.012 0.045 1.209 1.004~1.456

L% −0.253 0.079 10.253 0.001 0.777 0.665~0.907
Urea 0.177 0.060 8.715 0.003 1.193 1.061~1.342

D-dimer 0.002 0.019 0.009 0.925 1.002 0.966~1.039
Lac 0.750 0.221 11.491 0.001 2.117 1.372~3.266

NPR 11.333 4.960 5.220 0.022 8.056 5.008~13.819
NLR −0.001 0.007 0.048 0.826 0.999 0.985~1.012
WBC 0.032 0.074 0.183 0.669 1.032 0.893~1.193
cTnI −0.029 0.013 4.961 0.056 0.971 0.947~0.997

Constant −8.309 1.989 17.448 0.000 0.000 –

3.3. Establishment of Nomogram Model

Multivariate logistic regression analysis finally selected 6 independent variables, in-
cluding ≥3 basic diseases, APACHE II score, Urea, Lac, L%, and NPR to construct the
nomogram model, which could be obtained by visual analysis of R language (Figure 3).
Critical care physicians could assess the death risk of severe/critical COVID-19 patients
in a visual and individualized quantitative way according to these six easily available
indicators. The C-index of the training set was 0.880 (95%CI, 0.837~0.923); The larger the
C-index was, the better the discrimination of the model was, suggesting the nomogram
had better prediction accuracy.
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Figure 3. The nomogram to predict the risk of mortality in severe/critical COVID-19 patients was
created based on six independent prognostic factors.

3.4. Internal and External Validation of the Model

The AUC of the training set was 0.880 (95% CI, 0.837~0.923), with a sensitivity of 87.2%
and specificity of 71.6%; the AUC of the validation set was 0.817 (95% CI, 0.712~0.923), with
a sensitivity of 78.5% and a specificity of 81.0%, indicating good prediction performance, as
shown in Figure 4. The training set is internally validated by bootstrap to have the same
C-index, that is, the predicted results of the model are consistent with the actual results.
The calibration curve was drawn to evaluate the judgment ability of the nomogram model,
and Hosmer–Lemeshow goodness-of-fit test was performed. The calibration curve of the
training set and the validation set showed that the nomogram and the reference line had
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goodness of fit, with p values of 0.800 and 0.533, respectively (both >0.05), as shown in
Figure 5. The Brier scores in the training set and the validation set were 0.049 and 0.086,
respectively, which were both close to 0, indicating that the nomogram model predicted
a good consistency between the probability of death among severe/critical COVID-19
patients and the actual percentage of death in the observed population.
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Figure 5. The calibration curve for the prediction of the mortality risk in severe/critical COVID-19
patients in the training set (A) and validation set (B).

3.5. Clinical Decision Curve Analysis (Figure 6)

DCA determines the clinical application value of nomogram model by calculating
the net benefit under the probability of each death risk threshold. The abscissa of DCA
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is the high-risk threshold probability, and the ordinate is the net benefit (NB). When the
model reaches a certain value, the probability of patient death is recorded as Pi, and it is
defined as positive when Pi reaches a certain threshold (recorded as Pt). The high-risk
threshold is set as (0, 1), and the net benefit rate and effective prediction probability range
are evaluated by deducting the false-positive population misjudged by the model. When
all patients survive or die, the nomogram model has no clinical application value. The
threshold probabilities of the training set and the validation set are all between 0.01~0.94,
and the net benefit rate is >0, which has clinical practical value, suggesting that the model
has good clinical application value in predicting the death of severe/critical COVID-19
patients.
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4. Discussion

COVID-19 is a viral respiratory infectious disease, which has been a global pandemic
in recent years and has had serious impacts on the economy and public health [11,12].
Studies have shown that patients with mild and common COVID-19 have a good prognosis,
while the mortality of severe patients is 1.4~4.5% [13], and the mortality of critical patients
is as high as 38.73% [14]. The prediction model is not only suitable for the allocation of
limited medical resources, but also can help reduce mortality rates [15]. Compared with
previously published death prediction models [4,5,7], our study mainly focused on patients
with severe/critical COVID-19; we developed and externally validated a new practical
model to identify patients at higher risk of death. The development and validation of the
model should follow the requirements and recommendations in the Tripod statement [16].
Because the total sample size included in this study was small, with many independent
variables and collinearity between different variables, Lasso regression analysis was used
to screen potential independent variables. Compared with the currently commonly used
stepwise regression method and optimal subset method, Lasso regression can reduce the
dimension of multiple parameters and provide a solution to the collinearity problem of
multiple parameters, avoiding overfitting and ensuring global optimization [17]. The model
was composed of six variables, including having under three basic diseases, APACHE II
score, Urea, Lac, L%, and NPR, which were obtained at admission and were all obtained
from our data. The model was externally verified in the validation set, showing high
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discrimination and good prediction performance. Future studies may refine predictors
by selecting other characteristic variables, such as CT scans, lymphocyte subtypes, organ
injury markers, and cytokines.

All the predictive indicators are routine clinical testing items with fast detection
speeds and low prices. Studies have found that advanced age, high APACHE II score,
lymphopenia, high lactate dehydrogenase, and C-reactive protein are associated with poor
prognosis [18,19]. A meta-analysis study found that the past medical histories of patients
with COVID-19, including hypertension, chronic lung disease, and cardiovascular disease,
may be risk factors for severe infection [20]. Our study found that certain factors, including
patients with less than three previous diseases, APACHE II score, Urea, Lac, L%, and
NPR, were closely related to the probability of COVID-19-related death. Different from
previous studies [21], this study did not find serum amyloid A, lactate dehydrogenase, and
C-reactive protein to be risk factors for death in patients with severe/critical COVID-19.

Our study found that the L% of patients who died of COVID-19 decreased significantly,
indicating that the immune response might be involved in the progress of the disease. More
and more evidence showed that cytokine storms play an important role in the process of
disease progression to severe COVID-19 infection, and the cause of death might be related
to excessive virus-induced inflammation [22]. However, we did not analyze cytokines
in this study due to the lack of data. It is known that the presence of more than three
basic diseases is a risk factor for COVID-19-related death, which may be related to the
aggravation of inflammatory response, acute stress, and hypoxemia caused by immune
dysfunction. However, the selection of immunosuppressants, such as glucocorticoids, may
effectively prevent the excessive inflammation caused by viruses and selectively reduce the
mortality of severe patients.

The data used in this study were those of severe patients, so this model is suitable
for severely affected adult patients. Patients with low and medium death risk are suitable
for the general ward, while patients with high risk of death may need to be monitored
and treated in ICUs. Our model is helpful for identifying patients with high risk of death,
and early intervention and appropriate treatment decisions after early identification may
improve the prognosis of such patients.

However, our study still has the following limitations: First, this was a cross-regional,
double-center, retrospective, observational cohort study based in China, which may not
represent COVID-19 patients in other countries due to racial/ethnic differences. Therefore,
international data sets and other multicenter, prospective, large-sample studies are required
for external verification. Second, this study was a retrospective study, and the data obtained
from the electronic medical record system were not complete; therefore, we attempted to
overcome the issues raised by the missing data using the random forest method. Third,
we did not collect the follow-up drug treatment of patients, and the effects of different
treatment options were not taken into account in the nomogram. Fourth, some indicators
reported in the literature, such as CT scan, lymphocyte subtype, organ damage markers,
and cytokines, were not evaluated in our nomogram due to the lack of data. Fifth, because
none of the training set patients in this study were vaccinated against COVID-19, it was
not possible to determine whether vaccination affected the mortality outcome. Finally,
the laboratory data may change with the progress of the disease, and it was impossible
to include the dynamic changes of various indicators in the model for analysis due to the
nature of retrospective studies.

5. Conclusions

The nomogram model presented in this study was shown to have good predictive abil-
ity and discrimination and can provide a reference for early screening of severe COVID-19
patients with high risk of death. This study carried out both internal validation and external
validation in combination with the epidemic situation in Shanghai. The model has high
stability, reliability, and repeatability, and is worthy of clinical promotion and application.
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