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Abstract: Breast cancer is a significant health concern among women. Prompt diagnosis can diminish
the mortality rate and direct patients to take steps for cancer treatment. Recently, deep learning
has been employed to diagnose breast cancer in the context of digital pathology. To help in this
area, a transfer learning-based model called ‘HE-HER2Net’ has been proposed to diagnose multiple
stages of HER2 breast cancer (HER2-0, HER2-1+, HER2-2+, HER2-3+) on H&E (hematoxylin & eosin)
images from the BCI dataset. HE-HER2Net is the modified version of the Xception model, which is
additionally comprised of global average pooling, several batch normalization layers, dropout layers,
and dense layers with a swish activation function. This proposed model exceeds all existing models
in terms of accuracy (0.87), precision (0.88), recall (0.86), and AUC score (0.98) immensely. In addition,
our proposed model has been explained through a class-discriminative localization technique using
Grad-CAM to build trust and to make the model more transparent. Finally, nuclei segmentation has
been performed through the StarDist method.

Keywords: breast cancer; HER2; modified Xception; Grad-CAM; StarDist; multi-stage; nuclei
segmentation

1. Introduction

Malignancies are responsible for a large number of fatalities. Some of the different
types of cancer that exist today are bladder cancer, colorectal cancer, thyroid cancer, breast
cancer, etc. Most of these malignancies affect women, with breast cancer being one of the
most prevalent. In 2020, 12% of malignant tumors in the human population were caused by
breast cancer [1]. By 2040, the number of cases is predicted to increase by more than 46% [2].
Breast cancer remains the second most lethal cancer diagnosis, even though mortality rates
from the disease fell by 1% in 2013, possibly due to therapeutic advancements.

The most lethal and often diagnosed breast cancer in women is HER2, one of the
several subtypes of breast cancer. Trastuzumab, a form of HER2-targeted medicine, was
recently introduced, and as a result, patients with HER2-positive breast cancer now have far
better prospects for survival [3]. About twenty percent of women still develop metastases
despite taking trastuzumab and adjuvant chemotherapy for their HER2-positive breast
cancer [4]. However, an early breast malignancy diagnosis can improve the chances of
survival. Hematoxylin and Eosin (H&E) are standard techniques used by pathologists to
determine morphological information, including the shape, pattern, and structure of the
cells and tissues that aid in diagnosing cancer. A further staining method called immunohis-
tochemistry (IHC) is used to verify breast cancer. Moreover, the IHC staining method using
antibodies highlights several antigens, including HER2, progesterone receptor (PR), and
estrogen receptor (ER) [5]. The result of IHC staining can be divided into positivity scores
between 0 and 3+. A positivity score of 0 and 1+ is defined as HER2-negative (HER2-). On
the contrary, a score of 3+ is considered HER2-positive (HER2+). However, a score of 2+
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requires further testing using ISH to determine HER2 gene status [6]. Medicines such as
trastuzumab exist for treatment but are expensive and have harmful side effects [7].

An essential step in determining the type of lesion for initial diagnosis is the hema-
toxylin and eosin (H&E) stain study of breast tissue biopsy. Hematoxylin is responsible
for the purple stain of the nuclei, and the pinkish hue is mainly due to cytoplasm. The
grade of the carcinoma can be determined by the pathologist using this staining, which
helps to explore the patient’s treatment options. Normal tissue, benevolent lesions, in situ
carcinomas, and invasive carcinomas are the four categories into which H&E stain images
can be divided. In H&E-stained slides, normal breast tissues display substantial amounts
of cytoplasm (pinkish patches) and densely packed nuclei forming glands [8]. A benign
lesion is made up of numerous nearby clusters of tiny nuclei. Benign lesions can progress,
if left untreated, into situ carcinoma, which seems surrounded by circular clusters while
losing some of its glandular characteristics. The bigger nuclei in invasive carcinoma lose
their clustered structure and fragments to the surrounding regions.

Computer-Aided Diagnosis (CAD) systems include image exploration and machine-
learning techniques created to aid doctors in diagnosis. Their use can improve diagnostic
accuracy while expediting the diagnostic procedure [9,10]. Computer-assisted image
analysis systems have been created to help human pathologists achieve precise results. To
limit costs and lower the risk of death, new and better deep-learning approaches are being
developed to identify breast malignant (HER2) cells in their preliminary stages.

A large dataset is also necessary for training a DL model, which extends the training
time. While using a new, small dataset for training to conduct research, a method known
as Transfer Learning (TL) can shorten training time and enhance model performance. Any
DL model, such as CNN, can be utilized to perform TL using one of three methods. First,
a feature extractor might be a pre-trained CNN model. The second technique entails
adjusting the final layer weights of a pre-trained CNN, while the third technique involves
doing the same for the architecture as a whole [5].

In our study, we have presented a modified TL architecture called ‘HE-HER2Net’
based on Xception from H&E images of the BCI dataset. Compared to all existing models,
this proposed model is robust enough to obtain worthy performance in Accuracy, Precision,
and Recall. In addition, several optimization techniques have been integrated into our
proposed model to abate underfitting and overfitting problems, reduce the complexity of
the network, extract more feature information, etc. Moreover, layer-wise explanation has
been visualized to explain the model output intuitively. Finally, by analyzing instances
of H&E images, our work has accomplished a star-convex-based method. The overall
contribution of the report is given briefly.

• Introducing effectiveness of Additional Global Average Pooling Layer, Dropout lay-
ers, Batch Normalization layers, Dense layers with a Swish activation function, and
Classifier layer with SoftMax activation layer.

• Comparing the proposed model to other existing models such as VGG19, NASNet-
Large, EfficientNetB7, Inception V3, ResNetV2, InceptionResNetV2, DenseNet201,
and Xception.

• Comparing the proposed model’s performances with several optimizers, such as
Adam and Adagrad, and activation functions, such as ReLU and Swish.

• Explaining our model through Grad-CAM to explain how the model works.
• Additionally, segmenting nuclei of the H&E images through the StarDist method.

The paper is organized as follows. In Section 2, we discuss the related work. In
Section 3, we explain the materials and methods. Sections 4 and 5 describe the results
and discussion, and limitations, respectively. Finally, Section 6 includes the conclusions of
our research.

2. Related Work

Traditional machine learning (ML) and deep learning (DL) are the two computational
techniques for pathological images. ML algorithms, which are frequently utilized in
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the field of prognostic prediction, can significantly minimize the amount of time that
the diagnostic procedure takes. Expert pathologists use pricey microscopes and manual
procedures to identify HER2 and its state from H&E and IHC stains [11]. However, they
involve human interpretation, and such HER2 status detection techniques are liable to
inaccuracy [12]. As a result, scientists worldwide have created a range of automated
techniques for classifying HER2 status from IHC and H&E-stains. MRI and ultrasound
images were also used in a study to classify HER2 status [13,14]. A Support Vector Machine
(SVM) was used there as the approach to identify the HER2 status in MRI images.

DL has made significant strides in recent years, benefiting numerous industries, in-
cluding health. CNN is a DL network type; in particular, it has been demonstrated to be
effective in several classification tasks. CNN identifies histopathological abnormalities in
regular H&E pictures that are associated with the presence of atomic biomarkers in a range
of cancer types, which include colorectal [15], lung [16], prostate [17], and skin cancers [18].
Moreover, researchers can use CNN for cell segmentation or detection, tumor classification,
and carcinoma localization in digital pathology.

To reliably diagnose illnesses, it is crucial in clinical practice to correctly categorize
histopathological pictures. This type of operation may be automated with DL, particularly
TL, to replace the time-consuming and expensive labor effort of human specialists and
satisfy the requirements for high accuracy, extended data sizes, and efficient computing.
TL is frequently employed because there are not many huge, publicly accessible, annotated
digital slides. TL addresses the problem of cross-domain learning by transmitting relevant
knowledge from the source domain to the task domain [19]. Deep TL is frequently used
because of its improved performance and adaptability [20–24].

Oliveira et al. [25] developed a CNN model based on multiple instance learning (MIL)
approaches identifying HER2 status from H&E images. Initially, the CNN model was
pre-trained from IHC images on the HER2SC dataset. Finally, the author trained their
model with H&E images from the HER2SC dataset and tested H&E stained slides from the
CIA-TCGA-BRCA (BRCA) dataset. As a result, they obtained test accuracies of 83.3% and
53.8%, respectively, from these datasets.

H&E stain images were used in [7,26] to determine the HER2 status. U-Net was
utilized in the framework in [27] to find nuclei locations in the WSI regions of the H&E-
stain. To categorize HER2- or HER2+, it also used a cascade of CNN architecture. The
proposed methodology obtained an AUC value of 0.82 in the Warwick dataset [28] and 0.76
AUC in the TCGA-BRCA dataset. However, the suggested technique needs to report patch-
level and slide-level AUC independently. Furthermore, the method struggled to locate
HER2+ cells with a score of 2+ (0.73 AUC). To predict the DAB density from H&E-stained
WSIs, and HER2 scores from produced DAB density, W. Lu developed a GNN-based
system [27]. In the TCGA-BRCA test set, the architecture, as mentioned earlier, achieved an
AUC of 0.75, whereas the HER2C and Nott-HER2 datasets yielded AUCs of 0.78 and 0.80.
However, while testing the model, a HER2 score of 2+ was avoided.

Shamai et al. [29] have tried to forecast the expression of molecular biomarkers in
breast cancer simply using the analysis of digitalized H&E-stained tissues. To predict
biomarkers, including ER, PR, and HER2, from tissue morphology, a deep CNN based
on residual network (ResNet [30]) architecture was created in this study. The AUCs for
these three biomarkers were 0.80, 0.75, and 0.74, respectively. Two significant limitations
were that the data came from a single organization (Vancouver General Hospital) and only
contained TMA pictures from 5356 patients, not WSI. Furthermore, Naik et al. [31] created
multiple instances of DL-based neural networks to predict the same molecular indicators
from H&E-stained WSI.

From the above discussion, most existing studies have been conducted dealing with
predicting different subtypes from histopathological images, defining binary expression
labels, generating images, etc. However, unfortunately, there has not been any proper
research on HER2 breast carcinoma from H&E images dealing with four-class multi-stage
classification problems on the BCI dataset. Hence, this inspires us to conduct this multi-
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stage classification problem of HER2 breast cancer. In our work, we have proposed a
modified TL-based model to solve this multiclass problem on the BCI dataset.

3. Materials and Methods
3.1. General Overview of the Method

To first obtain a multi-stage classification of HER2 breast cancer from H&E (hema-
toxylin and eosin) images on the BCI dataset, we trained several ImageNet weight-based
transfer learning models, such as Vgg19, NASNetLarge, EfficientNetB7, InceptionV3, In-
ceptionResNetV2, ResNet152V2, DenseNet201, and Xception. This base model was not
robust enough to efficiently perform multi-stage classification because of partial data from
the H&E dataset. Hence, these base models obtained extremely low accuracy, precision,
recall, and AUC value for this problem. In addition, the loss value was unexpectedly
much higher than the considerable value. Therefore, it is essential to reduce the loss
value when applying this model to classification problems. We used different modified
models suitable for this dataset to obtain a higher performance score and minimize loss.
Among these base models, InceptionResNetV2 and Xception performed better, bringing
the same accuracy, precision, and recall AUC score compared to all other existing models.
In addition, the loss value was significantly lower in these models. As this model was
much more reliable and robust according to the performance, we further modified this
model by replacing the flattened layer of the base model with global average pooling.
In addition, we added several dropout layers and dense layers with different activation
functions (ReLU, swish), applying a batch normalization layer to the base model. Thus,
we attained the best-modified model that acquired significantly better results. For all the
implementation processes, we used early stopping by setting up monitor = “val_loss”,
mode = “min”, patience = 3, restore_best_weights = True; to overcome the overfitting
problem. We set the Adam optimizer to have a learning rate of 1 × 10−5, the loss function
to categorical_crossentrophy, and the metrics function to obtain accuracy, precision, recall,
and AUC values for all the CNN (Convolution Neural Network) models. For the modified
model, we explored different activation functions, optimizers with different learning rates,
and regularizes for hyperparameter tuning. In addition, we applied data augmentation to
the modified model to get better performance after applying several combinations. Our pro-
posed model, ‘HE-HER2Net, ’ outperformed all performance evaluation metrics compared
to all base models, including other modified combinations of the improved versions.

Later, we explained our proposed model through Grad-CAM by generating a heatmap
of the convolution layer of HE-HER2Net to analyze our model’s robustness and weakness
and for the decision-making to observe intuitively. Additionally, we performed nuclei
segmentation using StarDist, randomly taking four images from the distinct stages of the
BCI-H&E image to visualize the nuclei of the H&E image. StarDist achieved satisfying
results as the nuclei of the H&E images are roundish in shape.

3.2. Dataset Description

A new breast cancer immunohistochemical (BCI) benchmark dataset [32] has been
applied in this research. Initially, Hamamatsu NanoZommer S60 was used as the data
scanning ingredient, where the scanning resolution was 0.46 µm per pixel. About 600 WSI
slides have been scanned. Each of the slides contains 20,000 pixels. Later on, each of the
slides was divided into 16 blocks with a resolution of 1024 ∗ 1024. This BCI dataset contains
4870 pairs of H&E & IHC images of 1024 ∗ 1024 resolution and includes four categories of
0, 1+, 2+, and 3+, as illustrated in Figure 1.
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Figure 1. Sample images of each of the class of BCI-H&E dataset: (a) HER2-0, (b) HER2-1, (c) HER2-2,
and (d) HER2-3.

To perform multi-stage classification from hematoxylin and eosin-stained images, we
have taken only H&E images, where 3896 images have been set for the training dataset
and 977 images for the test dataset. There are other publicly available histopathological
datasets. However, as far as we know, no suitable histopathological dataset contains various
categories according to the direction of CAP/ASCO [6] to classify multiple stages of breast
cancer. Hence, we have used this dataset in our research to attain our goal.

3.3. Environment Setup

We have trained all the pre-trained models using Keras and TensorFlow libraries
in google Colab by taking different suitable input sizes, batch sizes, number of epochs,
augmentation parameters, optimizers with various learning rates, activation functions, etc.,
and we resized all our models by defining the proper input shape according to the model
requirements. It is an unavoidable step to resize all the images into a fixed size. We also
shortened the original pixel value of 1024 ∗ 1024 to a lower pixel to efficiently train and
accelerate the training time. For the base model, we did not apply any data augmentation.
We kept the same optimizer (Adam), batch size (16), learning rate (1 × 10−5), activation
function (ReLU), epochs (50) with early stopping, and performance metrics setting up accu-
racy, precision, recall, and AUC. In addition, for the all-modified models, we applied decent
augmentation (width_shift_range = 0.2, height_shift_range = 0.2, rotation_range = 0.2, ver-
tical_flip = True), different optimizers (ReLU, Swish), different learning rates (1 × 10−3,
1 × 10−5), and epochs (80), to apply hyperparameter tuning in our modified proposed
method to achieve the best result. The summary of the environmental setup of this study is
highlighted below in Table 1.
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Table 1. This table describes the summary of the environmental setup.

Method GPU
Name

Input
Size
(pixels)

Batch
Size

Optimizer
& Learning
Rate (lr)

Epoch
& Early
Stopped

Activation
Function

Data
Augmentation

Vgg19 Tesla T4 299 ∗ 299 16
Adam, lr:
1 × 10−5

50
[ES:6] ReLU Not Applied

NASNetLarge Tesla T4 331 ∗ 331 16
Adam, lr:
1 × 10−5

50
[ES:4] ReLU Not Applied

EfficientNetB7 Tesla T4 224 ∗ 224 16
Adam, lr:
1 × 10−5

50
[ES:7] ReLU Not Applied

InceptionV3 Tesla T4 299 ∗ 299 16
Adam, lr:
1 × 10−5

50
[ES:11] ReLU Not Applied

ResNet152V2 Tesla T4 331 ∗ 331 16
Adam:lr:
1 × 10−5

50
[ES:7] ReLU Not Applied

InceptionResNetV2 Tesla T4 299 ∗ 299 16
Adam, lr:
1 × 10−5

50
[ES:20] ReLU Not Applied

DenseNet201 Tesla T4 299 ∗ 299 16
Adam, lr:
1 × 10−5

50
[ES:17] ReLU Not Applied

Xception Tesla T4 299 ∗ 299 16
Adam, lr:
1 × 10−5

50
[ES:11] ReLU Not Applied

HE-InceptionResNetV2-ReLU Tesla T4 299 ∗ 299 16
Adam, lr:
1 × 10−5

80
[ES:41] ReLU Applied

HE-HER2Net-ReLU Tesla T4 299 ∗ 299 16
Adam, lr:
1 × 10−5

80
[ES:59] ReLU Applied

HE-HER2Net-Adagrad Tesla T4 299 ∗ 299 16
Adagrad:lr
1 × 10−3

80
[ES:30] swish Applied

HE-HER2NET
(Proposed Model) Tesla T4 299 ∗ 299 16

Adam, lr:
1x10−5

80
[ES:49] swish Applied

3.4. Proposed Architecture HE-HER2Net

For the multi-stage classification of the histopathological images from the BCI dataset,
we proposed a transfer learning method based on Xception, known as HE-HER2Net.

Having a lack of abundance of data transfer learning methods can save not only
training time but also computation costs. In this study, we modified a robust pre-trained
method known as Xception [33], which has been trained on the ImageNet dataset. Xception
consists of 36 convolution layers, forming the feature education base of the model. It
refers to an extreme version of the Inception model with a modified depth-wise separate
convolution that performs better than Inception. In this network, data goes to the entrance
flow, then through the central flow, repeating eight times, and finally, data passes through
the external flow. All convolution and separable convolution layers are followed by batch
normalization. Figure 2, given above, narrates our proposed workflow. In addition, Table 2
demonstrates the parameters of the additional layers of HE-HER2Net.
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Figure 2. This figure illustrates the proposed model ‘HE-HER2Net’.
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Table 2. This table describes the output shape and parameters of the additional layers of the pro-
posed model.

Additional Layers Output Shape Parameters

global_average_pooling2d_1 (GlobalAveragePooling2D) (None, 2048) 0

dropout_3 (Dropout) (None, 2048) 0

dense_4 (Dense) (None, 1024) 2,098,176

batch_normalization_6 (BatchNormalization) (None, 1024) 4096

dropout_4 (Dropout (None, 1024) 0

dense_5 (Dense) (None, 512) 524,800

batch_normalization_7 (BatchNormalization) (None, 512) 2048

dropout_5 (Dropout) (None, 512) 0

dense_6 (Dense) (None, 128) 65,664

dense_7 (Dense) (None, 4) 516

As we were working on the BCI-H&E dataset, which contains some misclassified data
on the different stages of HER2 breast cancer, we applied several strategies to mitigate this
bias problem, obtaining satisfying results. At first, we resized the H&E images to 299 ∗ 299
pixels, rescaled all images, and used data augmentation to get better prediction accuracy
and overcome the overfitting problem. Next, we removed the default classification layer to
perform four class problems. Then, we introduced global average pooling, replacing the
flattened layer as it is more natal to the convolution structure because it drives correspon-
dence between feature maps and categories. Moreover, it lessens the overfitting problem
by decreasing the total number of parameters in the model. Finally, we experimented with
diverse regularization techniques to improve model performance. We applied dropout
regularization (0.3) [34] before each dense layer to prevent overfitting. Dropout drops
randomly selected neurons during training, which helps the model accuracy gradually
increase and decrease loss. Figure 3 illustrates how dropout works.

Figure 3. This figure illustrates how the dropout layer works.

As described in the proposed model, we added a dense layer with a Swish activation
function after each dropout layer and before the batch normalization layers. Using these
dense layers, maintaining the proper way classifies more features provided by convolution
layers. In our model, the dense layer empowered our network’s ability to organize better-
extracted elements. We experimented by taking ReLU and Swish activation functions in
our model. Swish outperformed the result of using ReLU in every performance metric. The
claim experimented by Prajit et al. [35] showed the Swish activation function performed
better than ReLU on complex datasets. This smooth, non-monotonic function converges
quicker and allows data normalization. This activation function is defined below.

f (x) = x − σ(x) (1)

where σ(x) = (1 + exp(−x))− 1 is the sigmoid activation function.
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In addition, we employed batch normalization [36] layers between dense and dropout
layers by normalizing the hidden layer activation. It speeds up the training process,
solving the internal covariate shift problems to ensure every input for every layer is
distributed around the same mean and standard deviation. The mathematics behind the
batch normalization is specified as follows. Here, xi = inputs over a minibatch size m,
µB = means and σ2

B = variance.

µB =
1
m

m

∑
i=1

xi (2)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (3)

Now the samples with zero means and unit variance are normalized. Here, ε is used for
numerical stability, avoiding zero in the denominator and x̂i = activation vector.

x̂i =
xi − µB√

σ2
B + ε

(4)

Finally, we get the following equation after the scaling and shifting process. Here, yi = output.

yi = γx̂i + β (5)

Here, γ and β are learnable parameters. Finally, as a classification layer of four classes
(HER2-0, HER2-1+, HER2-2+, HER2-3+), we employed a dense classification layer of four
neurons along with a SoftMax [37] activation function. The SoftMax function is widely used
as a multiclass classification problem, as it returns the probability of each class, ranging
between 0 and 1. Using SoftMax, the target class gets a high probability. The SoftMax
activation function is described below.

softmax(zi) =
exp(zi)

∑j exp
(
zj
) (6)

Here, z = values from the neurons of the output layer, and exp acts as the nonlinear function.
We experimented with taking optimizers (Adam, Adagrad) with different learning

rates for hyperparameter tuning. In our proposed model, we used the Adam optimizer
with a learning rate of 1 × 10−5. As we performed a multiclass classification problem, we
used catagorical_crossentrophy as the loss function. The mathematical explanations of
categorical_crossentrophy are described as follows.

Li = −∑
j

ti,j log
(

pi,j
)

(7)

where
p = predictions
t = targets
i = data points and
j = class
This loss function is for multi-category classification problems and SoftMax out-

put units.
To evaluate our model performance, we calculated accuracy, precision, recall, and AUC

as the performance metrics. As a result, our proposed model, ‘HE-HER2Net’, outperformed
every existing model with significant changes in accuracy, precision, recall, and AUC. In
addition, our model reduced the loss value more than all other models. Finally, we explain
our model through Grad-CAM.
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3.5. Model Explainability Using Grad-CAM

In terms of building trust models in intelligent systems based on CNN networks,
it is essential to clarify how these models are predicting and what is being predicted.
To establish adequate trust and confidence, we explained our model through a visual
explanation using Gradient-Weighted Class Activation Mapping (Grad-CAM) [38], which
is known as a class-preferential localization technique that generates graphic descriptions
of a model. It uses the gradient instructions flowing into the last convolutional layer to
assign significant values to each neuron.

To get the localization map, at first, Grad-CAM computes gradient yc concerning
feature map A of a convolutional layer. After that, these gradients are global average-
pooled to attain neuron weights. Finally, the heatmap is generated by performing a
weighted combination of feature maps followed by a ReLU. The mathematical intuition
behind Grad-CAM is given below.

αc
k =

global average pooling︷ ︸︸ ︷
1
Z ∑

i
∑

j

∂yc

∂Ak
ij︸︷︷︸

gradients via backprop

(8)

Lc
Grad-CAM = ReLU

(
∑
k

αc
k Ak

)
︸ ︷︷ ︸

linear combination

(9)

Here,
yc = Score of class c of a network before SoftMax.
Ak = Feature map activations.
αc

k = Neuron weights.
Z = Number of pixels in the feature map.
In our study, we took several convolution layers (block1_conv1, block5_sepconv1_act,

block10_sepconv1_act, block14_sepconv2_act) in different stages of the model and analyzed
our model for multiple classes of H&E images through Grad-CAM. Here, in the first convo-
lution layer (block1_conv1), we see all the contours and borders of the images have been
pointed. By looking at the convolution layers (block5_sepconv1_act, block10_sepconv1_act),
it is clear that the layers are trying to detect concepts in the image. According to the author
of Grad-CAM, it can be assumed that the last convolution layer has the best spatial informa-
tion. Hence, we analyzed the last convolution layer (block14_sepconv2_act) to obtain how
our model was performing classification based on the potential part of the image. From
the output of the generated heatmap of different stages of the H&E image, we see various
parts of the images have been highlighted. This indicates that our model classified multiple
stages of H&E images, focusing on these highlighted areas of the image.

3.6. Nuclei Segmentation Using StarDist

Nuclei segmentation from histopathological images is very important for helping
pathologists and researchers analyze whether cells are benign or malignant. Generally,
cancer cell nuclei are more extensive and darker compared to normal cells because they
contain comprehensive DNA. Thus, nuclei segmentation is an essential task for researchers
in digital pathology so that researchers can perform a lot of quantitative analysis by
analyzing shape, texture, size, etc. In addition, nuclei segmentation from histopathological
images can be obtained as the input of the CNN classifier since the nuclei are the most
important instances in histopathological images. Some research has been conducted for
nuclei segmentation using the state of methods, such as Mask R-CNN and U-Net. However,
these models could not give satisfactory results. Uwe Schmidt et al. [39] performed an
experiment applying Mask R-CNN on the TOY dataset and showed worse outcomes due
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to many overlapping bounding boxes and touching pairs of objects. They also performed
another experiment on the TRAGEN dataset using U-Net. This model also showed a
low-performance evaluation score due to the abundance of touching cells. To mitigate these
problems of crowded cells, the author proposed nuclei cell localization via star-convex
polygons, which outperformed the existing state-of-the-art model.

Solving all these limitations, we used the StarDist method for nuclei segmentation so
that, despite having crowded cells, nuclei of the H&E images can be segmented precisely
compared to other models. A prominent issue for this model is that objects must be star-
convex illustrated in Figure 4. It means that the center point of an object must be connected
in a straight manner to all boundary points. Otherwise, the object will not be detected by
the model. We have taken one random image from each of the stages of the H&E dataset,
then segmented it using the StarDist method to visualize and leverage the ability of the
StarDist process. In addition, we took the ‘2d_versatile_he’ pre-trained model from the
StarDist method, as our research was based on the H&E image. It is important for this
model that objects must be star-convex, which means the center point of an object must be
connected straightly to all boundary points.

Figure 4. This figure defines the difference between star-convex objects and non-star-convex objects.

3.7. Evaluation Metrics

To evaluate the performance of our proposed model, we obtained different evalua-
tion metrics such as accuracy (ACC), precision (P), recall (R), and AUC. In addition, we
computed a confusion matrix, which is not exactly a performance metric, but based on
this, other performance metrics are calculated. The confusion matrix visualizes the ground
truth labels vs. predicted labels. Each row of the confusion matrix defines instances in a
predicted class, and each column describes instances in an actual class. Terms such as True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) depend on
the confusion matrix.

Here,
TP = Model correctly predicted a number of positive class samples.
TN = Model correctly predicted a number of negative class samples.
FP = Model incorrectly predicted a number of negative class samples.
FN = Model incorrectly predicted a number of positive class samples.
The mathematical intuition of accuracy (ACC), precision (P), and recall (R) are de-

scribed as follows.

ACC =
TP + TN

TP + TN + FP + FN
(10)

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

Here,
0 < P < 1 and 0 < R < 1.
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Moreover, we measured the AUC value, which refers to the area under the ROC curve.
The AUC defines a classifier’s performance. It indicates how well the model differentiates
between the given instances. The AUC ranges from 0 to 1. The higher the AUC, the better
the model’s prediction.

4. Results and Discussion

In this experiment, we proposed ‘HE-HER2Net’ based on the transfer learning method
to classify multi-stage classifications of HER2 breast cancer. We compared our model
with the existing CNN model to leverage our model’s robustness. Several performance
metrics, such as accuracy, precision, recall, and AUC value, were computed to analyze our
model. The best performance we achieved from the base model was Xception and Incep-
tionResNetV2. However, their performance was not close to the considerable minimum
level. To alleviate this problem further, we modified the Xception and InceptionResNetV2
models to get gratified results. It is important to classify whenever we are dealing with
a lethal problem, such as cancer. After experimenting with several modifications, our
proposed model extensively surpassed all existing models with a test accuracy of 0.87, a
precision of 0.88, a recall of 0.86, and an AUC of 0.98, followed by the best base model with
a test accuracy of 0.71, the precision of 0.73, recall of 0.69 and AUC of 0.90. We explored
our proposed model with different optimizers (Adagrad), and with different activation
functions ReLU. Our model, ‘HE-HER2Net’, performed better with the Swish activation
function than with the Adam optimizer. Figure 5 demonstrates a comparative study of all
the experimented models.

Figure 5. This column chart briefly describes comparative performances among all models. ‘HE-
HER2Net’ is the proposed model.

From the given illustration above, it can be clearly stated that HE-HER2Net surpassed
all evaluation metrics for this classification problem. We obtained a confusion matrix to
explore all the models deeply. Figure 6 describes all the confusion matrices.
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Figure 6. This broad figure shows the performance of the confusion matrix of all the models,
including ‘HE-HER2Net’.

Analyzing the confusion matrix, we see some base models, such as NASNetLarge,
EfficientNetB7, ResNet152V2, and Vgg19, performed worse, whereas Xception and In-
ceptionResNetV2 performed better, followed by InceptionV3 and DenseNet201. On the
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contrary, all the modified models obtained promising results. HE-HER2Net achieved the
best performance overall. The diagonal deep blue color of the confusion matrix diagram
represents how many instances the model predicted correctly compared with the ground
truth value. To explain more of our model, the accuracy, loss, precision, recall, and AUC
outputs are shown in Figures 7–9.

Figure 7. The left corner of the image represents the training and validation accuracy graph, and the
right corner shows the training and validation loss graph.

Figure 8. The left corner of the image represents the training and validation precision graph, and the
right corner shows the training and validation recall graph.

By visualizing the graphs shown above, our model performed exceptionally well.
Though validation curves of accuracy, precision, and recall were higher than training
accuracy, precision, and recall, our model initially faced a small underfitting problem. Later,
the ratio between the training and validation curve started to decrease, which means that
our model improved and learned well from the training data. Moreover, when validation
loss starts growing, the model begins causing an overfitting problem. Several actions have
been taken in our work to eliminate the underfitting and overfitting problems. First, we
set early stopping by monitoring validation loss for three consecutive epochs by setting
up patient three, which is why none of our models have an overfitting problem. From
the loss graph, we see that the loss value for the training data was always slightly higher
than the validation loss value, which indicates our model performed well without having
any underfitting problems. By observing the precision and recall graphs, we see that the
training precision and recall values were not higher than the testing precision and recall,
indicating no underfitting problem in our model. Moreover, the AUC graph shown in
Figure 9 was also obtained to observe our model. In addition, Table 3 describes the results
of our model compared with other models.
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Figure 9. This figure demonstrates the training and validation value of AUC.

Visualizing the AUC graph demonstrates that our model obtained a satisfying AUC
score of close to 1. Getting a higher AUC value indicates the robustness of classifying ability
among several classes. Therefore, our proposed model performed the classification task
amazingly well.

Table 3. This table illuminates the performance evaluation of all the models, such as accuracy (ACC),
precision (P), recall (R), and AUC. The bold sentence in the below column of the table represents the
proposed model.

CNN_Model Accuracy Precision Recall AUC

NASNetLarge 0.44 0.46 0.33 0.70

EfficientNetB7 0.51 0.55 0.42 0.79

ResNet152V2 0.52 0.54 0.49 0.78

Vgg19 0.60 0.63 0.57 0.86

InceptionV3 0.61 0.63 0.58 0.85

DenseNet201 0.68 0.70 0.66 0.89

Xception 0.70 0.72 0.68 0.91

InceptionResNetV2 0.71 0.73 0.69 0.90

HE-HER2Net-Adagrad 0.84 0.86 0.82 0.97

HE-InceptionResNetV2-ReLU 0.86 0.87 0.84 0.97

HE-HER2Net-ReLU 0.86 0.87 0.85 0.97

HE-HER2Net
(Our Proposed Model) 0.87 0.88 0.86 0.98

By observing the performance evaluation table, our model surpassed all other existing
models with an accuracy of 0.87, a precision of 0.88, a recall of 0.86, and an AUC of 0.98.
Among the base models, Xception and InceptionResNetV2 obtained almost similar results,
but the results were not acceptable for this classification problem of breast cancer. As
the used dataset, known as BCI, was biased and insufficient for training DL models, all
the base models struggled to perform well. Introducing global average pooling, batch
normalization, a dense layer with a Swish activation function, and a dropout mechanism
significantly reduced these problems. Our proposed model works amazingly well for this
classification problem from H&E images. Moreover, by comparing different optimizers and
activation functions, we found that the Adam optimizer and Swish functions performed
extremely well for this dataset.

We explained our model using Grad-CAM by analyzing different convolutional layers.
Grad-CAM shows how models classify based on a particular area. It helps to make decisions
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by visualizing the import area of the region of the data image by generating a heatmap.
Different steps of the model are described in Figure 10 to gain insight into how our model
works step by step.

Figure 10. This figure explains our proposed model-‘HE-HER2Net’, for different convolution layers
generating heatmaps.

As the instances of a histopathological cell are very tiny and dense to visualize, it
is tough to imagine the potential regions of the image. However, our model highlighted
some specific areas generating bright heatmaps. We also explored the segmentation of
the nuclei using the StarDist method. A visualization of the nuclei segmentation of the
different classes is given in Figures 11–14.
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Figure 11. Nuclei segmentation of HER2-0 Breast Cancer.

Figure 12. Nuclei segmentation of HER2-1+ Breast Cancer.

Figure 13. Nuclei segmentation of HER2-2+ Breast Cancer.

Figure 14. Nuclei segmentation of HER2-3+ Breast Cancer.
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Nuclei segmentation based on StarDist worked well because of its star-convex shape.
Therefore, any roundish shape objects can be predicted by applying StarDist.

Overall, HE-HER2Net obtained significant improvements. Moreover, more investi-
gations are needed to solve the multiclass classification problems to diagnose the various
stages of HER2 breast cancer. For nuclei segmentation, other state-of-the-art methods can
be applied to compare robustness among different models for proper intuition.

5. Limitations

This study represents a modified robust model based on a pre-trained CNN for the
multi-stage classification of HER2 breast cancer from H&E images. We have taken the BCI
dataset only since no publicly available dataset contains four stages of HER2 breast cancer
images. About 3896 H&E images have been used for the training set, and 977 H&E images
have been utilized for the test set. As we know, DL models work well with a sufficient
number of images. Unfortunately, we could not employ an adequate number of images in
our model. Moreover, there have some bias problems in this dataset because it is very hard,
even for a human, to differentiate images of different classes visually. That is why most of
the base models in this study failed to perform minimum acceptable performance. All of
the existing state-of-art models obtained accuracy, precision, and recall values within the
range of 40–70%. As we know, these values are keenly connected with a confusion matrix;
model robustness can also be explained from the confusion matrix, where each column
and row represents an actual label and a predicted label, respectively. Therefore, analyzing
each row and column, it is obvious how most of the base models struggled to accurately
predict the actual label. During training, most of the base models faced underfitting and
overfitting problems. In addition, none of the base models was robust enough to obtain
spatial information precisely for this dataset. To accurately diagnose a lethal type of
disease, such as breast cancer, it is necessary to build a robust model to handle biased
datasets, obtaining a minimum loss value and optimizing overfitting and underfitting
issues. That is why introducing global average pooling, more dense layers with a Swish
activation function, batch normalization, and dropout layers to the base model alleviated
these issues and significantly improved our proposed model. This study has some other
drawbacks, for example, explaining the model with grad-CAM and segmenting nuclei cells
with the StarDist method. Grad-CAM is a class-preferential localization technique that
works intuitively for datasets where different classes within an image can be differentiated
easily. In this study, in every image of H&E, several components within the image are hard
to distinguish, for example, nuclei. That is why Grad-CAM visualizes the overall image
by generating a heatmap. For nuclei segmentation, one criterion was that the objects in
the image should be roundish. Therefore, StarDist works better when the nuclei cell is
roundish; otherwise, it fails to detect nuclei properly. However, maintaining all of these
issues, we tried our best to perform several tasks in this research.

6. Conclusions

Breast cancer is a very lethal and dangerous disease among women. Early diagnosis of
HER2 breast cancer can help patients make decisions and start treatment with the help of
Deep Learning. In this research, we investigated a transfer learning-based model to solve
the multi-stage classification problem of HER2 breast cancer from hematoxylin and eosin
images. First, we enquired about our research on the BCI (Breast Cancer Immunohisto-
chemical) dataset, which comprises four types of HER2 images. However, this dataset is
very complex and has a bias problem because it has similar kinds of data in each class. We
experimented with several pre-trained models to achieve the best performance. However,
all of the models showed unsatisfactory results. Most models had difficulty maintaining un-
derfitting and overfitting issues, and acquiring acceptable accuracy. However, after several
experiments, we proposed HE-HER2Net by introducing global average pooling, batch nor-
malization layers, dropout layers, and dense layers with a Swish activation function to the
base model of Xception. These additional blocks were robust enough to extract more pieces
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of information, train the model much faster and avoid overfitting issues during training.
This proposed model, HE-HER2Net, surpassed all existing models in terms of accuracy, pre-
cision, recall, and AUC score. Next, we explained our model through Grad-CAM to make
our model more transparent. Grad-CAM explains how our model learned for each of the
convolution layers. Finally, we applied the StarDist method for nuclei segmentation, which
precisely visualized all nuclei cells of the H&E images. Both pathologists and patients can
benefit without costing much money and time for the diagnosis if breast cancer.

In conclusion, our future work will be on nuclei segmentation and color separation of
breast cancer of histopathological images. In addition, another explainable model can be
investigated and compared to make the model more transparent. Finally, more rigorous
studies are needed to diagnose breast cancer so patients can reduce their risk and make
proper decisions.
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Abbreviations

Acronym Meaning
H&E hematoxylin & eosin
BCI Breast Cancer Immunohistochemical
AUC Area under the ROC Curve
HER2 human epidermal growth factor receptor 2
IHC Immunohistochemistry
ISH In situ hybridization
MRI Magnetic resonance imaging
DL Deep Learning
CNN Convolutional Neural Network
TL Transfer Learning
Grad-CAM Gradient-Weighted Class Activation Mapping
DNA Deoxyribonucleic acid
SVM Support Vector Machine
ER/PR Estrogen Receptor/Progesterone Receptor
WSI Whole Slide Image
CAP College of American Pathologists
ASCO American Society of Clinical Oncology
CAD Computer Aided Diagnosis
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