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Abstract: Among the leading causes of mortality and morbidity in people are lung and colon
cancers. They may develop concurrently in organs and negatively impact human life. If cancer is
not diagnosed in its early stages, there is a great likelihood that it will spread to the two organs. The
histopathological detection of such malignancies is one of the most crucial components of effective
treatment. Although the process is lengthy and complex, deep learning (DL) techniques have made it
feasible to complete it more quickly and accurately, enabling researchers to study a lot more patients
in a short time period and for a lot less cost. Earlier studies relied on DL models that require great
computational ability and resources. Most of them depended on individual DL models to extract
features of high dimension or to perform diagnoses. However, in this study, a framework based on
multiple lightweight DL models is proposed for the early detection of lung and colon cancers. The
framework utilizes several transformation methods that perform feature reduction and provide a
better representation of the data. In this context, histopathology scans are fed into the ShuffleNet,
MobileNet, and SqueezeNet models. The number of deep features acquired from these models
is subsequently reduced using principal component analysis (PCA) and fast Walsh–Hadamard
transform (FHWT) techniques. Following that, discrete wavelet transform (DWT) is used to fuse the
FWHT’s reduced features obtained from the three DL models. Additionally, the three DL models’
PCA features are concatenated. Finally, the diminished features as a result of PCA and FHWT-DWT
reduction and fusion processes are fed to four distinct machine learning algorithms, reaching the
highest accuracy of 99.6%. The results obtained using the proposed framework based on lightweight
DL models show that it can distinguish lung and colon cancer variants with a lower number of
features and less computational complexity compared to existing methods. They also prove that
utilizing transformation methods to reduce features can offer a superior interpretation of the data,
thus improving the diagnosis procedure.

Keywords: CNN; deep learning; DWT; FHWT; lung and colon cancer diagnosis; PCA

1. Introduction

Cancer occurs as a result of the uncontrolled proliferation of abnormal cells in the
body’s organs or tissues. Cancer cells can occur in different organs or tissues of the body.
According to the estimates made by the World Health Organization (WHO) for 2019,
the primary or secondary cause of death before age 70 is cancer for 112 countries [1,2].
Furthermore, based on a report published by the International Agency for Research on
Cancer (IARC) [3] in 2020, cancer is the primary or secondary cause of death in 134 countries.
Cancer has more than 200 types [4]. Lung and colon cancers are anticipated to rank in
the top three of the most prevalent cancer types in 2020, according to a statistical analysis
done in America. The research also indicated that among all cancer diagnoses in America
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in 2020, patients with lung and colon malignancies will experience the highest rates of
death [5]. Lung and colon cancer rates are 11.4% and 18.0%, respectively, according to
GLOBOCAN 2020 statistics [1]. Moreover, the WHO stated that around 4 million people
globally developed colon or lung cancer in 2020. About 2.7 million people died from these
cancers [6]. These statistical results prove that lung and colon cancer are common and
deadly diseases worldwide.

Lung cancer might occur at the same time as colon cancer, as based on [7], about 17%
of cases of these two cancers occur simultaneously. In addition, there is a considerable
risk of cancer cells spreading between the two organs in the absence of an early diagnosis.
Smoking is known to have a detrimental impact on the development of lung cancer, and
it is believed that an unaware diet contributes to the development of colon cancer. In
other words, the negative effect of lung cancer on the intestines can trigger colon cancer.
Therefore, lung cancer can be seen as the second cancer disease in patients with colon
cancer [7]. That is, a patient can get both lung and colon cancer at the same time. For this
reason, it is vital to investigate both types of cancer in patients together and to diagnose
them early [8].

Symptoms that can provide an early diagnosis of cancer are not direct markers of
cancer. The most common symptoms such as fatigue, cough, muscle pain, etc., occur
along with different types of diseases. The biggest tool that shows the presence of cancer
is medical imaging devices [9]. Radiographic imaging methods such as mammography,
histopathological imaging, computed tomography (CT), positron emission tomography
(PET), magnetic resonance imaging (MRI), and ultrasound are frequently used for cancer
detection [9,10]. Among them, histopathology images containing phenotypic information
are indispensable for the diagnosis and evaluation of cancer diseases in clinics [10,11].
Manual analysis of such medical images by experts is a delicate and difficult task. It is
therefore time consuming and requires a strong focus [10,12]. Moreover, the detection of
cases is much more difficult in the case of early diagnosis because at the beginning of the
disease, the symptoms are very vague and difficult to diagnose. When symptoms become
evident, it is too late for early treatment [9]. Thanks to the advancements achieved in the
field of artificial intelligence (AI), today, AI-based medical image analysis methods have
assumed the role of a decision support mechanism due to both early diagnosis and support
to doctors [13,14].

The automatic diagnosis methods are based on AI technology such as machine learn-
ing and deep learning. In this way, data analysis tasks based on expert knowledge have
subsequently evolved into expert-independent and fully automatic diagnostic systems [15].
Several conventional machine-learning methods have been utilized to solve medical prob-
lems [16–22] and health-related applications [23,24]. However, these methods primarily
require feature selection and feature extraction steps, and they suffer from the disad-
vantages of not using the appropriate feature extraction method and loss of information
during feature extraction. On the other hand, deep learning (DL) has become popular in
medical diagnostic applications due to both eliminating these disadvantages and strong
discrimination ability [25]. Medical data are usually radiographic image data, and thus the
convolutional neural network (CNN) is the well-known DL architecture commonly used to
analyze medical images [26]. Recently, both pre-designed and pre-trained CNN models are
frequently preferred due to their convenience and high performance. Examples of these
models are AlexNet [27], SqueezeNet [28], ResNet [29], ShuffleNet [30], VGGNet [31], Mo-
bileNet [32], and GoogleNet [33]. These networks have been extensively used in the medical
domain to analyze medical images and diagnose several types of diseases such as heart
abnormalities [34], lung anomalies [35–39], brain disorders [40–42], breast cancer [43–45],
genetic facial diseases [46], and eye diseases [47].

CNN models extract high-level features from raw data through their deep layers. In
this way, complex and difficult data can be interpreted successfully thanks to CNNs. This
success of CNN models is actually due to the complexity and depth of its architecture.
As the complexity of the model increases, the number of parameters in the model also
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increases [48]. Modern CNN models require millions of parameter updates during the
training phase. However, the large number of parameters may negatively affect the
generalization ability of the network and cause overfitting [49]. Reducing the number
of features and utilizing lightweight DL models are solutions to prevent overfitting that
might occur due to the complexity of the model [50]. In general, the number of features and
parameters of pre-trained CNN models is high, which may cause overfitting and adversely
affect classification and/or regression performance. Various feature reduction methods can
be used to avoid overfitting; thus, unnecessary and/or redundant features are removed [51].
The most well-known size reduction algorithm is principal component analysis (PCA).
Moreover, transformation methods such as fast Walsh–Hadamard transform (FHWT) and
discrete wavelet transform (DWT) that analyze data and extract useful representations
of the data can reduce their dimension. Thanks to feature reduction and transformation
methods, features that do not contribute to network training are reduced, and solutions
with less computational complexity are provided [52]. Although accuracy comes to the fore
in AI-based medical diagnostic applications, the reliability and computational complexity
of the system should also be considered. A network with less computation is preferable to
a more complex network with similar accuracy.

This study presents a framework based on multiple lightweight DL models and
transformation methods for the early detection of lung and colon cancer, which has a
striking number of cases and deaths in both men and women worldwide. Experimental
studies are performed on the five-class LC25000 dataset containing histopathological
images for colon cancer and lung cancer. Unlike previous work, both accuracy and less
computational complexity are adopted in principle. In this context, after preprocessing
involving resizing and data augmentation, histological images are fed into ShuffleNet,
MobileNet, and SqueezeNet models, which are lightweight DL architectures. PCA and
FHWT methods are used to reduce the size and complexity of deep features obtained
from these CNN models. Afterwards, reduced features of the FWHT obtained from the
three DL models are fused using DWT. Additionally, PCA features attained using the
three DL models are concatenated. As a result of PCA and FHWT reduction and fusion
steps, the reduced features for each model are given as inputs to four different machine
learning algorithms (LDA, QDA, SVM, and ensemble subspace discriminate (ESD)), both
individually and combined. The classification accuracies obtained from machine learning
algorithms show that the proposed methodology can distinguish lung and colon cancer
variants with less computational complexity and high accuracy.

The key novelty and contributions of the introduced framework are:

• The proposed framework depends on lightweight deep learning models, including
ShuffleNet, MobileNet, and SqueezeNet, in contrast to many of the earlier studies
based on heavy deep learning models such as VGG.

• The majority of related studies relies on individual deep learning models for perform-
ing the diagnosis; nevertheless, the proposed framework utilizes three deep learning
models of various structures.

• Most previous studies used spatial deep features extracted from the last pooling layer
of the deep learning models directly to train machine learning classifiers, which may
have huge dimensions and thus increase the complexity and duration of the classi-
fication process; however, the proposed framework employs two feature reduction
approaches to diminish their dimension, including PCA and FHWT.

• The reduced sets of features generated after FHWT provides the spatial–frequency
demonstration of the features, not only spatial information such as with previous
methods.

• The proposed framework integrates the privileges of distinct architectures of three
deep learning models by first merging the reduced features obtained using PCA for
the three deep learning models.

• Furthermore, the three reduced sets of features produced after FHWT for ShuffleNet,
MobileNet, and SqueezeNet are merged using DWT, which offers the time–frequency
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representations of the features of lung and colon cancer, resulting in spatial–time–
frequency representations, which usually improves diagnostic performance and fur-
ther lowers the features dimension.

2. Literature Survey

The proposed method in this study is analyzed on the LC25000 lung and colon cancer
histopathological image dataset published in 2020. Because lung and colon cancer cases are
frequent, the dataset is new and contains a suitable number of images for deep learning,
and many researchers have recently implemented deep learning-based applications on this
dataset. Some of these are explained below.

Masud, Sikder, Nahid, Bairagi, and AlZain [9] presented a classification system for
five types of lung and colon tissues by employing deep learning on histopathological
images. First, pathological sample images were subjected to image sharpening. Then,
the features were extracted from the images with a 2D-Fourier transform and 2D wavelet
transform. These features were used to train a manually tuned CNN model. It was reported
that the accuracy performance of this model was 96.33%. Alternatively, Kumar, Sharma,
Singh, Madan, and Mehandia [8] compared two classification methods for lung and colon
cancer. In the first presented method, texture-, color-, and shape-based features were
extracted from histopathological images. These attributes were used for classification with
various machine learning methods such as random forest, multilayer perceptron, support
vector machine (SVM) with radial basis function, and gradient boosting. In the second
method, transfer learning (TL) was used for feature extraction. For this purpose, seven
pre-trained CNN models were used for feature extraction. The extracted deep features
were applied to the same machine learning methods for classification. It was reported
that the random forest algorithm had the best performance with attributes obtained by the
TL method from DenseNet-121. The performance of this couple was 98.60% in terms of
accuracy. Talukder et al. [53] presented a hybrid ensemble attribute-obtaining method for
the identification of lung and colon cancer types. The deep feature extraction method and
ensemble learning for image filtering were integrated. It was reported that the proposed
hybrid model detected cancer possibility with a rate of 99.05%, whereas Mangal et al. [54]
proposed a CNN-based diagnosis system. A shallow neural network architecture was
employed for the classification of samples as squamous cell carcinomas, adenocarcinomas,
and benign. For lung and colon samples, separate training was performed. It was reported
that the success rates of the presented models were 97% and 96% for lung and colon,
respectively. Similarly, Hatuwal and Thapa [55] presented a CNN-based histopathological
image classification method for cancer diagnosis. A custom-shaped neural network was
created and trained. It was reported that the training and validation accuracies were 96.11%
and 97.20%, respectively. In contrast, Ali and Ali [56] proposed a multi-input capsule
network model for the diagnosis of lung and colon cancer. CLB (convolutional layers block)
and SCLB (separable convolutional layers block)) convolutional layers were used in this
model. By using the dual input technique, the model learned the features more efficiently.
Their proposed model achieved 99.58% accuracy for lung and colon abnormalities based on
histopathological images. On the other hand, Hasan et al. [57] used the deep CNN model
for detecting and classifying colon cancer using colon images of the LC25000 dataset. In this
colon data, there were 10,000 histopathological images of colon samples. The operations
performed on the images split the data as 80% training, 10% validation, and 10% testing,
data augmentation in the separated groups, normalization, and feature extraction with
PCA. A ten-layered custom CNN model was constructed and trained. The images are
classified as adenocarcinoma or benign. Success rates obtained from different pre-trained
CNN models with transfer learning (TL) and classification operations and the results of the
specified method were compared. Success rates obtained from different pre-trained CNN
models with TL and classification operations and the results of the specified method were
compared. In addition, Bukhari et al. [58] used three CNN models, ResNet18, ResNet30,
and ResNet50, to classify digital images of colon tissue. The publicly available LC25000
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and (colorectal adenocarcinoma gland) CRAG datasets were used in this study. The colon
images of the LC25000 dataset were used to train the models and for validation phases.
The CRAG dataset was used for the training and testing phases. The highest classification
accuracy of 93.13% was achieved with the Resnet50 model.

When previous studies are examined in general, deep features extracted with different
CNN models are classified by either end-to-end DL or TL and machine learning techniques.
Furthermore, these studies depended on DL models, which necessitate a high level of
computational ability and resources. In addition, the majority of them relied on individual
DL models to extract high-dimension features or perform diagnosis. However, our study,
unlike previous studies, uses multiple lightweight CNN models and adopts feature trans-
formation methods that perform reduction and provide a better representation of the data
approaches for reliable and robust diagnosis.

3. Materials and Methods
3.1. LC25000 Dataset

The LC25000 dataset, created by Borkowski et al. [59] in 2019, contains cancerous
samples of lung and colon tissues. This dataset has been approved by the Health Insurance
Portability and Accountability Act (HIPAA). It contains lung and colon tissue images. Lung
images are classified into three classes: lung benign tissue, lung adenocarcinoma, and lung
squamous cell carcinoma. Colon sample images consist of colon benign tissue and colon
adenocarcinoma classes. Example for each class of lung and colon images are shown in
Figure 1. In the dataset, which consists of five classes in total, there are 5000 samples in
each class. As a result, this dataset contains a total of 15,000 images from three-class lung
tissue and 10,000 images from two-class colon tissue.
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3.2. Feature Transformation Approaches
3.2.1. Discrete Wavelet Transform

Wavelet transform (WT) is a powerful method for the time–frequency analysis of a sig-
nal. Although Fourier transform (FT) is also used for frequency analysis, time information
is lost after FT. Therefore, it cannot be known which frequency occurs in which time period.
Short-time FT (STFT), which is a modification of FT, also includes time resolution by apply-
ing FTs at a certain interval [60]. However, fixed-width windows cannot correctly analyze



Diagnostics 2022, 12, 2926 6 of 23

non-stationary signals. WT performs a calculation with variable window sizes to provide
more precise time–frequency resolution. In this way, the analysis of non-stationary signals,
whose frequency changes over time, is performed in a powerful way [61]. A mother wavelet
is determined for WT, and then the wavelet function is scaled and translated. After scaling
and translation, the wavelet function is multiplied by the signal and summed over the time
domain. These processes continue throughout the signal. In continuous wavelet transform
(CWT), the transformation is performed by scaling and translating the wavelet function
over the entire time interval. Because this requires excessive computation, the scaling and
translation values are usually set as discrete values (discrete wavelet transform (DWT)).
When DWT is applied to the image, operations are performed in two dimensions. As a
result, four matrices are formed. Three of them (horizontal, vertical, diagonal) represent the
detail coefficient, while one represents the approximate coefficient. The detail coefficients
are the result of the high-pass filter, and the approximate coefficients are the result of the
low-pass filter. Therefore, the edges are more prominent in the detail coefficients. Detail
coefficients represent vertical, horizontal, and diagonal coefficients [37].

3.2.2. Principal Component Analysis

Features extracted from a dataset do not contain equal information for classification or
regression. Some features are more related to output. Moreover, in artificial intelligence-
based applications, high-dimensional features increase the memory requirement, compu-
tational cost, and the possibility of overfitting. For this reason, using feature selection or
feature reduction steps before classification instead of using direct CNN models with many
features can increase the efficiency of the network. To create a feature vector that better
represents the output data, either useful features are selected, or different transformations
are applied to existing features [62,63]. The most well-known method for size reduction
is PCA.

PCA reduces the size of high-dimensional input features by calculating the correlation
between them. However, during size reduction, it statistically analyzes the data and
generates high variance features at the output. It uses orthogonal transformation techniques
to achieve this. In general terms, the features obtained as a result of PCA are formed as a
result of projection from multidimensional space to a lower dimensional space. As a result
of PCA, new features are both less dimensional and more distinguishable. The features
that result from PCA are called principal components. There is no correlation between the
principal components, that is, the principal components are perpendicular to each other in
the new space created by PCA [63,64].

3.2.3. Fast Walsh–Hadamard Transform

Walsh–Hadamard transform (WHT), which is one of the linear image transformations,
is a square wave transform, which is frequently used in signal and image processing,
orthogonal and non-sinusoidal. After conversion, a signal is decomposed into a series of
functions. These functions are known as Walsh functions. Walsh functions only take two
values, +1 and −1. Equation (1) shown below is used to apply the WHT to an array f (x)
with n samples [65].

F(X) =
1
n
× [Hn]× f (x) (1)

Here, F(X) represents the WHT applied to the f (x) signal. [Hn] is the n-dimensional
Hadamard matrix. The Hadamard matrix is a square matrix of size n × n, and for n = 2, it
is as follows:

H2 =

(
1 1
1 −1

)
(2)

WHT features simple and fast conversion and is therefore useful for real-time signal
and image processing applications. It has the least computational cost among discrete
orthogonal transformations [66,67]. With fast Walsh–Hadamard transform (FHWT), WHT
is calculated more quickly and efficiently.
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3.3. Proposed Framework

The proposed framework is made up of four stages, which are preprocessing of
histopathological images, deep learning models training and feature extraction, feature
reduction and incorporation, and finally classification. Firstly, the histopathological image
sizes are altered, and then these images are augmented. Next, three pre-trained lightweight
deep learning models including ShuffleNet, SqueezeNet, and MobileNet are constructed,
and then deep features are extracted. Then, deep features extracted using each deep
learning model are reduced using two feature reduction methods. Furthermore, for each
reduction approach, the reduced deep features obtained from each deep learning model are
incorporated. Finally, these incorporated features are used to train a number of machine
learning classifiers. The four stages of the proposed framework are summarized in Figure 2.

Diagnostics 2022, 12, x FOR PEER REVIEW 7 of 25 
 

 

Here, 𝐹(𝑋) represents the WHT applied to the 𝑓(𝑥) signal. 𝐻  is the 𝑛-dimen-
sional Hadamard matrix. The Hadamard matrix is a square matrix of size 𝑛𝑥𝑛, and for 𝑛 = 2, it is as follows: 𝐻 = 1 11 −1  (2) 

WHT features simple and fast conversion and is therefore useful for real-time signal 
and image processing applications. It has the least computational cost among discrete or-
thogonal transformations [66,67]. With fast Walsh–Hadamard transform (FHWT), WHT 
is calculated more quickly and efficiently. 

3.3. Proposed Framework 
The proposed framework is made up of four stages, which are preprocessing of his-

topathological images, deep learning models training and feature extraction, feature re-
duction and incorporation, and finally classification. Firstly, the histopathological image 
sizes are altered, and then these images are augmented. Next, three pre-trained light-
weight deep learning models including ShuffleNet, SqueezeNet, and MobileNet are con-
structed, and then deep features are extracted. Then, deep features extracted using each 
deep learning model are reduced using two feature reduction methods. Furthermore, for 
each reduction approach, the reduced deep features obtained from each deep learning 
model are incorporated. Finally, these incorporated features are used to train a number of 
machine learning classifiers. The four stages of the proposed framework are summarized 
in Figure 2. 

 
Figure 2. Stages of the proposed framework. 

3.3.1. Preprocessing of Histopathological Images 
The input layer of each CNN accepts an input image of a specific size in order to start 

the training procedure Thus, the histopathological images dimension of lung and colon 
cancer are initially altered to be similar to the input layer size of the three deep learning 
models. The input layer size for ShuffleNet, and MobileNet is 224 × 224 × 3, while for 
SqueezeNet it is 227 × 227 × 3. Next, in order to improve the training performance of the 

Figure 2. Stages of the proposed framework.

3.3.1. Preprocessing of Histopathological Images

The input layer of each CNN accepts an input image of a specific size in order to start
the training procedure Thus, the histopathological images dimension of lung and colon
cancer are initially altered to be similar to the input layer size of the three deep learning
models. The input layer size for ShuffleNet, and MobileNet is 224 × 224 × 3, while for
SqueezeNet it is 227 × 227 × 3. Next, in order to improve the training performance of
the deep learning models and avoid overfitting, an augmentation procedure is required.
Augmentation simply boosts the amount of training images available in a dataset, which
allows the training models to learn more effectively [68]. Thus, several augmentation
methods are utilized in this paper involving the following: scaling in x and y preferences
in the range of [0.5, 2], flipping in both x and y orientations, translation in both x and y
orientations with an angle range [−20, 20], and shearing in both directions (x and y) within
the range [−45, 45].

3.3.2. Deep Learning Models Training and Feature Extraction

As mentioned earlier, three pre-trained lightweight convolutional neural networks
(CNNs) are used in this stage including ShuffleNet, SqueezeNet, and MobileNet. Pretrained
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CNN means that the network has been previously trained with a large dataset. Transfer
learning [69] allows pre-trained CNNs to realize representations from a large dataset of
images, such as those in ImageNet, and then apply that knowledge to a related classification
problem with smaller datasets, advancing the training process. Therefore, TL is used along
with the three pre-trained CNNs. TL is used to modify the number of output layers to
five to be equivalent to the number of categories in the dataset. In addition, other CNNs
parameters are modified, which will be explained later. Then the three pre-trained CNNs
are retrained with the lung–colon cancer dataset. Next, TL is further used to extract deep
features from a particular layer of each CNN. In order to produce a more accurate image
classification, the CNN first learns the simple patterns of the input image before moving
on to learn the important elements of the input image in subsequent, deeper layers [35,36].
Thus, deeper layers are used for feature extraction. The layers used for features extrac-
tion are the layers called “node200” for ShuffleNet, “global_average_pooling2d_1” for
MobileNet, which are the last pooling layers of these CNNs, whereas for SqueezeNet, the
layer “relu_conv10” is utilized for feature extraction, which is a rectified linear unit layer
immediately following the tenth convolutional layer. The length of each of the feature
vectors extracted is 544, 980, and 1280 for Shuffle, SqueezeNet, and MobileNet, respectively.

3.3.3. Feature Reduction and Incorporation

The dimensions of the feature extracted in the previous steps are large, which could
increase the complexity and the duration of the training of machine learning classifiers.
Hence, in this stage, two feature reduction approaches are used and compared to lower
features dimension and extract a significantly reduced representation of features. These
methods include principal component analysis (PCA) and fast Walsh–Hadamard transform
(FHWT). Each deep feature set extract from every CNN is analyzed utilizing PCA. Several
numbers of principal components are used to study the effect of changing these numbers
on diagnostic performance. Similarly, the deep feature sets of the CNNs are analyzed
using FWHT, which presents the spectral representations of the input. Different reduced
set extracts using FHWT are also employed to examine the influence of varying these
numbers on the diagnostic performance. An incorporation step follows the two feature
reduction procedures. For PCA, principal components obtained using the three CNNs are
concatenated. On the other hand, the reduced feature sets of the three CNNs generated
using FWHT are incorporated using DWT, which further diminishes their dimension.

3.3.4. Lung and Colon Cancer Diagnosis

Four machine learning classifiers are used in this stage to diagnose lung and colon
cancer and identify the five classes of the lung and colon cancer dataset. These classifiers
are LDA, QDA, and SVM with linear kernel function, and ensemble subspace discriminate
(ESD). The number of learners and subspace for the ESD classifiers is 30 and 2, respec-
tively, while its learning rate is 0.1. Five-fold-cross validation is employed to evaluate the
performance of the proposed CAD.

4. Performance Measures and CNNs’ Parameters Setting
4.1. Performance Measures

Several evaluation criteria are used to assess the effectiveness of the proposed pipeline,
including precision, accuracy, F1-score, sensitivity, Mathew correlation coefficient (MCC),
and specificity. The ensuing formulae are used to calculate these metrics (3)–(8). The
confusion matrix and receiving operating characteristic (ROC) are also computed.

Accuracy =
TP + TN

TN + FP + FN + TP
(3)

Sensitivity =
TP

TP + FN
(4)
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Precision =
TP

TP + FP
(5)

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

F1 − Score =
2 × TP

(2 × TP) + FP + FN
(7)

Speci f icity =
TN

TN + FP
(8)

The true positive (TP) represents the proportion of instances that are perfectly recog-
nized as positive, the false negative (FN) denotes the proportion of samples that have been
mistakenly categorized as negative, the true negative (TN) represents the proportion of
instances that are correctly identified as negative, and the false positive (FP) resembles the
proportion of samples that are erroneously classified as positive.

4.2. CNN’s Parameters Setting

The learning rate, frequency of epochs, and minimum batch size were adjusted to
0.0001, 5, and 4, respectively, for retraining the CNNs for end-to-end classification. Fur-
thermore, the validation frequency was set to 130 to calculate the training error per epoch.
The stochastic gradient descent with a momentum technique was applied to train the three
CNNs. All other hyperparameters remained the same. MATLAB R2020a was employed in
implementing the proposed framework.

5. Results
5.1. Results of PCA

This section examines the performance of reduced features as a result of applying PCA
to features extracted from CNN models. These reduced features were individually fed into
four different machine learning methods. As a result of applying PCA to deep features,
new features are formed according to the number of principal components determined.
Therefore, the number of principal components has a direct impact on classification perfor-
mance. According to the change in the number of principal components, the diagnostic
performance of machine learning algorithms also changes. Table 1 shows the variation
in the diagnostic performance of different machine learning algorithms as a result of pro-
cessing the extracted features from SqueezeNet, ShuffleNet, and MobileNet CNN models
with PCA with different principal component values. In general, all machine learning
algorithms showed outstanding success for lung and colon cancer diagnosis. However, as
can be seen from Table 1, the change in PCA values had a significant effect on the accuracy
of machine learning methods, because as the PCA value changed, both the value of the
features and the number of features changed. As the principal component value was
increased from 5 to 30, the diagnostic accuracy of the ShuffleNet-LDA fabric increased by
4.9%. Accuracies for SqueezeNet-LDA and MobileNet-LDA structures increased by 4.2%
and 1% with an increasing number of principal components. The accuracy changes for
other models (ShuffleNet-QDA, SqueezeNet-SVM, MobileNet-ESD, etc.) are also clearly
visible in Table 1.

When Table 1 is examined to compare the success of CNN model features, it is seen that
machine learning algorithms classified MobileNet features more accurately. Figure 3 shows
the accuracies obtained as a result of the classification of features extracted from all three
CNN models by four different machine learning algorithms. The superior performance
of MobileNet compared to others can also be seen in Figure 3. Figure 3 also includes the
classification accuracies obtained from PCA reduction of the combined features of the three
CNN models (incorporated PCA). PCA significantly reduced the combined features of the
three CNN models. Figure 4 shows the features extracted from the CNN models and the
number of new features obtained by PCA. Accordingly, hybrid features provided very little
computational cost compared to CNN models. Note that in Table 1, the highest performance
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is attained with 15 PCA features for SqueezeNet, 30 PCA features for ShuffleNet, and 30
PCA features for MobileNet. Therefore, when concatenating these PCA features, the total
number of incorporated PCA features will be 75, and that is the reason why in Figure 4, the
number of PCA features is 75.

Table 1. Classification accuracies (%) for several numbers of principal components after the PCA
process conducted for the deep features of the three CNNs.

SqueezeNet

Features LDA QDA Linear SVM ESD

PCA = 5 93.4 96.6 97.2 93.0

PCA = 10 96.0 96.7 97.7 94.5

PCA = 15 97.5 96.7 98.1 96.8

PCA = 20 97.5 96.4 98.1 96.7

PCA = 25 97.5 96.1 98.1 96.9

PCA = 30 97.6 96.0 98.1 96.9

ShuffleNet

PCA = 5 92.8 96.8 97.4 91.7

PCA = 10 95.4 97.7 98.2 93.4

PCA = 15 96.4 97.8 98.5 94.8

PCA = 20 97.1 97.8 98.7 95.5

PCA = 25 97.1 97.8 98.7 95.5

PCA = 30 97.7 97.9 98.8 96.6

MobileNet

PCA = 5 97.4 98.5 98.7 97.5

PCA = 10 98.1 98.6 99.0 97.9

PCA = 15 97.9 98.7 99.1 97.8

PCA = 20 98.3 98.8 99.1 98.1

PCA = 25 98.3 98.9 99.2 98.1

PCA = 30 98.4 98.9 99.2 98.3
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According to Figure 3, as a result of the classification of hybrid features with machine
learning, the highest accuracy was obtained with SVM at 99.5%. Accuracies from other
hybrid features were 99%, 99.1%, and 99% for LDA, QDA, and ESD, respectively. Confusion
matrices showing the correct and incorrect classification percentages for each class are
given in Figure 5. Considering the confusion matrices, all of the colon adenocarcinoma
class types were correctly recognized by all machine learning algorithms. In addition, the
lung benign tissue class contained 0.1% error in the result of QDA, while it was classified
with 100% accuracy by other algorithms. According to the results of the four machine
learning algorithms, lung squamous class samples were more difficult to recognize than
other classes. Therefore, the error made for this class was higher than for other classes.
Machine learning methods generally classify samples belonging to the lung squamous
class as lung adenocarcinoma. As can be seen in Figure 5, ESD is the machine learning
algorithm that made the most incorrect classifications in the images belonging to the lung
squamous class. However, ESD correctly classified 96.7% of test samples belonging to the
lung squamous class. Table 2 shows the different performance metrics obtained from the
confusion matrices for each machine learning algorithm. When the sensitivity, specificity,
precision, F1-score, and MCC metric values were analyzed, the SVM method with linear
kernel function produced the most successful results. These results were 0.996, 0.999, 0.996,
0.996, and 0.994, respectively. The most erroneous results were obtained as a result of
ESD. Unlike these metric values, receiver operating characteristic (ROC) curves, a popular
method to evaluate the accuracy of medical diagnostic systems, were also plotted, as seen
in Figure 6 for SVM, which was the most successful machine learning method. This curve
was created by plotting the true positive rate against the false positive rate. For successful
classification, the area under the curve (AUC) should be close to 1 [70]. As seen in Figure 6,
the AUC value was calculated as 1 for all curves. According to these results, the proposed
method based on CNN and PCA methods provides a low-cost, unbiased, and highly
accurate diagnosis of lung and colon cancer.
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5.2. Results of FWHT

This section examines the performance of reduced features as a result of applying
FHWT to features extracted from CNN models. FHWT, which is used for feature reduction,
has a low computational cost and is preferred in real-time applications because it is a fast
conversion tool. In this study, deep features extracted with CNN models were reduced by
FHWT. Then these features were classified by machine learning methods. After feature
reduction with FHWT, machine learning results differed based on the number of new
features. To show the effect of feature reduction on diagnostic performance, different feature
size values and corresponding machine learning algorithm accuracy values are shown in
Table 3. When the feature sizes and accuracy values were examined, the increase in the
number of features decreased the accuracy of the SqueezeNet model. For the ShuffleNet and
MobileNet models, the higher the number of features, the higher the accuracy. Accordingly,
as the number of features increased, the accuracy of the ShuffleNet-QDA and MobileNet-
QDA structures increases by 4.1% and 2.8%, respectively. For SqueezeNet-QDA, increasing
the number of features reduced the accuracy by 2.4%.

Table 3. Classification accuracies (%) for different feature sets after the process conducted for the
deep features of the three CNNs.

SqueezeNet

Features LDA QDA Linear SVM ESD

50 97.7 95.3 98.0 97.6

40 97.8 96.5 98.1 97.6

30 97.8 96.9 98.1 97.6

20 97.8 97.5 98.2 97.6

10 97.8 97.7 98.2 97.6

ShuffleNet

500 98.4 93.3 99.0 98.3

400 98.2 92.9 99.0 98.1

300 97.8 92.4 98.8 97.8

200 97.4 91.3 98.6 97.2

100 94.4 89.2 97.3 94.1

MobileNet

500 98.7 97.1 99.2 98.7

400 98.5 97.0 99.2 98.5

300 98.4 96.8 99.1 98.3

200 97.8 96.2 98.8 97.8

100 96.8 94.3 98.1 96.7

When Table 3 is examined to compare the success of CNN models, MobileNet’s
superiority over other models is striking, as in the PCA analysis. This can be seen more
clearly in Figure 7. Each bar represents a different CNN-machine learning structure so that
the success of CNN features and machine learning algorithms can be compared more easily.
Figure 7 compares the performance of the deep features of each CNN with the incorporated
FHWT features of the three CNNs using DWT. All four machine learning methods classified
MobileNet features more accurately. Accordingly, it is understood that MobileNet features
represent cancer types more strongly. The most unsuccessful classification was carried
out with SqueezeNet features. Figure 7 also includes classification accuracies of hybrid
CNN features reduced by FHWT and incorporated with DWT. Accordingly, it is seen that
hybrid features created using DWT were better classified by machine learning algorithms.
The number of each CNN deep feature and the number of combined features created at
the end of the incorporation are shown in Figure 8. This figure shows that the number of
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FHWT features combined with DWT was much less than other CNN models. Thanks to the
feature reduction methods used, more successful results were obtained with fewer features.
This also means less computational costs and more reliable results. Accordingly, although
hybrid features include all CNN features, they contain fewer features than other models.
Furthermore, Figure 7 shows that machine learning algorithms classified hybrid features
more accurately than individual features. The most successful method of classifying hybrid
features was SVM, and its accuracy value was 99.6%. The accuracies obtained from the
hybrid features for LDA, QDA, and ESD were 99.3%, 99.3%, and 99.2%, respectively. The
confusion matrices obtained during the classification of hybrid features are also shown
in Figure 9. Based on the confusion matrices, colon adenocarcinoma was distinguished
with 100% accuracy by all machine learning models. In addition, colon benign tissue and
lung benign tissue classes were classified with 100% accuracy by SVM and LDA. Machine
learning methods generally made the most inaccurate classification for the lung squamous
and lung adenocarcinoma classes. In the misidentifications, some samples belonging to
the lung squamous class were classified as lung adenocarcinoma. Similarly, some lung
adenocarcinoma samples were assigned to the lung squamous class. The fact that the
features in these two classes are similar to each other caused these misclassifications. ESD,
which had the lowest average accuracy among machine learning algorithms, classified lung
adenocarcinoma and lung squamous classes with 98.2% and 97.8% accuracy, respectively.
Table 4 shows the different performance metrics calculated as a result of classification with
machine learning algorithms. Similar to accuracy values, while the most successful metric
values were provided by SVM, the method with the highest error rate was ESD. Sensitivity,
specificity, precision, F1-score, and MCC metric values for SVM were 0.996, 0.999, 0.996,
0.996, and 0.995, respectively. In addition, as in the analysis with PCA, ROC curves were
plotted for the most successful machine learning method, SVM, in this section. It is seen in
Figure 10 that AUC values are 1 in these curves drawn for each class.Diagnostics 2022, 12, x FOR PEER REVIEW 17 of 25 
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Table 4. Performance measures attained using the combined FHWT coefficients of the three CNNs
via the DWT method.

Model Sensitivity Specificity Precision F1-Score MCC

LDA 0.993 0.998 0.993 0.993 0.991

QDA 0.993 0.998 0.993 0.993 0.991

Linear SVM 0.996 0.999 0.996 0.996 0.995

ESD 0.992 0.997 0.992 0.992 0.989
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5.3. Comparison with the Literature

A comparison was conducted in this section to compare the results of the proposed
framework with methods available in the literature. Table 5 demonstrates the results of
this comparison. The performance of the proposed framework was competitive with other
models employed in the literature. This is because accuracies attained after PCA and FHWT
fusion were 99.5% and 99.6%. These accuracies were higher than most of the methods in the
literature based on using a single DL model having high computation capacity. Thus, the
system can be used to assist pathologists in the early detection of lung and colon cancers.
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Table 5. Comparative analysis with previous works.

Authors Method Accuracy (%)

Masud, Sikder, Nahid, Bairagi, and AlZain [9] CNN + 2D Fourier transform and 2D wavelet
transform 96.33

Hasan, Ali, Rahman, and Islam [57] CNN + PCA 99.80

Kumar, Sharma, Singh, Madan, and Mehandia [8] DenseNet121 + Random Forest 98.60

Talukder, Islam, Uddin, Akhter, Hasan, and Moni [53] Deep feature extraction + Ensemble learning 99.05

Bukhari, Syed, Bokhari, Hussain, Armaghan, and
Shah [58] ResNet50 93.13

Mangal, Chaurasia, and Khajanchi [54] CNN 97.00

Hatuwal and Thapa [55] CNN 97.20

Ali and Ali [56] Capsule network model 99.58

Proposed method
PCA + CNN + SVM 99.5

FHWT + CNN + SVM 99.6

6. Discussion

In this study, CNN models with lower computational costs compared to previous
studies are used to extract features from lung and colon cancer data. Experimental studies
aim to propose a methodology with low computational cost but high accuracy. However,
it should be noted that more costly and deeper CNN models can provide more powerful
features. Moreover, the hyperparameter settings that are effective in the success of CNN
models are determined manually for this study. Hyperparameter optimization methods
can be used for a more successful CNN model. Different CNN models represent the same
data with different features. Therefore, three different feature vectors are generated from
ShuffleNet, MobileNet, and SqueezeNet CNN models to provide feature diversity and
compare the different models. The size of the feature vectors is reduced by PCA, FHWT,
and DWT. Size reduction can result in the removal of useful features while reducing the
computational cost. However, this study does not take this into account, at the expense
of developing a less costly method. In addition, the number of newly created features
during feature reduction with PCA and FHWT affects system performance. In this study,
the feature size is determined manually. Instead, systems that optimize the number of
features can be developed. The strength of the proposed method is combining reduced
features extracted from individual CNN models to increase feature diversity. In this way,
at the classification stage, hybrid features produce more stable results than individual
CNN features. However, extracting features from different CNN models is a temporal
disadvantage. Instead, designing a single comprehensive deep model can provide more
efficient results.

The most important requirement in deep learning-based diagnostic studies is the
generalization ability and reliability of the network. In order to increase the number of
training images, data augmentation methods are employed in this study. Although data
augmentation is useful for deep learning studies, the new images produced are artificial
and are a modified version of the original image. Few original images and many augmented
images negatively affect the reliability of the artificial intelligence system. For this reason,
using a large number of raw data, which are compiled by combining different datasets,
provides results closer to reality.

The limitations and shortcomings of the proposed method discussed above will be
the focus of our future work. The results obtained in our study showed that the proposed
method can be used in histopathological image analysis for lung and cancer detection.
Table 5 shows the methods and classification accuracy of previous studies using the same
LC25000 dataset. In general, deep learning-based methods have provided successful results
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in previous studies. However, it is seen that the proposed method is comparable to previous
studies in terms of accuracy.

7. Conclusions

Lung and colon cancer are the most common types of cancer worldwide. Early
diagnosis is very effective in preventing deaths. In this study, a new methodology based on
CNN and feature reduction methods is proposed for the early detection of lung and colon
cancer cases. In the proposed methodology, the basic principle was to perform classification
in an efficient and computationally low-cost manner. In this context, unlike previous
studies, light CNN models were preferred. Instead of using a single model, features were
extracted from the lung and colon images with the ShuffleNet, MobileNet, and SqueezeNet
models to make comparisons, provide feature diversity, and benefit from hybrid features.
PCA and FHWT and then DWT applied to these images reduced the computational cost,
improved the variance between features, and offered a superior demonstration of the
features used as input to machine learning classifiers. As a result of the application of
individual methods to four different machine learning algorithms, high-accuracy diagnoses
were achieved. In addition, with the classification of hybrid features obtained as a result
of combining reduced features, more stable results were obtained compared to individual
CNN models. The results from the proposed methodology showed that an application
based on lightweight CNN models and feature transformation methods such as PCA,
FHWT, and DWT provides superior accuracy, even though it contains fewer features and
lower computational cost.
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