
Citation: Prawiningrum, A.F.;

Paramita, R.I.; Panigoro, S.S.

Immunoinformatics Approach for

Epitope-Based Vaccine Design: Key

Steps for Breast Cancer Vaccine.

Diagnostics 2022, 12, 2981. https://

doi.org/10.3390/diagnostics12122981

Academic Editors: Kwangsoo Kim

and Chang Ik Yoon

Received: 16 September 2022

Accepted: 24 November 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Immunoinformatics Approach for Epitope-Based Vaccine
Design: Key Steps for Breast Cancer Vaccine
Aisyah Fitriannisa Prawiningrum 1,2, Rafika Indah Paramita 2,3,4 and Sonar Soni Panigoro 5,*

1 Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia,
Jakarta 10430, Indonesia

2 Bioinformatics Core Facilities—IMERI, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
3 Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia,

Jakarta 10430, Indonesia
4 Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
5 Surgical Oncology Division, Department of Surgery, Faculty of Medicine, Universitas Indonesia,

Jakarta 10430, Indonesia
* Correspondence: sonar.soni@ui.ac.id

Abstract: Vaccines are an upcoming medical intervention for breast cancer. By targeting the tumor
antigen, cancer vaccines can be designed to train the immune system to recognize tumor cells. There-
fore, along with technological advances, the vaccine design process is now starting to be carried out
with more rational methods such as designing epitope-based peptide vaccines using immunoinfor-
matics methods. Immunoinformatics methods can assist vaccine design in terms of antigenicity and
safety. Common protocols used to design epitope-based peptide vaccines include tumor antigen
identification, protein structure analysis, T cell epitope prediction, epitope characterization, and
evaluation of protein–epitope interactions. Tumor antigen can be divided into two types: tumor
associated antigen and tumor specific antigen. We will discuss the identification of tumor antigens
using high-throughput technologies. Protein structure analysis comprises the physiochemical, hy-
drochemical, and antigenicity of the protein. T cell epitope prediction models are widely available
with various prediction parameters as well as filtering tools for the prediction results. Epitope
characterization such as allergenicity and toxicity can be done in silico as well using allergenicity and
toxicity predictors. Evaluation of protein–epitope interactions can also be carried out in silico with
molecular simulation. We will also discuss current and future developments of breast cancer vaccines
using an immunoinformatics approach. Finally, although prediction models have high accuracy, the
opposite can happen after being tested in vitro and in vivo. Therefore, further studies are needed to
ensure the effectiveness of the vaccine to be developed. Although epitope-based peptide vaccines
have the disadvantage of low immunogenicity, the addition of adjuvants can be a solution.

Keywords: breast cancer; immunoinformatics; vaccine; epitope

1. Introduction

According to the Global Cancer Observatory in 2020, around 11.7% of new worldwide
cases of cancer are breast cancer. Approximately 6.9% of deaths by cancer were caused by
breast cancer in 2020 all around the world [1]. In Indonesia, 19.2% of cancer cases are breast
cancer, making it the most prevalent cancer [2]. Breast cancer has been recorded as the type
of cancer that causes the highest mortality in women due to its high incidence. Given the
devastating implications of the disease and the growing number of cases, many scientists
and research organizations have dedicated their efforts to the fight against breast cancer [3].
Several suggestions, such as living a healthy lifestyle, getting regular exercise, managing
body weight, and quitting smoking, should be taken into consideration as preventative
measures. Many healthcare organizations advise annual and routine mammography after
the age of 40 for early disease identification. As a result, the sickness would be diagnosed
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early, and the therapy would begin before it spread to other bodily areas. There are currently
three ways to treat breast cancer: surgical ablation, radiotherapy, and chemotherapy. Each
of these treatments can have bad side effects or even cause the cancer to reoccur [4]. Many
laboratories are working on breast cancer vaccines to generate a long-lasting anticancer
response with few side effects.

Contrary to the traditional idea of immunizing against infectious diseases only, the
concept of vaccines can be adopted for both cancer prevention and therapy. A cancer
vaccine can theoretically treat the malignancy by inducing T cell anti-tumor mechanisms. It
causes minimal effects compared to conventional cancer therapy. Radiotherapy, chemother-
apy, and endocrine therapies can cause adverse effects such as skin toxicity, peripheral
neuropathy, hair loss, infertility, impaired cognitive function, and tiredness [5]. However,
creating a cancer vaccine has proven to be difficult, partly because there are so many
possible antigens that the immune system could attack. Many of these antigens may also
develop before, during, or after the neoplastic process. Despite optimistic advancements in
cancer immunotherapy, the search for vaccine target identification techniques continues to
this day.

Though there is no widely accepted universal technique or instrument for rationally
creating vaccines, researchers agree on various steps needed during the design process.
Computational methods can be used to significantly reduce the time and cost of devel-
oping vaccines by mapping thousands of biological components in silico. Recent studies
have highlighted the influence of these techniques on vaccine design from a variety of
perspectives, including proteome retrieval, epitope prediction, epitope selection, molecular
interaction, and immune response simulation [6–8]. This set of techniques to select potential
vaccine targets and simulate immune responses is often referred to as immunoinformatics.

The immunoinformatics approach to vaccine design relies heavily on antigen identi-
fication and the selection of epitopes that can induce an immune response. With various
optimized algorithms and high-throughput genomics analysis, antigen search, molecular
docking, and model simulations to predict immune responses can be carried out more
quickly. This will of course reduce the intensity of testing work in the laboratory [9]. In this
paper, we will discuss further the immunoinformatics approach that can be applied as a
preliminary study in designing vaccines for breast cancer.

2. Design Strategy for Breast Cancer Vaccine

Cancer vaccines are now focusing on subunit components rather than cell-based or
virus-based vaccines [10]. The immunogenicity of peptide-based vaccinations is low due to
the limitations of HLA polymorphism and the tiny size of antigen epitopes themselves. It
is frequently difficult to elicit a strong immunological response, which leads to immune
tolerance. Adjuvants are used in conjunction with peptide-based vaccinations to improve
the overall immune response. Not all protein antigen sites are similarly immunogenic
to B and T cells. Instead of inactivated tumor cells, peptide-based vaccines target key
neutralizing epitopes to get a more targeted immune response [11]. Cancer vaccines based
on peptides often require both CD8+ T cell epitopes and CD4+ T cell epitopes. CD8+ T
cell epitopes activate CTLs’ tumor immunity via the antigen cross-presentation pathway,
whereas CD4+ T cells stimulate helper T cells to keep CTLs functional [12].

The length of the peptide chain has a significant impact on the performance of the
peptide vaccination. CD8+ T cell epitopes are typically short peptides with a short half-life
in vivo. This peptide is directly applied to the HLA-I molecules of APCs or other nucleus
cells, removing the need for processing in specialized APCs. CTL activation is limited by
the lack of costimulatory molecules, which are needed for CD8+ T cells to work well [13].
As a result, short peptides frequently activate CTLs and even induce CTL tolerance [14].
Furthermore, shorter peptides are often constrained by HLA types. Long peptides, as
opposed to short peptides, enable greater coverage of HLA, encompassing many epitopes
while also supporting motif recognition and binding to increase immunogenicity. Long
peptides must be processed by APCs before being loaded directly onto HLA molecules [15].
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A portion of the lengthy peptides is digested by the endosomal route after internalization,
loaded onto HLA-II molecules, and identified by CD4+ T helper cells. The remaining
portions enter the cytoplasmic or vacuolar route and are presented to CD8+ T lymphocytes
via HLA-I molecules [16]. Long peptide vaccines have a greater chance of eliciting long-
lasting and effective anti-tumor activity responses. Short peptides are often created via
chemical synthesis, but lengthy peptides are generally created using protein expression
systems. Immunogenicity differs among recombinant protein subunit vaccines depending
on the expression platform. Cancer vaccines have been produced using a variety of
expression platforms, including Escherichia coli (E. coli) [17], plants [18], yeasts [19], insect
cells [20], and mammalian cells [21]. Mammalian cell proteins are the most similar to
natural tumor antigens.

This review will focus on two types of antigens, tumor-associated antigens and tumor-
specific antigens. Both types of antigens can be targeted in breast cancer vaccine design
with several limitations.

(a) Tumor-Associated Antigens (TAA)
Tumor-associated antigens are molecules derived from unmutated proteins and are

recognized by TCRs. They are associated with tumor cells because tumor cells produce
them at significantly high levels. TAAs are useful for producing a single vaccination that
can be made in huge quantities and disseminated to many patients as a one-for-all strategy.
One of the most difficult issues is ensuring that TAAs elicit the optimal immune response.
The immune system is meticulously calibrated to ensure that it does not harm the body.
When this calibration fails, autoimmune disorders develop. Some TAAs may be detected in
healthy tissues, but at low levels. As a result, tumor-associated antigens may not elicit an
immunological response because the immune system regards them as foreign. On the other
hand, TAAs may evade human immune tolerance systems. This could cause immune cells
to target other sections of the body, potentially resulting in toxicity and safety concerns [22].
Currently, there are several peptide vaccines for breast cancer that are being developed
based on TAAs such as E75 [23], GP2 [24], and AE37 [25].

(b) Tumor-Specific Antigens (TSA)
Tumor-specific antigens, also known as neoantigens, are a repertoire of peptides pre-

sented on tumor cells that may be selectively recognized by neoantigen-specific T cell
receptors (TCRs) in the context of human leukocyte antigen (HLA) molecules [26–28].
Tumor neoantigen is an aberrant protein that is completely missing from normal human
organs/tissues. Tumor neoantigens can arise from a range of nonsynonymous genetic mod-
ifications, including single-nucleotide variations (SNVs), insertions and deletions (indel),
gene fusions, frameshift mutations, and structural variants (SVs) [26]. The main constraint
of cancer vaccines based on altered neoantigens is that they are strictly personalized, and
their discovery necessitates a combination of high-throughput genomics, proteomics, and
immunomics screening technologies that are presently not applicable on a broad scale.
Furthermore, the success of such a highly customized strategy may be hampered by tu-
mors’ rapid mutational rate, which leads to the continual creation of new target mutated
neoantigens and, as a result, cancer immune evasion.

3. Immune Response to Epitope-Based Peptide Vaccine

Not all parts of the antigen can be recognized by the immune system. The fraction of
antigens that can interact with B cell and T cell receptors as well as free antibody molecules
are called epitopes or antigenic determinants. The size of an epitope is in the range of
5–15 amino acids [29,30]. One protein usually has many epitopes with different specificities.
This is because the protein structure generally has a long peptide chain and undergoes
folding due to interactions between residues in it. It is this protein complex that makes
proteins more immunogenic than polysaccharides [31].

To induce a response from T cells, epitope-based peptide vaccines must be able to
bind to the T cell receptor (TCR) and be presented by antigen-presenting cells (APC) via
human leukocyte antigen (HLA) classes I and II. HLA is a surface molecule that functions
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to present antigens that have undergone proteasomal degradation in cells and become
short peptides (8–11 residues for HLA class I and 11–30 for HLA class II) [32]. HLA class
I is expressed by all nucleated cells and interacts with the CD8 protein of CD8+ T cells.
Meanwhile, HLA class II is only expressed by APC and only interacts with CD4 from CD4+
T cells. HLA is encoded by genes that are highly polymorphic, meaning that many different
alleles can be found in a population. This can cause different adaptive immune reactions in
different individuals. Chowell et al. [33] studied over 1500 patients and discovered that
heterozygosity at the HLA-I loci was related to greater survival than homozygosity for one
or more HLA-I genes. As a result, certain HLA-I mutations may affect immune recognition
as well as the development of epitope-based cancer vaccines and immunotherapies.

To observe the polymorphism of HLA, the IEDB population coverage is often used to
calculate population coverage of epitopes [34] based on HLA allele (genotypic) frequencies
obtained from the dbMHC database (http://www.ncbi.nlm.nih.gov/mhc/, accessed on
30 October 2022). The Population Coverage Calculation program allows custom popula-
tions with allele frequencies defined by users in addition to the allele frequencies acquired
from the dbMHC database. Multiple population coverages can be estimated at the same
time, yielding an average population coverage. Because HLA class I- and HLA class
II-restricted T cell epitopes elicit immune responses from two distinct T cell populations
(CTL and HTL, respectively), the program offers three calculation modes to accommodate
different coverage modes: (1) class I separately, (2) class II separately, and (3) class I and
class II combined. A histogram is created for each population coverage to summarize
the percentage distribution of people as a function of the number of epitope/HLA combi-
nations detected. Another database to use is the Allele Frequency Net Database (AFND,
http://www.allelefrequencies.net, accessed on 30 October 2022), which provides infor-
mation on the frequency of immune-related genes and their matching alleles from over
1700 population samples from throughout the world, totaling over 10 million unrelated
people [35].

The AFNDB and IEDB population coverage tools are regularly utilized as reference
sources of HLA frequencies by the scientific community worldwide [36]; therefore, keeping
them up to date is critical. However, they rely on the scientific community users for data
gathering and curation [36,37]. For some continents, these databases generally contain tiny
datasets from ethnic groups that are not typical of the country’s variety, resulting in an
erroneous distribution of HLA frequencies at the moment. A literature review by Requena
et al. [38] provides revised HLA allele frequencies for South America, correcting previously
misrepresented alleles. Another study also updated HLA allele frequencies for South Africa
by auditing their HLA-typing files for the period 2005–2019 [39]. The frequent updates
on HLA allele frequencies for each continent and country will have a great impact on
vaccine design.

The antigen recognition process begins with a specific epitope-specific TCR binding
to the peptide–HLA complex (pHLA). This recognition process is also modulated by
interactions with other surface proteins on the surface of T cells and APCs. Depending on
the type of protein, surface protein–protein interactions can either stimulate or inhibit T
cell recruitment induction. T cells are activated when the antigen presented by HLA also
interacts with the TCR simultaneously [32,40]. However, cancer is a complex illness in
which immunosuppressive cells in the tumor microenvironment, such as regulatory T cells
(Treg) and myeloid-derived suppressor cells (MDSCs), moderate the immune response and
help cancer cells escape the immune system [41]. Ultimately, the goal of a cancer vaccine
is to aggressively activate the CD8+ T cell pathway, which is mediated by CD4+ T cells,
overcoming self-tolerance and immune suppression and resulting in cancer cell eradication.

4. Cancer Vaccine Candidate Criteria

The specifications of a vaccine depend on the type of vaccine itself. However, all
types of vaccines have the same principles: (1) they have sufficient active ingredients to
immunize the recipient, (2) they are safe according to regulatory standards, and (3) they

http://www.ncbi.nlm.nih.gov/mhc/
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have a low level of contamination according to regulatory standards. This principle applies
to conventional vaccines and even modern recombinant vaccines [42]. Although it cannot
predict the level of contamination, immunoinformatics methods can help in the design
process of epitope-based peptide vaccines while still adhering to the other two principles.

Recent advancements in immuno-oncology have demonstrated that manipulating
the immune response to oppose the immune evasion strategies used by cancer cells is
a potent approach to cancer treatment. A lot of efforts are focused on stimulating T cell
responses, because T cells are thought to be capable of clearing malignancies in the absence
of immunosuppressive processes [32]. Most cancer cells can be distinguished from healthy
cells by either overexpression or mutation of endogenous proteins. Thus, a vaccination
target could be any gene product that is made differently or modified in cancer cells
compared to in healthy cells.

Both vaccine- and ACT-based immunotherapy strategies require the identification of
certain tumor antigens and the T cells that identify them [43]. Regardless of the technique
employed, functional assays must be done to confirm the immunogenicity of each newly
discovered antigen. This is done by showing that a particular epitope is the only trigger for
T cell activation, as opposed to a control (such as a wild-type peptide for mutant antigens)
that is attached to the same HLA molecule. It may not always be right to conclude that
a peptide is immunogenic simply because it binds to or is projected to bind to an HLA
molecule expressed by cancer.

Protein structure analysis is required to determine the structure and physicochemical
properties of the target protein. Referring to the lock-and-key interaction model, epitope-
based peptide vaccines interact complementarily with immune system components such as
antibodies and HLA based on their binding site structure [44]. Therefore, protein structure
analysis is important to study how pathogenic proteins interact with the immune system.
Protein structure analysis can also show protein stability as a potential vaccine candidate.

Stimulation of the T cell response by the vaccine can be in the form of recruitment of T
cells to eradicate pathogens and infected host cells. The antigen-specific T cell response is
mediated by the TCR with HLA class I and II. The peptides presented by HLA class I are
generally short, although they can still accommodate larger peptides. HLA class I peptides
generally follow the X-(L/I)-X(6–7)-(V/L) pattern, where L/I and V/L represent residues
whose side chains anchor the peptide to the pHLA, while the other side is attached to the
pHLA on the TCR [45]. As for the peptides presented by HLA class II, they are generally
more varied in terms of length and sequence but still have anchoring sites. Moreover, for a
peptide to be recognized, the peptide presented must have a free N-terminal. These criteria
must be met for the peptide to bind to HLA. However, this does not guarantee that the
peptides presented will be immunogenic. Thus, at a minimum, a good candidate T cell
epitope is an epitope that is antigenic and can bind to several HLA alleles [32].

For peptide-based cancer vaccines to work, they need CD8+ epitopes to use the antigen
cross-presentation pathway, which activates CTL anti-tumor immunity, and CD4+ epitopes
to activate T-helper cells, which keeps the CTL effector function going [46]. As a result,
the sequence length of peptide vaccines is critical for eliciting a significant immunogenic
response. If the peptide is too short, it could bind to the HLA of non-professional APCs,
which do not have the secondary signaling machinery needed for full T cell activation. This
could lead to a weak T cell response or immunological tolerance [46]. Shorter peptides
are also more likely to be HLA-type restricted because there is not enough variation in the
general population for HLA to be very different [46,47]. Lastly, unless they are changed,
short peptides are more likely to be broken down by enzymes and leave the body [48,49].
A longer peptide length, on the other hand, provides for larger HLA-type population
coverage [46,47], the inclusion of multi-epitope peptides to boost the CD4+ and CD8+
responses, and the presence of binding or recognition motifs to boost immunogenicity.

The next stage is the characterization of the selected epitopes. The characteristics
examined included allergenicity, toxicity, hydrochemical properties, and physiochemical



Diagnostics 2022, 12, 2981 6 of 18

properties. The best epitopes are those that are hypoallergenic, non-toxic, and stable under
physiological conditions.

5. Immunoinformatics Approach

Immunoinformatics, often known as computational immunology, is the field that
bridges the gap between computer science and experimental immunology. It denotes the
use of computational approaches and resources to the comprehension of immunological
data. It not only aids in dealing with massive amounts of data, but it also plays an important
part in developing novel theories about immune responses. This section will discuss the
immunoinformatics approach to cancer vaccine design from tumor antigen identification
to protein-epitope interaction evaluation (Figure 1).
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Figure 1. Overview of immunoinformatics approach in cancer vaccine development. Tumor antigens
can be identified using high-throughput technologies such as WES, WGS, and RNA-seq. Immunoin-
formatics can help in protein structure analysis, T cell epitope prediction, epitope characteriza-
tion, and protein–epitope interaction evaluation. WES—whole exome sequencing; WGS—whole
genome sequencing; TSA—tumor-specific antigen, TAA—tumor-associated antigen, HLA—human
leukocyte antigen.

5.1. Tumor Antigen Identification

Several methods have been developed to predict whether peptides produced from a
certain protein, whether wild-type or mutant, are accessible to interact with TCRs on T cells.
One such screening method is by analyzing whole-exome sequencing (WES) data from
matched tumor and normal DNA to find peptides with tumor-specific non-synonymous
mutations. Then, a portion of peptides is created, pumped onto the APCs, and examined
for identification by the patient’s own autologous CD8+ T cells. This component of the
peptides is projected to bind to patients’ own HLA class I molecules strongly [50].

A variation of this strategy substitutes synthetic multimeric peptide–HLA complexes
(such as HLA tetramers) for peptide-pulsed APCs. These complexes are made by combining
a variety of fluorescently or genetically tagged HLA molecules and loading them with
potential peptides [51]. The enumeration of T lymphocytes that detect potential antigens is
made possible by the ability of these complexes to attach to complementary TCRs. This
method may work well for finding epitopes that are expected to bind to common class
I HLA molecules, but it is not very useful for finding those that bind to class II or less
common class I HLA molecules [52]. Additionally, because it involves evaluating peptide
libraries linked to specific HLA molecules, this approach frequently falls short of evaluating
all potential antigens expressed by the tumor.

In validation trials, however, only a small number of the predicted peptides are found
to be immunogenic [53]. Inadequate algorithmic performance with less prevalent class I and
most class II HLA molecules, inability to recognize post-translationally changed or spliced
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peptides, and susceptibility to overlooking some de facto immunogenic peptides are a few
of these shortcomings. Various bioinformatical systems additionally employ algorithms
that anticipate additional protein or peptide properties implicated in immunogenicity to get
around some of these drawbacks. For instance, recent research has combined predictions
of peptide–HLA binding affinity, wild-type-over-mutant affinity ratios, and the stability of
specific peptide–HLA complexes with information on the expression of cognate genes to
create a model with an improved ability to predict immunogenic mutated peptides [54].

To get around the problems with prediction algorithms, another WES-based technique
has been developed that allows screening of all possible antigens without limiting the
analysis to certain HLA molecules [55]. Metastatic tumors are surgically removed and
utilized to establish TIL cultures as well as to perform WES to discover tumor-specific
non-synonymous mutations, such as single-nucleotide variations (SNVs) and short (50 bp)
insertions and deletions (INDELs). This method will create a peptide pool with tumor-
specific mutations. Following that, autologous APCs are pulsed with peptide pools, al-
lowing candidate antigen processing and presentation on all conceivable autologous HLA
molecules, and then co-cultured with a panel of TILs. Peptide pools that activate T cells
are further deconvoluted to identify tumor antigens. This method does not, however,
detect antigens resulting from unmutated genes, gene fusions, abnormal RNA process-
ing, or translation. However, these issues might be solved by using RNA sequencing or
whole-genome sequencing (WGS) in a similar tumor-versus-normal approach.

5.2. Protein Structure Analysis

Protein structure analysis is carried out to determine the physicochemical properties of
the target protein, including GRAVY (grand average of hydropathicity), half-life, molecular
weight, stability, and so on, based on the protein’s amino acid sequence. Apart from the
primary structure, the secondary and tertiary structures of the protein, the transmembrane
topology (if the protein studied is a membrane protein), and the overall antigenicity of
the protein need to be analyzed as well. Structural analysis of proteins is important to
understand further how the conformation of a protein determines its biological function, in
this case, its interaction with the immune system.

Bioinformatics tools capable of predicting this include ProtParam from the ExPASy
server. ProtParam (https://web.expasy.org/protparam/, accessed on 12 September 2022) is
commonly used to predict the molar exclusion coefficient (also known as molar absorption
coefficient), in vivo half-life, instability index, aliphatic index, and GRAVY only with input
in the form of amino acid sequences or desired protein ID. A prediction of the molar
absorption coefficient can indicate the intensity of light at a certain wavelength that can be
absorbed by the protein. This is important in the protein purification process [9].

The half-life of proteins can be estimated by looking at the N groups of the amino
acids that make up the protein. A recombinant protein study proved this by testing beta-
galactosidase proteins with different N-terminals. The results showed that there was a
very sharp difference between the half-lives of these engineered proteins, and even greater
differences occurred in different host organisms [56].

Another important characteristic is protein stability. The stability of the protein in the
test tube can be predicted by calculating the instability index derived from experimental
data. A statistical analysis of 12 unstable proteins and 32 stable proteins showed that there
were significant differences in the composition of certain dipeptides in unstable proteins
relative to stable proteins [57]. From the results of the analysis, the value of the stability
weight of 400 dipeptides was successfully determined and the instability index could
be formulated.

Calculating the total hydropathicity value of each amino acid in the sequence divided
by the length of the sequence will give us the grand average of hydropathicity (GRAVY)
value. There are multiple hydropathicity indexes of each amino acid residue, one of which
was proposed by Jack Kyte and Russell F. Doolittle in their experiments. The greater the
hydropathicity index, the more hydrophobic the amino acid residue is and vice versa [58].

https://web.expasy.org/protparam/
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Furthermore, another bioinformatics tool commonly used in the overall protein anti-
genicity prediction stage is VaxiJen 2.0 (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/
VaxiJen.html, accessed on 12 September 2022). VaxiJen 2.0 is a predictive model of protein
antigenicity based on auto cross covariance on the physicochemical properties of proteins
(hydrophobicity, spatial arrangement, and polarity). Despite being the older version of
VaxiJen, VaxiJen 2.0 can evaluate tumor peptides antigenicity while VaxiJen 3.0 can only
target bacteria. It is also independent of sequence alignment, and its accuracy is in the
range of 70–89%. Antigen prediction that depends on sequence alignment will be very
detrimental for new proteins that may have low similarity to other known proteins [59].

5.3. T Cell Epitope Prediction

Vaccines for cancer tend to stimulate T cell recruitment [12,14,15]. Adaptive T cell
responses are mediated by TCR and HLA I and II. The choice of T cell epitope is strongly
influenced by the sequence, length, and structure of the epitope because the minimum
requirement to predict whether a peptide sequence is a candidate epitope for T cells is its
ability to bind to HLA A peptide vaccine can also be designed specifically for a particular
population by selecting a set of HLA alleles that have high coverage in that population
when predicting the T cell epitope.

The IEDB provides T cell epitope prediction services based on binding to HLA with
various prediction servers. One that is recommended by the IEDB is the NetMHCpan
and NetMHCIIpan servers. NetMHCpan and NetMHCIIpan adopt the NNAlign_MA
prediction model [60]. The NNAlign_MA model was trained with binding affinity data and
mass spectrometry-eluted HLA ligand data. Mass spectrometry technology is now able
to identify the immunopeptidome, which is a group of peptides presented by HLA. Im-
munopeptidome usually contains multiple sequence motifs that match the HLA molecule
that represents it, so this knowledge will be very helpful in the prediction of T cell epitopes.
NNAlign_MA has been benchmarked on a large and diverse dataset, including data from
HLA class I and II. The NNAlign_MA performance assay successfully surpassed other
T cell epitope prediction methods. Another advantage of NNAlign_MA is its ability to
widen the range of alleles, so predictions can be made more accurately. It also improves the
quality of T cell epitope identification [60]. The service delivers the probability of a peptide
being a natural ligand of the given MHC(s) as the default. If chosen, the expected binding
affinity is also provided [61].

Another prediction service to study HLA class I-presented peptides is MHCflurry
2.0 [62]. MHCflurry 2.0 employs different predictors for MHC allele-dependent and allele-
independent effects (binding affinity (BA) prediction and antigen processing (AP) predic-
tion). MHCflurry 2.0 BA, a novel pan-allele MHC class I BA predictor, was initially trained
using accessible MHC class I ligand data, including affinity measurements and MS datasets.
One of numerous design choices designed to reduce the BA predictor’s ability to learn AP
signals is the inclusion of in vitro affinity measurements in the training data, which are
essentially independent of AP. The BA predictor is then used to construct a training set for
an AP model by mixing MS-identified peptides (hits) with unobserved peptides (decoys),
where the BA predictor predicts that both hits and decoys will bind the corresponding HLA
class I alleles. The AP predictor thereby predicts the remaining allele-independent sequence
features that the BA predictor did not learn. The processing predictor preferred sequences
congruent with recognized patterns for essential AP stages and demonstrated quantitative
agreement with an independent dataset of proteasome-cleaved peptides, demonstrating
its biological significance [63]. MHCflurry 2.0 took the BA and AP variables and put them
together in a logistic regression model to get the presentation score (PS).

Aside from those webtools, the Ludwig Institute for Cancer Research developed
command-line programs to predict T cell epitopes called MixMHCpred and MixMHC2pred.
MixMHCpred can rapidly identify many HLA-I binding motifs and map them to their corre-
sponding alleles without any prior knowledge of HLA-I binding specificity. MixMHCpred
was trained using the co-occurrence of HLA-I alleles across ten newly generated as well

http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
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as forty public HLA peptidomics datasets containing more than 115,000 unique pep-
tides [64]. For the HLA-II counterparts, MixMHC2pred was trained using unbiased mass
spectrometry-based HLA-II peptidomics with a novel motif deconvolution algorithm to
profile and analyze a total of 99,265 unique HLA-II ligands [65]. These two predictors’
training data is very physiologically relevant, making them more suited for predicting
HLA presentation.

To some, command-line programs may seem intimidating, and some may say the
results are not straightforward. An alternative that provides a user-friendly interface is
the Epitope-Evaluator [66]. The Epitope-Evaluator makes it easier to analyze, visualize,
and filter the predicted epitopes interactively. It includes six tools for doing a thorough
epitope analysis, including interactive graphs and downloadable findings. These tools can
be used for a variety of biological applications, such as identifying proteins and regions
to design peptide-based vaccines, identifying promiscuous and conserved epitopes for
the development of multi-epitope vaccines, and studying the impact of mutations on the
formation of neo-epitopes. Although Epitope-Evaluator examines epitope binding strength,
position, and other sequence-based criteria, other elements connected with each protein’s
biological function must be addressed for rational vaccine formulation. Because these
factors are case-specific, Epitope-Evaluator does not take them into account.

Benchmarking reports show comparable results for the predictors mentioned.
Zhao et al. [67] tested those predictors on an extensive set of MHC-binding predictors
by using newly available, untested data for both synthetic and naturally processed epi-
topes. Algorithm-wise, predictors based on artificial neural networks (ANN) outperformed
regression-based machine learning and structural modeling even though they delivered
low correlations between the predicted and experimental affinities for strong MHC binders.
When employed on naturally processed MHC ligands, algorithms trained on elution data
(NetMHCpan4 and MixMHCpred) outperform predictors that utilize binding affinity only.

Another benchmarking report by Mei et al. [68] indicates that MixMHCpred 2.0.1
outperforms the other machine learning- and consensus-based tools for predicting peptides’
binding to most of the HLA-I allomorphs tested, while NetMHCpan 4.0 and NetMHCcons
1.1 beat the other machine learning- and consensus-based methods. It is essential to mention
that a peptide with a higher binding score for a given HLA allotype does not always mean
that it would be immunogenic. Nonetheless, peptide-binding predictors can help drastically
minimize the vast number of epitope possibilities that must be experimentally validated.

All the tools mentioned above are meant for generalized T cell epitope predictions,
including pathogens, allergies, transplantation, and autoimmunity. Recently, a new spe-
cialized cancer epitope database has been developed to fill the gaps in cancer epitope
prediction. The Cancer Epitope Database and Analysis Resource (CEDAR) [69] is envi-
sioned as a complete bioinformatics resource that will give access to curated cancer epitope
data, including mutant and non-mutated cancer epitopes, as well as bioinformatics tools
for epitope and receptor research and prediction. The planned effort would expand on
the IEDB. CEDAR, like the IEDB, will incorporate all cancer-specific epitope data from
multiple T and B cell investigations, MHC binding tests, and mass spectrometry-based
MHC ligandomics. CEDAR will also provide in vivo experiment outcomes such as tumor
rejection and/or tumor control information. With CEDAR’s fine-grained data curation and
flexible query structure, the users will be able to run many queries to find epitopes that are
supported by different experimental data. CEDAR returns query results in three different
formats: (i) tables on the results homepage that provide important values such as host and
assay type, as well as summaries of more complicated data such as immunization fields;
(ii) assay details pages that present the majority of areas provided and details pages for
epitopes with information on the epitope and links to all tests; (iii) spreadsheet exports
of results that have a large number of data field columns, whether filled or not. CEDAR
creates a results page tab to present a summary table of the receptor sequences relevant to
the search criteria as the receptor sequence data are updated. Similarly, additional receptor
information pages and an export table with this data will be created.
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5.4. Epitope Characterization

Epitope prediction results only look at the antigenicity of the candidate epitope.
However, all medical interventions are expected to be safe to apply to the target subject.
To eliminate the negative possibilities that can occur during vaccine administration, it
is necessary to characterize the candidate epitope. The characteristics that are generally
examined include allergenicity, toxicity, hydro-chemical properties, and physicochemical
properties. The prediction of hydrochemical and physicochemical properties has been
described previously. This section will focus more on predicting allergenicity and toxicity.

To predict allergenicity, one of the tools that can be used is AllergenFP 1.0 (http:
//ddg-pharmfac.net/AllergenFP/, accessed on 13 September 2022). AllergenFP 1.0 already
has a dataset of allergens and non-allergens. AllergenFP 1.0 uses auto cross covariance
(ACC) to generalize the length of all peptides. The analyzed epitopes will be compared by
calculating the Tanimoto coefficient. If the epitope has a Tanimoto coefficient that is closer
to the allergen data, then the epitope is predicted to be an allergen and vice versa [70].

Meanwhile, to predict the toxicity of the epitopes, one can use ToxinPred (https:
//webs.iiitd.edu.in/raghava/toxinpred/index.html, accessed on 13 September 2022). Tox-
inPred uses a dipeptide-based support vector machine (SVM) machine learning technique
to obtain a toxicity prediction model. The training data used by the SVM model contained
1805 toxic peptides having 35 residues and a total of 3593 non-toxic peptides from SwissProt
and TrEMBL. Residues such as Cys, His, Asn, and Pro were observed to be abundant in
toxic peptides. The performance of the dipeptide base model has an accuracy of 94.5%.
Another model available in ToxinPred apart from the dipeptide-based SVM model is the
hybrid model, which combines the SVM model with the search for previously known toxic
protein motifs. If a toxic protein motif is found in the query, then the results of the SVM
model are increased by 5. This hybrid model turns out to have a better accuracy, which
is 98.41% [71].

5.5. Protein–Epitope Interaction Evaluation

Epitopes that have a high binding affinity with alleles that have been experimentally
validated will be strong epitope candidates. Therefore, many in silico vaccine design studies
have also tested the binding of epitopes to human alleles using the molecular docking
method. Molecular docking is an in-silico method that is applied to model protein–ligand
interactions at the atomic level. This modeling helps characterize the behavior of ligands at
binding sites on target proteins [72]. Molecular docking can show the binding affinity and
important residues involved in the interaction, as well as the type of interaction.

There are few approaches to dock a peptide to a receptor. One can do molecular
docking through comparative approaches by constructing a model of the complex using
known structures (templates) as scaffolds. This strategy can be very useful if the template
is similar to the complex under investigation. The GalaxyPepDock web server uses an
automated template-based method. It looks for templates based on similarities between
the input protein structure, protein–peptide interaction, and complex structures contained
in the PDB [73]. Then, it constructs complex models using energy-based optimization and
refinement, allowing for structural flexibility. With the FlexPepBind method, for example,
it allows for the modeling of various peptide sequences into receptor binding sites, with
limitations that reinforce certain key properties such as preserved hydrogen bonds [74].

Some molecular docking software uses a local docking approach. Local docking
approaches look for peptide binding poses in the vicinity of a user-defined binding site;
hence, docking accuracy is dependent on the binding site input information: the more
accurate, the better. The offered approaches define the binding location in various ways.
Rosetta FlexPepDock [75] and DynaDock [76] ask the user to provide an initial model of
the complex. As proven, the approaches should be able to enhance the original model if its
accuracy is within a 5 backbone root mean square deviation (RMSD) of the experimental
structure. Furthermore, the input model may require method-specific preparation, such
as the removal of internal conflicts [74]. Some of the approaches, however, need less

http://ddg-pharmfac.net/AllergenFP/
http://ddg-pharmfac.net/AllergenFP/
https://webs.iiitd.edu.in/raghava/toxinpred/index.html
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tightly stated beginning models. Because the approach allows for considerable peptide
flexibility and broad sampling of rigid body orientations inside the binding site, the input
peptide conformation in Rosetta FlexPepDock ab initio [77] may be distant from the native.
HADDOCK [78], on the other hand, may automatically position the peptide at the binding
site determined by a user-supplied list of interface residues. AutoDock Vina is a standalone
software alternative that employs local docking, though it is limited to short peptides
only [79].

Alternatively, global docking approaches look for the peptide binding location and
posture simultaneously. The most basic method for global protein–peptide docking is to
consider the protein and peptide input conformations stiff and execute thorough rigid-
body docking. More advanced algorithms anticipate peptide conformation using a user-
supplied sequence. Their pipelines typically consist of three stages: (i) creation of input
peptide conformations; (ii) rigid-body docking; and (iii) scoring and/or refining of the
models. Various methodologies can be used to predict the peptide conformation (e.g.,
using structure fragments from monomeric protein structures [80], threading the sequence
onto a predefined set of template conformations [81], or simulating peptide folding in the
solution [82]). Peptide conformation generation can also be integrated with global docking
in a single explicit simulation. This is achievable in the CABS-dock technique [83], which
starts with random shapes for the peptides and only changes when they interact with a
flexible receptor. Alternatively, global docking can be paired with binding site predictions.
This method is employed in AnchorDock [82], which automatically detects possible binding
sites and docks a flexible peptide in their vicinity.

6. The Next Step

Although all the immunoinformatics methods described above have a strong statistical
basis and use experimental data as training data for predictive models, these models
still have biases that should not be ignored. This bias can lead to errors in predictions.
Therefore, predictive models always have values of accuracy, sensitivity, specificity, and so
on to benchmark the reliability of the prediction results. In addition, many physiological
mechanisms are not well modeled in immunoinformatics methods. Many factors can make
the prediction model deviate from its true value. Furthermore, there is no predictive model
that can predict the response of T cells after activation. Once activated, CD4+ T cells, for
example, mature into Th1 cells or Th2 cells. The typical Th1 cytokine is IFN-
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has the typical cytokines IL-4, IL-5, and IL-10 [84]. However, the change in T cell response
is determined by costimulatory signals, TLR, and PAMPS activation, not epitope. Several
studies have reported a change in the type of immune response when an amino acid in the
epitope is changed [85,86]. Therefore, more research needs to be done in vitro and in vivo
to confirm the predicted results.

It has been explained previously that the vaccine design must meet at least three
things: (1) have sufficient active ingredients to immunize the recipient; (2) have a safety
level per regulatory standards; and (3) have a low level of contamination according to
regulatory standards. In silico studies have been able to predict the first and second points.
Thus, in addition to confirming the predicted results obtained, further studies should be
able to confirm these three things through in vitro and in vivo tests.

In vitro and in vivo testing of such vaccine designs usually begins with synthesizing
peptide vaccine candidates. Generally, peptides can be synthesized in two ways: soluble
phase synthesis and solid phase synthesis. One well-known strategy is the Merrifield solid-
phase protein synthesis method [87]. After synthesis, peptides need to be characterized
and purified. The characterization method that is often used is mass spectroscopy. Other
methods, such as FT-IR spectroscopy, can also be performed to determine the functional
characteristics of peptides [88]. The 2D and 3D structures of peptides can be analyzed using
CD spectroscopy [89] and many other characterization methods. As for the purification of
peptides, the HPLC method is more widely used. Ion exchange chromatography and affinity
chromatography can also be performed for the purification of certain peptides [90,91].
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Epitope-based peptide vaccine designs were forced to compromise efficacy because
epitope is a short peptide sequence. Thus, it is less antigenic than other vaccines and
even easily disappears in the body because of its small size. Further studies should also
consider adding suitable adjuvants to epitope-based peptide vaccines to enhance antigen
immunogenicity. There are two types of adjuvants that can be used for epitope-based
peptide vaccines, namely, immunostimulants and carrier molecules that can regulate
epitope delivery and release. Currently, there is no consensus regarding the most optimal
adjuvant to be used for a given peptide vaccine, and this could be a promising research area
to further optimize and improve vaccine formulations [92]. All phase I and II peptide-based
cancer vaccine studies that are actively active or recruiting participants include Montanide
ISA-51, GM-CSF, poly-ICLC, and many more [93].

In the case of breast cancer, one of the most well-known TAAs is HER2. There are a lot
of vaccines that target HER2-related antigens. One of them is E75, a breast cancer vaccine
that uses the immunologic adjuvant GM-CSF to target the HLA-A2/A3-restricted, HLA
class-I, extracellular HER2-derived peptide E75.It is one of the most studied epitope-based
vaccines that was identified in 1995 [94]. The E75 vaccine was provided to disease-free
patients with any degree of HER2 expression (immunohistochemistry (IHC) 1–3+) in a
phase 1 adjuvant study. An immunological response with high tolerance was seen [95]. It
was established that a monthly intradermal dosage of 1000 mg E75 and 250 mg GM-CSF
for 6 months was best [96]. In the subsequent phase 2 trial, 195 patients were randomly
allocated to either the vaccine or control arm. At the end of a 5-year follow-up, the disease-
free survival (DFS) rate for vaccinated individuals was 89.7% against 80.2% for control
patients (p = 0.08) [96,97]. Interestingly, vaccinated individuals with relatively low HER2
expression (IHC 1–2+) displayed a more robust immunological response than those with
greater levels of HER2 expression (IHC 3+), indicating that immunologic tolerance to HER2
may exist in certain patients with tumors expressing high levels of HER2 [23].

In a recently completed phase 2 adjuvant study, the efficacy of the E75 vaccination in
patients with low HER2 expression (IHC 1–2+) when combined with anti-HER2-targeted
treatment was evaluated [98]. Following a year of conventional trastuzumab-based anti-
HER2 therapy, 275 patients were randomly assigned to receive E75 or a placebo. Estimated
DFS did not change substantially between the vaccine and control arms at a median follow-
up of 25.7 months (p = 0.18). In a planned exploratory study, however, individuals with
TNBC had significantly better DFS (p = 0.01). This study suggests that HER2-derived
peptide vaccines may be efficacious when administered in conjunction with or in addition
to trastuzumab-based anti-HER2-targeted treatment. In the case of HER2 overexpression
(IHC 3+) patients, the efficacy of E75 remains unclear because the majority of HER2 overex-
pression patients who participated in prior trials did not get trastuzumab as conventional
anti-HER2 treatment.

GP2 is another HLA class-I, HLA-A2/A3-restricted immunogenic peptide generated
from the transmembrane region of HER2. GP2 has a lesser affinity for HLA-A2 than E75,
but it is just as effective at inducing a CD8+ T cell response [24]. In a phase 1 adjuvant
experiment, the GP2 vaccination displayed a satisfactory safety profile and generated GP2-
specific T cell responses as well as GP2-specific delayed-type hypersensitivity (DTH) [99].
After a 34-month median follow-up in the following phase 2 adjuvant study, which in-
volved 180 patients with tumors expressing HER2 (IHC 1–3+), there was no significant
advantage in DFS in the vaccine group compared to the control group (88% vs. 81%,
p = 0.43) [100]. A subgroup analysis revealed that HER2-positive (IHC 3+) patients had no
recurrences, with a tendency toward better DFS in the vaccine group than the control group
(100% vs. 87.2%, p = 0.052) [25]. The final analysis of this experiment revealed encouraging
findings, demonstrating that the GP2 vaccination lowered the recurrence rate to 0% in HER
3+ patients who had a conventional course of trastuzumab following surgery. If the patient
completed the main vaccination series, the projected 5-year DFS rate in the 46 HER2 3+
vaccinated individuals was 100% vs 89.4% in the 50 placebo patients (p = 0.034) [101].
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Aside from E75 and GP2, another HER2-related peptide vaccination utilized in the
adjuvant context of breast cancer is AE37. It is an Ii-Key hybrid of AE36 generated from the
HER2 intracellular domain. The alteration was carried out to boost the epitope’s binding
efficacy [102]. Unlike E75 and GP2, AE37 is an HLA class-II epitope that primarily activates
CD4+ T cells. A phase 1 experiment revealed little toxicity and a positive immunological
response [103]. Treg cell levels were evaluated and found to be lower after immunization
because AE37 promotes a CD4+ helper T cell response [103]. In a phase 2 study, 153 patients
got AE37 with GM-CSF and 145 patients got GM-CSF alone. Both groups were made up of
clinically healthy people with any amount of HER2 (IHC 1–3+) [104]. After a median of
30 months, the DFS rate in the vaccine group was 87.6% and 86.2% in the control group
(p = 0.70). DFS was 86.8% in vaccinated individuals and 82.0% in control patients in a
planned subset analysis of patients with IHC 1–2+ HER2-expressing tumors (p = 0.21).
TNBC patients (IHC 1–2+ and hormone receptor-negative) had a DFS rate of 84.0% in the
vaccine group and 64.0% in the control group (p = 0.12), indicating that AE37 immunization
may provide therapeutic advantages in patients with low HER2-expressing malignancies,
especially TNBC.

As for TSA-based vaccines, it has been mentioned before that the fundamental limi-
tation of cancer vaccines based on neoantigens is that they are highly personalized, and
their identification requires a combination of high-throughput genomes, proteomics, and
immunomics screening tools that are currently not widely available. Moreover, the effi-
cacy of such a highly personalized method may be limited by the fast mutational rate of
tumors, which results in the continuous generation of new target mutated neoantigens
and, as a result, cancer immune evasion. Only a couple of breast cancer vaccines in clinical
trials are based on TSAs; one of them is atezolizumab neoantigen vaccine (NCT132289962)
and the other is a combined therapy of durvalumab, Nab-paclitaxel, and neoantigen
(NCT03606967) [22,105].

Moving forward, we can expect that cancer treatment will become more personalized
as the technology advances. There is also great potential that breast cancer vaccines may
improve the outcome when combined with other therapies. Researchers are studying the
efficacy and safety of vaccine-combined therapies for cancer [106–110]. An anti-HER-2
monoclonal antibody used to treat breast cancer, trastuzumab, was discovered to make
HER-2-positive tumor cells more vulnerable to antibody-dependent and T cell-mediated
cytotoxicity [111,112]. Gall et al. discovered that trastuzumab increased DC absorption and
cross-presentation of HER-2-derived peptides (E75), resulting in anticancer immune prim-
ing and increased generation of antigen-specific CTLs [113]. Furthermore, in a phase IIb
clinical trial, the combination of trastuzumab with GM-CSF and E75 peptide (nelipepimut-
S) was proven to be safe with no increased harm compared to trastuzumab alone, even
after prolonged exposure. There was no significant difference in disease-free survival in
HER-2 low-expressing breast cancer, but there was a substantial clinical advantage in triple-
negative breast cancer (TNBC) patients [98,114]. These findings imply that a combination of
nelipepimut-S and trastuzumab might be employed as adjuvant treatment for early TNBC
and justify further investigation in phase III randomized trials.

7. Conclusions

The immunoinformatics approach to epitope-based peptide vaccine design has great
potential for helping accelerate vaccine development. The immunoinformatics method can
provide more comprehensive data and information about vaccine candidates compared
to conventional methods. These data are very helpful in designing more specific vaccines.
TAAs are useful for producing a single vaccination that can be made in huge quantities
and disseminated to many patients as a one-for-all strategy. One of the most difficult
issues is ensuring that TAAs elicit the optimal immune response. The immune system
is meticulously calibrated to ensure that it does not harm the body. Meanwhile, the
main constraint of cancer vaccines based on altered neoantigens is that they are strictly
personalised, and their discovery necessitates a combination of high-throughput genomics,



Diagnostics 2022, 12, 2981 14 of 18

proteomics, and immunomics screening technologies that are presently not applicable
on a broad scale. One of the most important characteristics of an epitope-based vaccine
is that it needs to properly trigger an immune response. T cells are activated when the
antigen presented by HLA also interacts with the TCR simultaneously. There is a lot of
immunoinformatics software or techniques that can help with tumor antigen identification,
protein structure analysis, T cell epitope prediction, epitope characterization, and protein–
peptide interaction evaluation. We discussed many immunoinformatics tools that can
help each step of developing cancer vaccines. The low immunogenicity of the epitope is
the biggest obstacle to the development of epitope-based peptide vaccines. However, the
addition of adjuvants can be a solution to overcome this. Combinatorial therapies of cancer
vaccines with anti-cancer drugs give hopeful results as well. As the technology advances,
we can hope that cancer vaccines will become more personalized and targeted in the future.
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