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Abstract: Infectious uveitis is a sight-threatening infection commonly caused by herpesviruses.
Vitreous humor is often collected for molecular confirmation of the causative agent during vitrectomy
and mixed in large volumes of buffered saline, diluting the pathogen load. Here, we explore affinity-
capture hydrogel particles (Nanotrap®) to concentrate low abundant herpesviruses from diluted
vitreous. Simulated samples were prepared using porcine vitreous spiked with HSV-1, HSV-2,
VZV and CMV at 105 copies/mL. Pure undiluted samples were used to test capturing capability
of three custom Nanotrap particles (red, white and blue) in a vitreous matrix. We found that all
particles demonstrated affinity to the herpesviruses, with the Red Particles having both good capture
capability and ease of handling for all herpesviruses. To mimic diluted vitrectomy specimens,
simulated-infected vitreous were then serially diluted in 7 mL TE buffer. Diluted samples were
subjected to an enrichment protocol using the Nanotrap Red particles. Sensitivity of pathogen
detection by qPCR in diluted vitreous increased anywhere between 2.3 to 26.5 times compared to
non-enriched specimens. This resulted in a 10-fold increase in the limit of detection for HSV-1, HSV-2
and VZV. These data demonstrated that Nanotrap particles can capture and concentrate HSV-1,
HSV-2, VZV and CMV in a vitreous matrix.

Keywords: uveitis; herpesviruses; PCR; nanoparticles

1. Introduction

Uveitis is a serious and sight-threatening inflammation believed to be associated with
10% of legal blindness in the United States [1]. There are two major etiologies: infectious
and non-infectious (immune-mediated), with infectious etiologies comprising around 20%
of cases in the United States [2]. The spectrum of microbes causing infectious uveitis
ranges depending on a variety of factors such as climate and regional distribution of
pathogens, as well as the type of uveitis. The herpes viruses are common causative viruses
in infectious posterior uveitis, these include cytomegalovirus (CMV), which causes retinitis
in immunosuppressed patients, and herpes simplex types 1 and 2 (HSV-1 and HSV-2) and
varicella zoster virus (VZV), which are commonly associated with acute retinal necrosis [3].
These viruses are also associated with anterior uveitis and are the most common etiologies
in the western world [4]. CMV retinitis is the most common opportunistic ocular infection
in patients with acquired immunodeficiency syndrome (AIDS) [5]. In patients who are
immunocompetent, most cases of viral infectious uveitis are caused by HSV and VZV [6].

Laboratory diagnosis of infectious uveitis often relies on the use of polymerase chain
reaction (PCR) testing of aqueous and vitreous humor with a significant percentage of false
negatives among these tests in some cases due to a short-lived release of virus into the
intraocular fluids or a viral load that is too low to be detected. The positive rates can range
from 30% to 70% [7–10], with variations based on a variety of factors such as the stage of
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infection, type of infection, and population tested. In many cases, vitreous fluid is collected
through vitrectomy and diluted in large volumes of buffered saline, which can substantially
decrease the viral load resulting in poor sensitivity of pathogen detection.

The Nanotrap particles developed by Ceres Nanosciences are customizable hydrogel
particles with diameters typically less than 1 micrometer. Hydrogel particles have many
highly desirable characteristics for diagnostic use, such as: stability, uniformity, high
surface area, easy suspendability in aqueous media, and versatility with regard to the ease
of making physical-chemical modifications to the particles [11]. They can be engineered to
have features such as: a charged or inert polymer shell, charged functional groups, and/or
affinity dye functional groups [12].

Nanotrap particles have been tested against a variety of arthropod-borne viruses
(arboviruses) such as Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus
(VEEV), Zika virus (ZIKV), Chikungunya virus (CHIKV), and Dengue virus (DENV) [13,14].
It has been shown that Nanotrap particles capture and concentrate RVFV particles resulting
in 100-fold greater enrichment of low viral titers that may show up as false negatives when
processed without any form of enrichment [14]. Nanotrap particles have also enhanced the
detection of ZIKV down to 102 PFU/mL (plaque-forming units/mL) and CHIKV down to
101 PFU/mL from urine samples [13]. Nanotrap particles have shown ability to capture
human immunodeficiency virus type 1 (HIV-1) proteins, as well as the viral transactivator
Tat, Nef, and gp41 from complex body fluids such as human serum, cerebrospinal fluid,
and urine [15]. There has also been research showing that these particles are able to capture
respiratory pathogens such as influenza A and B, respiratory syncytial virus (RSV) and
coronavirus (CoV) [12]. Here, we explore the ability of Nanotrap particles to capture and
enhance the viral load of dilute vitreous fluids infected with HSV-1, HSV-2, VZV and CMV,
the most common causes of viral uveitis.

2. Materials and Methods
2.1. Control Viral Panels

Herpes viral verification panels for CMV, HSV-1, HSV-2, and VZV were obtained from
Exact Diagnostics (SKU #CMVP100, HSV1P100, HSV2P100, VZVP100).

2.2. Sampling of Porcine Vitreous

Porcine eyes obtained from Sierra for Medical Science were placed into a beaker filled
with 3% povidone iodine and soaked for 5 min. The eyes were then washed with 1×
phosphate-buffered saline (PBS) until all the povidone iodine was flushed out. The eyes
were then placed onto sterile square plates. Vitreous fluid was extracted using a 30-gauge
needle attached to a 1 mL syringe. Vitreous was pooled together into a 50 mL conical tube.
The solution was centrifuged 2 times for 5 min each at 2350× g (5000 rpm) to bring any
remaining tissue to the bottom of the tube. After centrifuging, vitreous was transferred to a
clean 50 mL conical tube and stored at −20 ◦C until later use.

2.3. Comparison of Three Different Nanotrap Particle Types

Three types of custom hydrogel particles were provided by Ceres Nanosciences (Man-
assas, VA, USA), each with different affinity dye functional groups. Nanotrap particle
identifiers were created based on the visual color of the suspension for each particle type
and are named as follows: Red, White, and Blue particles. Herpes viral verification panels
for CMV, HSV-1, HSV-2, and VZV obtained from Exact Diagnostics were used to spike
porcine vitreous at a concentration of 105 cp/mL (copies per milliliter) or IU/mL (Inter-
national Units per milliliter for CMV). Next, 100 µL of the newly created porcine solution
was mixed with 100 µL of TE Buffer. The entire solution (200 µL) was added to each type
of Nanotrap particle that had already been pelleted (in triplicate for each virus). After
incubation, solutions were centrifuged to pellet the captured viral particles and the super-
natant was discarded. Pellets were resuspended in 200 µL Buffer AL (QIAGEN, Hilden,
Germany). Extraction of viral DNA was performed using the QIAamp® DNA Mini Kit
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(QIAGEN) and eluted DNA was used for pathogen detection and quantification using
a previously validated assay [16]. Each reaction contained 12.5 µL of Express SYBR™
GreenER™ (Thermo Fisher, Waltham, MA, USA), 0.5 µL of the appropriate forward and
reverse primers, at 20 µM working stocks, 2.5 µL of template DNA, and 9 µL of nuclease-
free water. The reaction was set up in at the following cycling conditions: 50 ◦C for 2 min,
95 ◦C for 5 min, and then 40 cycles of 95 ◦C for 5 s, 60 ◦C for 10 s (acquiring on green),
followed by a high-resolution melt (HRM) that went from 75–95 ◦C by 0.1 ◦C/cycle. The
gain was set to optimize each run. Results were analyzed using the Rotor-Gene® Q Series
Software (version 2.3.5) (QIAGEN). All PCR reactions were performed with no-template
controls (NTCs).

2.4. Preparation of Simulated Diluted Vitreous Samples

Simulated diluted vitreous samples that mimic vitrectomy specimens were created
by diluting (1:10) pure vitreous containing 105 cp/mL (IU/mL for CMV) of viruses in
TE buffer (Tris-EDTA, pH = 8.0) to create a 7 mL solution containing 104 cp/mL. Serial
dilutions were performed down to 101 cp/mL. Prior to beginning the enrichment, 200 µL of
each dilution (104 cp/mL to 101 cp/mL) was placed into a separate 1.5 mL tube in triplicate
and set aside to be extracted as the non-enriched samples as shown in Figure 1.
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2.5. Viral Capture and Concentration with Nanotrap Red Particles

To begin the enrichment process, 180 µL of the Nanotrap Red particles were pipetted
into 2 mL tubes (3 for each dilution) and centrifuged at 15,000× g for 10 min to pellet the
particles. Once centrifugation was completed, the supernatant was removed carefully as to
not disturb the pellet. In triplicate, 1.8 mL of the diluted vitreous samples was added to
each tube. The solution was pipetted up and down to resuspend the pellet, careful not to
directly poke the pellet. The tubes were then incubated at room temperature for 10 min,
making sure to invert the tubes to mix the solution every 5 min. When incubation was
complete, the solutions were centrifuged at 15,000× g for 10 min. After centrifugation, the
supernatant was removed. The pellet was then resuspended in 200 µL of nuclease-free
water. Viral DNA was then extracted using the Zymo Quick-DNA Microprep Plus Kit
(Zymo Research, Irvine, CA, USA). For both the enriched and non-enriched samples, 800 µL
of Genomic Lysis Buffer (with β-mercaptoethanol) was added to each of the tubes, vortexed,
and set to incubate at room temperature for 5 min. After incubation was complete, the
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solution was added to the Zymo-Spin IC-XM Columns in collection tubes and centrifuged
at 10,000× g for 1 min, discarding the supernatant. This was done by adding the solution in
2 increments of 500 µL as to not overflow the columns. Next, 200 µL of the DNA Pre-Wash
Buffer was added to the columns and centrifuged at 10,000× g for 1 min, discarding the
supernatant. Lastly, 500 µL of the g-DNA Wash Buffer was added to each of the columns
and centrifuged at 10,000× g for 1 min, discarding the supernatant. The columns were
then added to clean, 1.5 mL microcentrifuge tubes. Then, 20 µL of DNA Elution Buffer was
added directly to the columns and set to incubate at room temperature for 10 min. DNA
was eluted by centrifuging at 10,000× g for 1 min. PCR was performed in duplicate for each
of the triplicate samples at the 4 dilutions (104 cp/mL to 101 cp/mL) using real-time PCR
assays (described above). The process of enrichment, entrapment, and DNA extraction is
summarized in Figures 2 and 3. Non-enriched aliquots (200 µL) were extracted in the same
manner. PCR for enriched and non-enriched samples was performed in duplicate for each
of the triplicate samples at the 4 dilutions (104 to 101) as described above. All PCR reactions
were performed with no-template controls (NTCs).
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2.6. Construction of Reference Curves

Pure solutions of viral particles from Exact Diagnostics were created for each virus
from the concentrations of 105 to 101 (cp/mL or IU/mL for CMV). To do this, the stock
solution of 106 was diluted 1:10 in TE Buffer so that a 200 µL solution for each desired
concentration was made. The extraction was performed in the same method as described
above using the Zymo Quick-DNA Microprep Plus (Zymo Research). After DNA was
eluted, the same PCR was performed as mentioned in the previous section. The results
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of this PCR were used to import a reference curve into the PCR runs testing the enriched
vs. non-enriched samples at each concentration. This allowed for the software to estimate
the concentration of each sample run based on the set standard concentration of the pure
solutions used in the run to create the reference curve. The VZV reference curve was
constructed using a VZV plasmid which was cloned using the Zero Blunt™ TOPO™ PCR
Cloning Kit for Sequencing (Thermo Fisher).

2.7. Statistical Analyses

GraphPad Prism 9 version 9.3.1 (471) was used for the construction of graphs and
statistical analyses. For the three different particle types (Red, White, and Blue), an ordinary
one-way ANOVA was run to compare the performance of each particle type to one another
for the four viruses tested. To understand the differences between both enriched (with the
Red particles) and non-enriched samples at the four concentrations tested for each virus
tested, a two-way ANOVA was run.

3. Results
3.1. Performance of Each Particle Type

To evaluate the ability of three different custom Nanotrap particles to capture uveitis-
causing herpesviruses in a vitreous matrix, simulated samples at 105 cp/mL were incubated
with each of the tested Nanotrap particles. All Nanotrap particles were capable of capturing
HSV-1, HSV-2, VZV and CMV spiked in a vitreous matrix. An ordinary one-way ANOVA
was used to compare the three different particle types. For CMV, HSV-2, and VZV, there
was a statistically significant (p < 0.05) difference between the particle types (p = 0.0024,
p = 0.0073, and p < 0.0001, respectively). For HSV-1, the difference between the particle
types did not appear to be statistically significant (p = 0.0639). Because the Red particles
displayed good affinity to all herpesviruses tested and was easier to handle (compared
to the White particles, which formed hard pellets that were difficult to resuspend), they
were chosen for the enrichment experiments that follow. Mean and standard deviation data
for each particle type and virus is shown in Table 1. Results of each particle enrichment
experiment are shown in Figure 4.

Table 1. Mean and standard deviation values (in cp/mL) for each of the custom Nanotrap particle
types tested: Nanotrap Red, Nanotrap White, and Nanotrap Blue.

Nanotrap Red Nanotrap White Nanotrap Blue

Mean * SD Mean SD Mean SD

CMV 34,157.8 15,194.1 33,502.2 144,512 13,454.8 6271.9
HSV-1 110,954.9 76,777.7 81,236.4 14,932 57,353.6 13,377.8
HSV-2 26,255.2 7395.3 14,253.5 7496.8 12,822.3 9859.6
VZV 171,683.8 79,047.8 178,146.5 41,784.4 31,991.6 25,461.7

* All mean values have concentration given in cp/mL except for CMV which is in IU/mL.

3.2. Comparison of Enriched vs. Non-Enriched Samples

We found that adding an enrichment step with this novel hydrogel particle can
concentrate all uveitis-causing herpesviruses tested and enhance the sensitivity of detection
by PCR.

At a viral load of 104 cp/mL (or IU/mL for CMV), the Nanotrap Red provided a 3- and
15-fold increase in detection of HSV-1 and HSV-2, respectively. At lower concentrations,
the fold increase ranged from 2.5–2.7 for HSV-1 and 13.6–26.5 for HSV-2 (Figure 5, Table 2).
This resulted in limit of detections (LoD) for enriched samples that were 10-fold higher
when compared to non-enriched specimens (Table 2). Concentration of viral particles
using the Nanotrap Red particles increased the LoD for HSV-1 and HSV-2 from 102 cp/mL
to 101 cp/mL. Similarly, a 3.2 to 5.7-fold increase in detection of VZV was obtained for
enriched samples, resulting in a 10-fold improvement in the LoD (from 103 cp/mL to
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102 cp/mL). For CMV, enrichment with the Nanotrap Red resulted in a 2.3- to 11.1-fold
increase in detection (Figure 5, Table 2). Despite of this improvement in signal detection for
CMV, the LoD of detection remained the same before and after enrichment for the log10
dilutions included in our study. A two-way ANOVA analysis was performed to compare
the enriched and non-enriched samples at each concentration of viral load. The difference
for each herpesvirus was found to be statistically significant with a p-value of p < 0.0001.
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Table 2. Mean and standard deviations (in cp/mL), as well as mean Ct value, for both the enriched
and non-enriched samples of each pathogen at the 4 concentrations tested (104 to 101).

Enriched Non-Enriched Fold
IncreaseMean * SD Mean Ct Mean SD Mean Ct

HSV-1 104 76,252.5 19,527.4 23.96 25,351.6 4671.6 25.58 3.0
103 8484.1 4075.9 27.31 3397.3 1559.0 28.68 2.5
102 1303.1 657.7 30.16 480.5 367.3 32.25 2.7
101 380.2 160.3 31.95 0 § - >40 -

HSV-2 104 276,249.6 22,581.5 22.67 18,241.9 1953.7 26.60 15.1
103 25,437.6 10,008.6 26.20 1863.7 679.14 29.98 13.6
102 1638.9 1105.1 30.62 61.9 89.6 37.46 26.5
101 126.9 95.5 34.20 0 - >40 -

CMV 104 57,465.4 25,857.7 23.71 5162.7 1948.1 27.42 11.1
103 2022.9 825.4 28.86 390.5 182.3 31.41 5.2
102 230.9 258.13 33.76 101 170.6 37.12 2.3
101 0 - >40 0 - >40

VZV 104 130,149.9 56,026.1 29.06 22,669.5 5395.1 31.48 5.7
103 13,950.6 5956.7 32.28 4313.8 2735.0 34.34 3.2
102 1303.9 1270.9 36.91 0 - >40 -
101 0 - >40 0 - >40 -

* All mean values have concentration given in cp/mL except for CMV which is in IU/mL. § A mean value of 0
indicates that only 1 or 2 of the 6 replicates amplified.

4. Discussion

Because many samples from uveitis patients that are processed for viral detection
and diagnosis confirmation are collected thorough vitrectomy and diluted with large
volumes of buffered saline, the number of viral particles available for detection in a small
aliquot of dilute vitreous can be substantially decreased. Concentrating these viral particles
present in milliliters of dilute vitreous into a minute amount (microliters) that can be
processed using the current DNA preparation methods could significantly increase the
sensitivity of detection by PCR and improve diagnostic yields. To test this hypothesis,
we quantified the viral loads of simulated-infected dilute vitreous samples before and
after an enrichment process using the Nanotrap Red participles. The Nanotrap particles
have shown to have good binding affinity to HSV-1, HSV-2, VZV and CMV in a vitreous
matrix. The enrichment with Nanotrap particles increased viral detections in dilute samples
at the highest concentration tested (104). Enrichment also enabled detection by PCR for
samples at the lower concentrations of 101 and 102. For HSV-1, HSV-2, and VZV, samples
enriched with Nanotrap particles had a 10-fold increase in the LoD compared to samples
that were not enriched. Enrichment of CMV with Nanotrap particles increased the signal
for detectable dilutions, while the LoD remained unaltered for the small range of log10
dilutions tested. Since an improvement in detection was still detected for CMV after
enrichment with Nanotrap Red, it is likely that the LoD would be impacted if intermediate
dilutions between 101 and 102 were tested.

PCR testing is commonly used for pathogen detection in patients presenting with
infectious uveitis [17–22]. Real-time PCR is a method often explored for development
of sensitive and rapid assays to detect the presence of herpesviruses from aqueous and
vitreous samples [18,19] and in some cases from whole blood and cerebrospinal fluid
(CSF) or serum [17,23]. Aqueous or vitreous are typically the desired specimen to test for
ocular disease as PCR testing done on serum can identify concomitant infections present
within the individual and not accurately diagnose the infection associated with uveitis [23].
Oftentimes, diagnostic aqueous or vitreous taps for specimen collection only yield about
50–200 µL of ocular fluids. Aqueous and vitreous taps are the most frequently used
diagnostic procedures for obtaining ocular fluids because they can be easily done in the
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outpatient clinic setting, and between the two aqueous tap is most frequently employed
because it is more likely to give a yield, technically easier and more comfortable for
the patient. When vitreous is acquired through vitrectomy, the volume is larger than a
vitreous tap. Part of the specimen is usually obtained undiluted (typically about 1 mL),
but a larger, diluted vitreous sample can also be obtained. This diluted sample is often
significantly diluted in buffered saline used as the infusion fluid for the vitrectomy, and this
substantially dilutes the pathogen responsible for infection in the sample. Our validated
PCR assay [16] was efficient at detecting concentrations of 102 cp/mL for HSV-1, HSV-2
and CMV viral particles, and 103 cp/mL for VZV. With the addition of Nanotrap particles,
we were able to concentrate low viral titers of sample (102 and 101) in simulated vitrectomy
specimens, so they were still detectable by PCR at copy numbers as low as 102 cp/mL
for CMV and VZV, and even at 101 cp/mL for HSV-1 and HSV-2, allowing us to detect
herpesviruses below the established LoD of our real time PCR assay for samples that are not
concentrated and enriched. This aligns with what other studies have done regarding the
use of Nanotrap particles for enrichment of a variety of viruses in clinical specimens [11–15],
which demonstrated the usefulness of these particles to entrap and concentrate viruses that
are associated with significant disease burden in humans such as arboviruses [13,14] and
respiratory viruses [12]. Here, we have shown that Nanotrap particles are also capable of
binding to herpesviruses that are widely disseminated in the human population and are
common culprits of sight-threatening intraocular infections and demonstrated that these
particles can be used to concentrate the viral load and improve PCR detection in simulated
vitrectomy specimens that are substantially diluted large volumes of buffered saline.

Routinely, diagnosis of uveitis is made on the basis of the clinical presentation. How-
ever, determining the etiology can be complicated by overlapping findings among cases
caused by different pathogens and also with the features found for noninfectious uveitis
cases [24]. This can delay the initiation of appropriate therapy and result in poor out-
comes [6]. Molecular detection of herpesviruses and other pathogens by PCR testing of
intraocular fluids is a common approach for etiological diagnosis of infectious uveitis.
Although these tests have in general good analytical sensitivity, there are false negative
results for a considerable number of samples [17].

False negatives can occur even if samples are collected under optimal conditions—with
an undiluted, but the reduced clinical sensitivity of PCR for detection of a causative agent
can be, in part and in some cases, related to the use of highly diluted vitreous specimens
collected through vitrectomy, which contain very low viral titers [7]. Diluted vitreous is
sometimes sent for PCR instead of undilute vitreous because the cause is uncertain at the
time of vitrectomy between a masquerading malignancy and an infectious cause, and the
undilute specimen is prioritized for tests to detect malignancy. Capture and concentration
of viral particles could potentially improve the sensitivity of PCR and result in increased
diagnostic yields. The use of Nanotrap particles for pathogen enrichment has been shown
to substantially improve the detection of respiratory viruses [12] and arboviruses [13,14] in
complex clinical matrices, and its use in the molecular diagnostics of infectious uveitis could
potentially help improve detection rates and clinical sensitivity of PCR tests in specimens
with low viral titer. Another clinical scenario where Nanotrap particles could be useful,
which we did not explore in this paper, is in partially treated patients. Often patients are
referred already having started an empiric course of antiviral therapy, but an inadequate
response or other clinical features bring the diagnosis into question and a diagnostic ocular
fluid is then procured. Aqueous and vitreous fluid often have a lower yield for PCR in
these partially treated patients and Nanotrap particles could improve the yield here as
well. The role of Nanoparticles in partially treated ocular fluid samples, as well as in
aqueous samples, a more common ocular fluid used for diagnosis of viral posterior uveitis
despite typically having a lower viral load than vitreous, are areas for future studies with
this technology.
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5. Conclusions

Nanotrap Red particles were successful at trapping and enhancing detection of viral
particles in a vitreous matrix and simulated diluted vitrectomy specimens. Our data
supports the use of the Nanotrap Red particles for pre-processing of diluted vitreous
specimens for improved detection of CMV, HSV, and VZV by PCR. Additionally, the use
of Nanotrap particles will only slightly increase the sample processing time by about
30–60 min. The average sample costs about $10 USD to extract and perform PCR. With
the addition of Nanotrap particles, the cost would increase to approximately $15 USD per
sample. The advantages of this sample enrichment process are expected to translate into
improved diagnostic yields for specimens collected from patients presenting with viral
uveitis and processed by PCR, ultimately helping to improve care and clinical management.
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