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Abstract: In this study, we aimed to investigate quantitative differences in performance in terms
of comparing the automated classification of deep vein thrombosis (DVT) using two categories of
artificial intelligence algorithms: deep learning based on convolutional neural networks (CNNs)
and conventional machine learning. We retrospectively enrolled 659 participants (DVT patients,
282; normal controls, 377) who were evaluated using contrast-enhanced lower extremity computed
tomography (CT) venography. Conventional machine learning consists of logistic regression (LR),
support vector machines (SVM), random forests (RF), and extreme gradient boosts (XGB). Deep
learning based on CNN included the VGG16, VGG19, Resnet50, and Resnet152 models. According to
the mean generated AUC values, we found that the CNN-based VGG16 model showed a 0.007 higher
performance (0.982 ± 0.014) as compared with the XGB model (0.975 ± 0.010), which showed the
highest performance among the conventional machine learning models. In the conventional machine
learning-based classifications, we found that the radiomic features presenting a statistically significant
effect were median values and skewness. We found that the VGG16 model within the deep learning
algorithm distinguished deep vein thrombosis on CT images most accurately, with slightly higher
AUC values as compared with the other AI algorithms used in this study. Our results guide research
directions and medical practice.

Keywords: deep vein thrombosis; computed tomography; radiomics; deep learning; machine learning

1. Introduction

Venous thromboembolism is the third most common cause of cardiovascular disease
worldwide, following coronary artery disease and stroke [1]. Its incidence has dramatically
increased over the last two decades [1,2]. Venous thromboembolism occurs in two forms:
pulmonary embolism and deep vein thrombosis (DVT). DVT is often associated with recur-
rent pulmonary embolism and venous thromboembolism [3]. Recurrence rates during the
disease course are approximately 20–36% [4,5]. Computed tomography (CT) venography
of the lower extremities presents the most common diagnostic tool for ascertaining DVT [4].
CT imaging has evolved from being a primary diagnostic tool to a critical component of
individualized precision medicine [6].

Visual analysis of CT scans to diagnose DVT is time-consuming and subjective,
whereas computer classification is significantly faster and more objective. Radiomics

Diagnostics 2022, 12, 274. https://doi.org/10.3390/diagnostics12020274 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12020274
https://doi.org/10.3390/diagnostics12020274
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-0872-0956
https://orcid.org/0000-0002-7534-1366
https://orcid.org/0000-0002-1404-2821
https://orcid.org/0000-0003-0443-0051
https://orcid.org/0000-0001-9714-6038
https://doi.org/10.3390/diagnostics12020274
https://www.mdpi.com/journal/diagnostics
http://www.mdpi.com/2075-4418/12/2/274?type=check_update&version=4


Diagnostics 2022, 12, 274 2 of 9

is a unique tool for clinical diagnosis that extracts mineable high-throughput features
from medical images using automated algorithms [7]. Radiomics approaches have been
widely applied in CT image interpretation throughout the last decade, and they have
demonstrated promising results in differential diagnoses [8]. Although radiomics models
operate within an acceptable error range for specific tasks, radiomics-based techniques
have a number of drawbacks. Handcrafted radiomic features, for example, are limited to
current medical imaging expertise and prior operator experience and knowledge. As a
result, these characteristics might not be properly representative [9].

A convolutional neural network (CNN) can extract and learn deep features directly in
a data-driven way, as opposed to traditional radiomics methods that rely on handcrafted
features [10]. In various deep-running fields, CNN is of high performance in image recog-
nition, and many studies are based on CNNs in medical imaging, including various vision
sectors [11,12]. CNN methods perform well in image classification and in the recognition
of medical imaging [13]. These architectures have strong potential for enhancing workflow
processes in radiology. During the training phase, however, classification labels without
lesion information may not provide effective supervised information on the suspected
lesion area. This could make it difficult for CNN classification to extract useful information
about lesions, especially small lesions, resulting in poor performance.

In this study, we used a large dataset comprising lower-extremity CT venography
images to demonstrate the effectiveness of the proposed methodology for the automated
classification of DVT lesions. We extensively evaluated the classification performance of
two model types (CNN and conventional machine learning). The aim of the present study
was to determine the feasibility of classifying DVT upon CT venography using suitable
CNN method.

2. Materials and Methods
2.1. Study Design

This single-center retrospective study was approved by the institutional review board
of our local ethics committee. This study was conducted in accordance with the principles
of the Declaration of Helsinki. The requirement for written informed consent was waived
given the retrospective nature of our study.

In this study, among the artificial intelligence (AI) algorithms, we define the machine-
learning, which yields decision with specific function by parsing generated features and
requires adjustment of engineer (such as feature selection) for prediction as “conventional
machine learning”. The algorithms, which create features and make decisions on its own
deep network are defined as “deep learning”. To distinguish the presence or absence
of thrombosis in deep veins through image-based analyses, we applied four classifiers
using embedded feature selection methods based on conventional machine learning as well
as four deep learning algorithms based on CNN. We compared quantitative differences
in performance and investigated the best model for classifying blood vessels into two
categories. Moreover, we evaluated the likely reason for the obtained results according to
each method’s classifier and structure. Figure 1 shows the flowchart of the study design
and process.
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Figure 1. Flowchart of deep vein thrombosis (DVT) classification using deep learning models based 
on convolutional neural networks (CNN) and conventional machine learning. 

2.2. Data Acquisition and Preprocessing 
CT images from 282 patients with deep vein thrombosis and 377 patients with non-

deep vein thrombosis (designated as healthy controls) were retrospectively collected from 
the Gil Medical Center (Incheon, Republic of Korea) in DICOM (digital imaging and com-
munications in medicine) format. Each CT image window setting was set to a window 
width of 140HU and window level of 400HU for enhancing the contrast between the blood 
vessel walls and the thrombus. Because the range of pixel spacing was wide (0.695–0.977 
mm2) and the regions of the deep veins were diminutive, we uniformed the spacing of 
pixel to a mean value (0.891 mm2) of the pixel spacing range. As shown in Figure 2, from 
this preprocessed data, we selected 812 images of the deep vein region with thrombus 
from patients with deep vein thrombosis and 812 images of the deep vein region from 
non-deep vein thrombosis patients. Among the total of 1624 image data (deep vein with 
thrombus, n = 650; healthy deep vein without thrombus, n = 650), 976 data and 324 data 
were used for the training and validation set, respectively. The remaining 324 data from 
the total, excluding the training and validation set, were used as the testing set to evaluate 
performance. 

Figure 1. Flowchart of deep vein thrombosis (DVT) classification using deep learning models based
on convolutional neural networks (CNN) and conventional machine learning.

2.2. Data Acquisition and Preprocessing

CT images from 282 patients with deep vein thrombosis and 377 patients with non-
deep vein thrombosis (designated as healthy controls) were retrospectively collected from
the Gil Medical Center (Incheon, Republic of Korea) in DICOM (digital imaging and
communications in medicine) format. Each CT image window setting was set to a win-
dow width of 140HU and window level of 400HU for enhancing the contrast between
the blood vessel walls and the thrombus. Because the range of pixel spacing was wide
(0.695–0.977 mm2) and the regions of the deep veins were diminutive, we uniformed the
spacing of pixel to a mean value (0.891 mm2) of the pixel spacing range. As shown in
Figure 2, from this preprocessed data, we selected 812 images of the deep vein region
with thrombus from patients with deep vein thrombosis and 812 images of the deep vein
region from non-deep vein thrombosis patients. Among the total of 1624 image data (deep
vein with thrombus, n = 650; healthy deep vein without thrombus, n = 650), 976 data and
324 data were used for the training and validation set, respectively. The remaining 324 data
from the total, excluding the training and validation set, were used as the testing set to
evaluate performance.



Diagnostics 2022, 12, 274 4 of 9
Diagnostics 2022, 12, 274 4 of 10 
 

 

 
Figure 2. Example of generating the vein region image containing thrombus: (a) a contrast-enhanced 
lower extremity computed tomography venography image in coronal view; (b) computed tomog-
raphy venography images containing thrombus; (c) generated vein region image from (b). 
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methods include first-order statistics calculated using feature values based on histograms 
within the region of interest (ROI) as well as second-order statistics measured from ma-
trices formed based on the frequencies and relationships for each pixel value in the gray 
level [14]. The first-order statistics and second-order statistics are used for classifying im-
ages [13,14]. Therefore, we applied radiomic features of first order statistics and second-
order statistics to a conventional machine learning classifier for classifying the images. 
[15,16]. From a total of 1624 images, we extracted 74 features as follows: 18 from first-order 
statistics, 56 from second-order statistics (of which 24 were generated from gray level co-
occurrence matrices [GLCM], 16 were generated from gray level run length matrices 
[GLRLM], and 16 were generated from gray level size zone matrices [GLSZM]) using the 
Python PyRadiomics module (version 3.0.1; Computational Imaging and Bioinformatics 
Lab, Harvard Medical School, Boston, MA, USA). 

The conventional machine learning algorithms are generally efficient in terms of 
computational power and memory through a feature selection process. Moreover, model 
performance is improved by removing the features that adversely affect learning in the 
process. Feature selection methods are generally divided into three types: filter methods, 
wrapper methods, and embedded methods. Each method selects a suitable subset of fea-
tures for classification. 

The filter method ranks each feature by calculating the relevance of features based 
on performance evaluation metrics and leaves a specified number of features in the high-
est order. The wrapper method is used to find the best feature subset while repeating the 
training via the algorithm. The embedded method internally selects a subset of features 
from the machine learning algorithm. The filter method selects features independent of 
the machine learning algorithm. Thus, the selected features do not affect the final classi-
fier. The wrapper method has a high probability of overfitting and is time consuming. 
However, the embedded method is more accurate than the filter method because it selects 
features based on a machine learning algorithm (e.g., the wrapper method) and is likewise 

Figure 2. Example of generating the vein region image containing thrombus: (a) a contrast-enhanced
lower extremity computed tomography venography image in coronal view; (b) computed tomogra-
phy venography images containing thrombus; (c) generated vein region image from (b).

2.3. Classification Using Conventional Machine Learning

Statistical texture analysis is a method for analyzing the distributions and correlations
of brightness values in image pixels using mathematical methods. Statistical-based methods
include first-order statistics calculated using feature values based on histograms within
the region of interest (ROI) as well as second-order statistics measured from matrices
formed based on the frequencies and relationships for each pixel value in the gray level [14].
The first-order statistics and second-order statistics are used for classifying images [13,14].
Therefore, we applied radiomic features of first order statistics and second-order statistics
to a conventional machine learning classifier for classifying the images. [15,16]. From a total
of 1624 images, we extracted 74 features as follows: 18 from first-order statistics, 56 from
second-order statistics (of which 24 were generated from gray level co-occurrence matrices
[GLCM], 16 were generated from gray level run length matrices [GLRLM], and 16 were
generated from gray level size zone matrices [GLSZM]) using the Python PyRadiomics
module (version 3.0.1; Computational Imaging and Bioinformatics Lab, Harvard Medical
School, Boston, MA, USA).

The conventional machine learning algorithms are generally efficient in terms of
computational power and memory through a feature selection process. Moreover, model
performance is improved by removing the features that adversely affect learning in the
process. Feature selection methods are generally divided into three types: filter methods,
wrapper methods, and embedded methods. Each method selects a suitable subset of
features for classification.

The filter method ranks each feature by calculating the relevance of features based on
performance evaluation metrics and leaves a specified number of features in the highest
order. The wrapper method is used to find the best feature subset while repeating the
training via the algorithm. The embedded method internally selects a subset of features
from the machine learning algorithm. The filter method selects features independent of the
machine learning algorithm. Thus, the selected features do not affect the final classifier. The
wrapper method has a high probability of overfitting and is time consuming. However, the
embedded method is more accurate than the filter method because it selects features based
on a machine learning algorithm (e.g., the wrapper method) and is likewise advantageous
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in terms of computational aspects [17]. Therefore, this study used an embedded method
that takes advantage of each filter method, including the wrapper method.

The conventional machine learning algorithms used in the current study were logistic
regression (LR), support vector machines (SVM), random forests (RF), and extreme gradient
boosts (XGB). LR is an algorithm that uses regression to classify data by predicting the
probability that data will be included in a particular category as a value between 0 and
1 [18]. SVM is an algorithm for defining the optimal decision boundary to categorize data
using support vectors, meaning that the data point is near the decision boundary [19]. RF
is a tree-based algorithm that draws conclusions by collecting classification results from
multiple trees constructed through training [20]. XGB is likewise a tree-based algorithm.
In the classification process comprising multiple decision trees, weights are provided for
incorrect answers through the gradient of the loss function to predict results. Rapid training
is possible through parallel processing [21]. The features selected from each algorithm are
listed in Table 1.

Table 1. Selected features from machine learning algorithms.

Feature
Number Features

Logistic regression 20

First order: 10th percentile, 90th percentile, entropy, maximum, median,
minimum, skewness
GLCM: cluster tendency, correlation, inverse difference normalized, inverse
variance, sum entropy
GLRLM: gray level non uniformity, long-run low gray level emphasis, run
entropy, run variance
GLSZM: gray level non uniformity normalized, large area high gray level
emphasis, size zone non uniformity normalized, small area emphasis,
zone entropy

Support vector machine 20

First order: 10th percentile, 90th percentile, entropy, maximum, median, robust
mean absolute deviation, skewness
GLCM: cluster shade, correlation, inverse difference normalized, informational
measure of correlation 1, informational measure of correlation 2, joint entropy,
maximum probability, sum entropy
GLRLM: high gray level run emphasis
GLSZM: high gray level zone emphasis, large area high gray level emphasis,
size zone non uniformity normalized, zone entropy

Random forest 19

First order: mean, median, root mean squared, skewness
GLCM: autocorrelation, cluster prominence, cluster shade, difference variance,
joint average, joint energy, maximum probability, sum average
GLRLM: gray level variance, high gray level run emphasis, long-run high gray
level emphasis, short–run high gray level emphasis
GLSZM: large area high gray level emphasis, small area high gray level
emphasis, zone percentage

Extreme gradient boost 18

First order: mean, median, range, root mean squared, skewness, uniformity
GLCM: cluster shade, contrast, inverse difference normalized, informational
measure of correlation 2, maximum probability
GLRLM: gray level non uniformity normalize, gray level variance, high gray
level run emphasis, run length non uniformity normalized, short run emphasis
GLSZM: gray level variance, zone percentage

GLCM, gray level co-occurrence matrix; GLRLM, gray level run length matrix; GLSZM, gray level size
zone matrix.

2.4. Classification Based on Deep Learning

Among deep learning methodologies, CNN-based deep learning (extracting features
using convolution operations) has recently been applied in medical imaging, showing high
performance [22,23]. VGGnet is one of the deep learning networks designed to investigate
the relationship between network depth and accuracy. VGGnet uses fewer parameters
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as compared with previously proposed convolution networks. Specifically, VGG uses a
3 × 3 convolution filter for all layers and obtains a superior performance by implementing
a deeper network structure. VGGnet generally shows good performance and has been
applied to many networks [24]. ResNet is a structure in which the output of the previous
layer is connected to the input of the subsequent layer through a skip connection in order
to enable learning using a deeper network structure [25]. In this study, we used four CNN-
based deep learning models (VGG16, VGG19, Resnet50, and Resnet152) to investigate
the most effective model for classifying and differentiating normal veins and thrombosis
containing veins as well as analyzing the obtained results according to the depth of the
network. The experiments were performed in Python 3.6.10 (Python Software Foundation,
Wilmington, DE, USA) using Keras 2.2.5 frameworks (Keras Global Limited, London, UK)
on a Ubuntu 14.04 operating system (London, UK) with two NVIDIA Tesla P100 graphics
processing units (GPUs; NVIDIA Corporate, Santa Clara, CA, USA) and 512 GB of random
access memory (RAM).

2.5. Performance Evaluation

To evaluate the effectiveness of each algorithm, a performance evaluation was con-
ducted using 324 test data that were not used for training. We calculated true positives (TP),
false positives (FP), false negatives (FNs), and true negatives (TNs). Sensitivity, specificity,
and accuracy were calculated according to Equations (1)–(3) specified below. Receiver
operating characteristic (ROC) curves were estimated using these sensitivity and specificity
values. Algorithm performances were compared according to area under the curve (AUC)
values derived from ROC curves.

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

3. Results

We evaluated the performance of each model by applying fivefold cross-validation
to assess model robustness. The results, including associated 95% confidence intervals,
are shown in Table 2. The highest values are shown in bold. Based on AUC values, the
algorithm with the highest performance was identified as the deep learning-based VGG16
network (0.982 ± 0.014), followed by the VGG19 model (0.981 ± 0.013). The VGG19 model
added layers to the same model. Among the machine learning algorithms, XGB showed the
highest performance (0.969 ± 0.005), with a difference of 0.007 as compared with VGG16.
Figure 3a–c shows the ROC curves, AUC values, and standard deviations for each model.

Table 2. Comparison of the mean values for each model’s AUC, sensitivity, specificity, and accuracy.

Mean AUC
(±95% CI)

Mean Sensitivity
(±95% CI)

Mean Specificity
(±95% CI)

Mean Accuracy
(±95% CI)

LR 0.954 (±0.002) 0.879 (±0.002) 0.902 (±0.004) 0.889 (±0.002)
SVM 0.964 (±0.001) 0.913 (±0.001) 0.919 (±0.003) 0.915 (±0.001)
RF 0.969 (±0.001) 0.932 (±0.002) 0.921 (±0.002) 0.926 (±0.001)

XGB 0.975 (±0.002) 0.945 (±0.002) 0.926 (±0.002) 0.935 (±0.002)

VGG16 0.982 (±0.001) 0.956 (±0.003) 0.916 (±0.005) 0.934 (±0.003)
VGG19 0.981 (±0.002) 0.950 (±0.004) 0.926 (±0.005) 0.935 (±0.003)

Resnet50 0.904 (±0.008) 0.858 (±0.007) 0.859 (±0.010) 0.849 (±0.006)
Resnet152 0.888 (±0.014) 0.825 (±0.006) 0.873 (±0.012) 0.841 (±0.008)

AUC, area under a receiver operating characteristic curve; CI, confidence interval; LR, logistic regression; SVM,
support vector machine; RF, random forest; XGB, extreme gradient boost. The highest performance values are
shown in bold.
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Figure 3. Receiver operation characteristic (ROC) curves: (a) ROC curves of machine learning
algorithms; (b) ROC curves of deep learning algorithms; (c) ROC curves of all algorithms.

Table 3 and Figure 3c shows a comparison between the average performances of
machine learning-based algorithms and the average performances of deep learning-based
algorithms. The deep learning algorithms showed a mean AUC of 0.939 (±0.043), a mean
sensitivity of 0.897 (±0.057), a mean specificity of 0.894 (±0.028), and a mean accuracy of
0.890 (±0.045). The machine learning algorithms showed mean AUCs of 0.966 (±0.008),
0.917 (±0.025), 0.917 (±0.009), and 0.931 (±0.031), respectively. As demonstrated in Table 2,
the algorithm with the highest overall performance was the deep learning-based VGG16
model. The average algorithm performance was higher within the machine learning models.
Additionally, the performances of machine learning algorithms did not meaningfully differ
according to the classifier when standard deviation was considered. However, in the case of
the deep learning models, we observed a substantial difference in performance depending
on the model.

Table 3. Comparison of the mean performance values of deep learning and machine
learning algorithms.

Deep Learning Algorithms Machine Learning Algorithms

Mean AUC (±SD) 0.939 (±0.043) 0.966 (±0.008)
Mean sensitivity (±SD) 0.897 (±0.057) 0.917 (±0.025)
Mean specificity (±SD) 0.894 (±0.028) 0.917 (±0.009)
Mean accuracy (±SD) 0.890 (±0.045) 0.931 (±0.031)

AUC, area under a receiver operating characteristic curve; SD, standard deviation. The highest performance
values are shown in bold.

4. Discussion

In this study, we evaluated 659 patients who underwent CT venography in order
to detect DVT and investigate quantitative differences in performance with respect to
automated classification of DVT using conventional machine learning and CNN models. As
shown in Table 2 and Figure 3c, the algorithm that demonstrated the highest performance
based on AUC values was the deep learning-based VGG16 model. CNN-based models,
which differ from conventional machine learning methods necessitating manual steps with
respect to feature extraction and selection, extract meaningful feature maps for training
from convolutional layers. CNN demonstrates high performance through fitting a model
using many parameters extracted through this process and has proven its validity within
the current study. The VGG16 model based on CNN obtained an AUC value that was
0.007 higher than the XGB algorithm (which showed the highest performance among the
conventional machine learning algorithms). Therefore, an appropriate amount of data (in
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terms of efficacy for deep learning) was used in this study. We determined that the deep
learning-based algorithm extracted features more effectively with respect to classification
as compared with manual feature extraction and feature selection based on statistical
texture analysis. However, as shown in Figure 3b, the CNN-based ResNet model exhibited
a statistically significantly lower performance. This result was likely due to the size of
the image used as well as the deep structure of the Resnet-based model. Because the
blood vessel area is quite small, the image size of the initial data was likewise small.
Therefore, we judged that the high-dimensional features extracted from the deep layer
were hindered in classifying the test data because of the information generated during the
up-sampling process.

Conventional machine learning algorithms showed an overall high classification
performance with an average AUC of 0.95 or more. We analyzed the features used for
classification within the current study. In conventional machine learning algorithms,
all algorithms select for the median, the median value of the gray level intensity, skew-
ness, and the measured value of the asymmetry of the histogram via first-order statistics.
Two features are predicted as having the most statistically significant impact on classifying
the two categories. Features are ranked in the top 10 in order of importance for all four
algorithms. The tree-based models (i.e., RF and XGB) with relatively high performances
have the following features in common: mean (the mean values of gray level intensity), root
mean squared (the square-root values of the mean of all the squared intensity), gray level
variance (the variance of intensities for the gray level zones), and zone percentage (the ratio
of the number of gray level zones and the number of connected voxels). Specifically, the
GLCM-based cluster shade feature showed the highest feature importance for both models
and had the most effective influence on classification in the current study. Additionally, in
comparing performance differences according to classifier type, tree-based RF and XGB
models and deep learning-based VGG models (i.e., nonlinear classifiers) showed higher
performance compared to LR and SVM (i.e., linear classifiers). This indicates that our data
are more suitable for nonlinear classifiers.

This study had several limitations. First, this retrospective study only considered
data from a single medical center, leading to the possibility of selection bias. With the
initiative towards prospective studies within academic medicine as well as pharmaceutical
initiatives, we need to be prepared to accept AI in clinical practice. Second, the modest
number of normal cases evaluated via CT venography hindered the training and validation
of the CNN within the current study. Nevertheless, we considered patients with DVT
in the clinical setting in order to minimize the spectrum bias. Third, we did not assess
performance using coronal or sagittal reformatted CT images. Combining several CT
images may improve performance. This prospective methodology should be investigated
in the future.

In summary, we evaluated conventional machine learning and CNN-based methods
for classifying DVT using a large dataset of CT venography in the current study. We found
that CNN models classified DVT on serial CT images more effectively, especially via the
VGG16 model and showed more accuracy in distinguishing DVT with a slightly higher
AUC value as compared with the other AI algorithms. Our findings guide future research
directions and will ultimately inform medical guidelines.
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