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Abstract: In recent years, applications using artificial intelligence have been gaining importance
in the diagnosis and treatment of spinal diseases. In our review, we describe the basic features of
artificial intelligence which are currently applied in the field of spine diagnosis and treatment, and
we provide an orientation of the recent technical developments and their applications. Furthermore,
we point out the possible limitations and challenges in dealing with such technological advances.
Despite the momentary limitations in practical application, artificial intelligence is gaining ground in
the field of spine treatment. As an applying physician, it is therefore necessary to engage with it in
order to benefit from those advances in the interest of the patient and to prevent these applications
being misused by non-medical partners.

Keywords: artificial intelligence; machine learning; deep learning; spine; supervised learning;
unsupervised learning; review

1. Introduction

Artificial-intelligence-based technologies are increasingly entering the everyday med-
ical treatment of spinal disorders. The influence on therapy decisions, on structures of
health care systems and insurance companies, as well as the associated industry have the
potential—with all benefits and drawbacks—to fundamentally change medical practice.
Although the term artificial intelligence, as it is used today, was defined as early as 1956 [1],
it is necessary to understand what these technologies can do today and where the lim-
its of their implementation lie. These limits should be kept in mind in order to ensure
reliable application.

For emerging technologies such as artificial intelligence, the Gartner hype cycle de-
scribes five successive development phases, starting with a technological trigger, moving
through a rapidly reached peak of expectations into a valley of disappointment, followed
by a slower process called the path of enlightenment, before reaching a plateau of produc-
tivity [2]. The technological trigger can be seen in the combination of massive advances
in computing power and the increasing availability of big data in recent years, which has
enabled a form of detailed data exploitation and processing that was unimaginable just
a few years ago. In terms of spinal treatments, we are in the subsequent phase of greatly
increased general awareness, and on the way to a peak of expectations. This phase is
characterized by an exponential increase in scientific interest in these topics. Currently,
under the search terms “artificial intelligence” and “spine”, 37% of all publications on
Pubmed to date were indexed in 2020 and 2021 alone.
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As with any emerging technology, new possibilities should not be underestimated in
terms of their potential pitfalls. These lead to failures and setbacks in the course of time
and thus establish the next development phase, as described by the Gartner hype cycle,
characterized by disappointments and fading attention. On closer inspection, correspond-
ing issues and pitfalls that may form a basis for these future disappointments are already
emerging today and should not be neglected. This phase of declining interest is followed
by a slower qualitative development until an actual productive use is established. It can be
assumed that the application of artificial intelligence in the treatment of spinal diseases will
also be subject to these processes. Accordingly, one should be aware of both the potentials
and the challenges of these current developments in order to understand them and be able
to address them properly.

2. Typical Forms of Artificial Intelligence Currently Applied in Spine Care
2.1. Artificial Intelligence, Machine Learning, and Neural Network

Artificial intelligence (AI) is a broad generic term. It encompasses various forms of au-
tomated decision making. One of the increasingly important forms in medical applications
is machine learning. Simply, varying input data is used to predict an outcome through its
assessment at decision points. Within this context, machine learning is mostly described
as the decision-making process itself, commonly used in random forest algorithms or
decision trees. Nowadays, a typical application of machine learning applies data and
neural networks, trying to mimic the human brain. In these cases, the individual decision
points in a neural network correspond to the functions of neurons in a biological brain. The
rules used at decision points can range from simple yes/no decisions to the most complex
mathematical formulations. The number of communicating decision points, each with its
own set of rules, is not limited. An array of multiple decision points is therefore referred to
as an artificial neural network (ANN).

2.2. Neural Networks and the “Black Box”

If several artificial neural decision levels are connected, then a deep neural network is
created. Repeated decision making in such a neural network with constant comparison
of an actual result with the one predicted in the network is called training. This mimics a
learning process—hence the machine learning term. In this process, each decision-making
procedure is followed by a correction mechanism that enables fine-tuning of the neural
network and thus an optimized prediction. The process is called backpropagation, and
is based on algorithms that have been developed since the 1980s [3]. The overall process
within a deep neural network is called deep learning.

It is understandable that decision making in artificial deep neural networks can reach a
high complexity. It becomes difficult to explain at first glance, in terms of which results are
produced and how the decision is achieved. This establishes the myth of the “black box”,
based solely on the complexity of decision generation. Ultimately, however, all machine
learning is comprehensible and analyzable, albeit sometimes at great expense. The basis of
result generation remains conditioned by the mathematical framework and cannot override
it. Up to a certain point, this succeeds in imitating human learning processes, but to this
day it remains an imitation.

2.3. Major Forms of Machine Learning Applied in Spine Care

The totality in which AI applications, and machine learning in particular, are con-
structed and applied today has been presented several times, including the detailed review
by Galbusera et al. from 2019 [4]. The application of machine learning in medicine and
especially in the treatment of spinal diseases can be described based on the form of the
learning process, distinguishing three basic forms, discussed in the following subsections.
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2.3.1. Supervised Learning

In supervised learning, the prediction of an already known result is learned using
training datasets. The goal is to find the relationship between an initial dataset and the
corresponding result. The prediction is optimized by minimizing the difference between
the predicted and the real result (Figure 1). This difference is described as “loss of function”.
Its minimization leads to a usable prediction, which can then be applied to comparable
datasets with unknown results. The number of datasets necessary to establish a good
prediction depends substantially on the complexity of the problem and the quality of
the data.
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Figure 1. Supervised learning using a neural network.

2.3.2. Reinforcement Learning

A special form of supervised learning can be seen in reinforcement learning. In this
application, the known results are missing. Instead, the produced result is evaluated
externally, and a correction of the result production is carried out thereupon.

2.3.3. Unsupervised Learning

Unsupervised learning means that datasets are analyzed without any pre-known
results. However, the goal here is not the prediction of a specific result, but the recognition
of patterns, groupings, and features, with the aim of extracting new information from the
existing data (Figure 2). In the applications published today, it is mainly big data analyses
that make use of this form and lead to new insights.
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3. AI Applications in the Diagnosis and Treatment of Spinal Disorders

We performed an extensive analysis of PubMed-listed publications using the search
terms “spine, spinal, lumbar, thoracic, cervical, machine learning, deep learning, super-
vised learning, unsupervised learning, artificial intelligence”. A total of 1144 publications,
published since 1990, were identified. Of these, 866 (76.7%) were published in the last
10 years and 420 have been published since 2020 alone (37.2%). Of these 420 publications,
the following exclusion criteria applied: not subject to peer review, not related to the topic
of spine, represented meta-analyses, reviews, or case reports. This left 167 publications in
2020 and 2021 that could be attributed to the topic of artificial intelligence in the treatment of
spinal disorders. With 102 publications, radiological applications and imaging represented
the majority of AI applications in this field.

3.1. Diagnostic Imaging

Due to the close connection of the field of radiology with technological advances, the
application of artificial intelligence has established itself in this area at an early stage.

Thus, the recognition of spinal structures and consequently the measurement of
parameters can be automated [5–7]. In this context, increasingly better algorithms are being
published, so that automated analyses of spine images are now possible, and the detection of
classical pathologies has already been realized as an inevitable further development [8–11].
The application of convolutional neural networks (CNN), that are based on an imitation of
visual cortical data processing, are only one part of the overall concept [12]. In recent years,
it has become more and more possible to achieve evaluations and classifications of image
data that go beyond the known level of quality [6,13–15]. The correlation of image data
with underlying systemic diseases is yet another step that has already been made to some
extent today [10,16–18]. The accuracy and efficiency already achieved by the application
of advanced algorithms in the detection and interpretation of spinal imaging data are
game-changing progressions, considering the importance of this imaging in treatment
decision making, and will have a long-term impact on the care of spinal disorders [19].

3.2. Robotics

With the improvement of image data processing also comes an optimized application
of navigation in spine surgery. With these prerequisites, the application of robot-assisted
spine surgery has also entered the market in recent years with the aim of optimizing surgical
outcomes, minimizing risks, and reducing the invasiveness of procedures. To date, several
surgical robots have been approved for human application, the four most common being the
Excelsius GPS Robot from Globus Medical, the SpineAssist from MAZOR Robotics in Israel,
the ROSA from Medtech in France, and the Da Vinci Surgical System from Intuitive Surgical
in the USA. All have in common that their implementation in the field of spine surgery
is still slowly taking place, in some cases only in larger case series. Jonathon J. Rasouli
provides a detailed overview of the updated results regarding the accuracy of pedicle
screw positioning, radiation exposure, and operation duration [20]. Applicability is now
no longer an issue; however, the current advantages of the application are still rather small
compared with a well-trained spine surgeon.

3.3. Biomechanical Spine Assessement

By rapidly developing the ability to analyze image data in recent years, the application
of AI to analyze gait and movement patterns and identify pathological abnormalities in
spinal disorders is also becoming feasible [12,21,22]. Estimating biomechanical variables
such as load and strain on the spine and predicting what loads will occur and how they
can ideally be mitigated will allow therapies to be tailored to the patient’s individual
biomechanical conditions in the future [23–25].



Diagnostics 2022, 12, 836 5 of 10

3.4. Prediction of Diagnosis and Outcome

A rapid increase in AI applications has been seen in recent years in the field of di-
agnosis and prognosis of spine disorders. With an increasing general understanding of
machine learning in the medical community, its applications in the field of spine medicine
are increasingly noticed as well. Earlier attempts have been able to demonstrate its applica-
bility [26–30], but it is the use of modern machine learning algorithms that have made it
possible to raise prognosis and diagnosis of spinal diseases to a competitive level [31,32].

Currently published applications have made it increasingly possible to answer previ-
ously scientifically unresolved questions. For example, Ames was already able to show in
2019 (with the European and International Spine Study Groups) that a reliable grouping of
risk clusters for adult deformity surgery is possible [33–35]. The prediction qualities and ap-
plicability of this are continuously improved [36]. In the meantime, similar approaches have
been presented in several publications. Thus, models for predicting outcome after surgical
or conservative treatment of disc herniation have been described as well as the probability
of a recurrence of disc herniation [37–40]. Particularly for the prediction of precisely speci-
fied complications and outcomes under well-defined conditions, the currently available
algorithms can achieve excellent prediction values in some cases. Examples include the
prediction of the outcome after surgical therapy of intramedullary tumors, the probability
of C5 paresis after certain types of cervical spine surgery, the prediction of major compli-
cations after spinal fusion, or the probability of recurrence after osteomyelitis [17,41–49].
Accordingly, the frequency of such publications, some of which have excellent predictive
capabilities, is increasing [50].

In the meantime, for broader questions—such as automated differentiation of
pathologies—there are still relatively insufficient results for a real application [7,9,31,51].
However, even here it is only a matter of time until the available data quality allows optimal
prediction quality.

4. AI in Spine Care Future
4.1. Data Quality and Verification

Following the old saying, “rubbish in–rubbish out”, even the best-programmed AI
application cannot pass the test of reality if the original data with which it was trained is
flawed [19]. The technical capability to work with personal data and to use it economically
developed in the last two decades prior to the awareness that this data and its collection
must be subject to supervision. As a result, we now live in an era of uncontrolled data
collection with inadequate control mechanisms.

Additionally, as a result of the growing need for data collection, continuous patient
evaluation and re-evaluation is needed. That may lead to the patient feeling overwhelmed,
affecting their interest and willingness to cooperate. This may negatively impact the quality
of the collected data causing misleading results.

Accordingly, it can be observed in medically relevant areas that the quality of data
does not always meet the standard needed for the establishment of artificial intelligence
algorithms. For the treatment of spinal diseases, this means that internal and external
control of algorithms is necessary. An important step would be developing an extension of
the existing guidelines for study protocols to pair with the requirements of establishing
AI applications, as has been or is currently being carried out for most guidelines [52–54].
Although AI-based predictive algorithms can be complex, they should be judged by at least
the same standards as traditional research models to assure a healthy development of these
techniques [55].

4.2. Database Repositories for Use in Spine Therapy

In the field of therapy of spinal diseases, the establishment of large data collections
is still in its infancy. As far as the authors know, the SORG group (“Sorg Orthopaedic
Re-search Group”) has established several online available data collections, partly with
freely available prediction models in the field of spine surgery [44,56]. Apart from that, the
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Austrian Spinal Cord Injury Study [57], as well as the national North American and British
spine registries, with their respective societies, have established relevant and available
repositories [58,59]. However, apart from the SORG group, these are hardly externally
validated [60]. The above-mentioned repositories and those currently being established
(mostly national spine registries) are still far away from a regular application and validation,
as it is now common in other medical fields [61].

4.3. Advantages of AI in the Future of Spine Diagnostics and Treatment

The application of AI-based predictions and models will change the approach to spinal
pathologies. In hardly any other medical field has it been so difficult to assess the success
and necessity of interventions. The correct indication is one of the most important basic
requirements for successful spine therapy. The implementation of artificial intelligence in
the treatment of spinal diseases will increasingly change this in the coming years. However,
its real impact on improving the quality of care is still to be seen. The transformation from
a diagnosis-based decision to a combined decision, based on diagnosis and individual
patient data, will only result in optimized care if machine learning can successfully and
verifiably deliver the right results. In the hands of a physician as an assistance tool, patients
could then benefit from faster, customized care [23,62–64]. As a result, it may be possible to
avoid costly, still unsuccessful, treatments, as well as the chronicity of spinal conditions, by
integrating AI applications into clinical practice.

4.4. Ethical Issues of AI in Spine Diagnostics and Treatment

The reduction in unnecessary costs can also have negative effects, as political interests
do not necessarily serve the best interests of patients. If individual costs become transparent,
then an economical and often a political decision to avoid high individual costs is inevitable.
AI applications in spine therapy should therefore remain in the hands of treating physicians
as a supporting tool in decision making. Misinterpretation of such algorithms, for example
by insurance companies, should be avoided at all costs. Algorithms for predicting therapy
success or failure should not be misunderstood and misused as a cost regulator [65–69].

Establishments of AI algorithms as decision support tools for medical care have
proven in prominent examples that discrimination and misinterpretation can occur. The
Framingham Heart Study, for example, led to predictions with massive racial discrimination
because the underlying data were not sufficiently validated in this respect [70]. Similar
problems can be expected in the application in the field of spinal therapy [71]. The main
cause is the transfer of a human bias into the training data used to build an AI algorithm. If
this bias is not recognized during the original data generation, then it will be reflected in
the AI predictions in a highly veiled form. As a result, a corresponding bias may be barely
detectable, if at all, in the context of the final AI application. For example, it was recently
shown that an AI algorithm for detecting pathologies in chest radiographs developed a
neglect for those pathologies in certain populations that were characterized by poor medical
care during data collection [72].

Therefore, AI will become a tool, but it will never be a replacement. Even the most
audacious fantasies of the future always see AI as an instrument. According to the medical
principle that “there is nothing that does not exist”, an authority will always be required to
control, question, and correct the application of algorithms. In the future, this authority will
have to be in the hands of the physician who knows their patient population personally,
can assess it, and who is able to understand whether the medical care is really providing
the expected help to their individual patient or not [73].

5. Conclusions

We are at a turning point in the care of spine diseases. In the next few years, whether we
like it or not, a standard will be established that will be based on predictions and diagnoses
utilizing AI algorithms. On the one hand, until then, a bumpy road of development is to be
expected, and setbacks should be anticipated with a watchful eye to avoid putting patients
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at risk. On the other hand, physicians should be actively involved in the development of
AI algorithms to ensure that these tools remain in their hands and will not be overtaken by
medically unoriented insurance companies and politicians.
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