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Abstract: Computed tomography (CT) imaging of the orbit with measurement of extraocular muscle
size can be useful for diagnosing and monitoring conditions that affect extraocular muscles. However,
the manual measurement of extraocular muscle size can be time-consuming and tedious. The
purpose of this study is to evaluate the effectiveness of deep learning algorithms in segmenting
extraocular muscles and measuring muscle sizes from CT images. Consecutive CT scans of orbits
from 210 patients between 1 January 2010 and 31 December 2019 were used. Extraocular muscles were
manually annotated in the studies, which were then used to train the deep learning algorithms. The
proposed U-net algorithm can segment extraocular muscles on coronal slices of 32 test samples with
an average dice score of 0.92. The thickness and area measurements from predicted segmentations
had a mean absolute error (MAE) of 0.35 mm and 3.87 mm2, respectively, with a corresponding
mean absolute percentage error (MAPE) of 7 and 9%, respectively. On qualitative analysis of 32 test
samples, 30 predicted segmentations from the U-net algorithm were accepted while 2 were rejected.
Based on the results from quantitative and qualitative evaluation, this study demonstrates that
CNN-based deep learning algorithms are effective at segmenting extraocular muscles and measuring
muscles sizes.

Keywords: CT; semantic segmentation; extraocular muscles; deep learning; convolutional neural
networks; dice coefficient

1. Introduction

Computed tomography (CT) imaging of the orbit with measurement of extraocular
muscle size can be useful for diagnosing and monitoring thyroid eye disease and other
conditions that may affect the extraocular muscles. To assess the size of the extraocular
muscles, parameters such as the muscle diameter, cross-sectional area, and muscle volume
have been measured on CT and MRI images [1]. However, the manual measurement
of extraocular muscle size is time-consuming and tedious. Automated techniques for
segmenting extraocular muscles and estimating muscle sizes can provide a reliable and
accurate method for clinical use.

Several techniques to carry out the automated segmentation of extraocular muscles
have been developed. Some of the earlier works either relied on operators for manual
inputs [2] or required the scan template to be aligned in a rigid manner [3,4]. Xing et al. [5]
proposed carrying out segmentation using super pixels, which are groups of pixels with
coherent intensities and spatial locations. This approach relies on specific spatial connec-
tions and prior knowledge which may not be generalizable. Furthermore, all the above
methods [2–5] were developed and evaluated on magnetic resonance (MR) images. Thus,
it is of interest to develop fully automated and generalizable segmentation techniques as
an aid to radiologic diagnosis from computed tomography (CT) images.

Machine learning can be used as an aid for detecting abnormalities in imaging, but
there is limited medical literature regarding the use of deep learning to achieve clinically
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applicable segmentation of extraocular muscles in humans. In recent years, deep learning,
the subfield of machine learning that uses multilayered neural networks, has shown
promising results in many cognitive tasks including the semantic segmentation of medical
imaging datasets. The deep learning algorithm proposed by Ronneberger et al. [6] has been
widely adopted and improved the effectiveness of convolutional neural networks (CNNs)
for semantic segmentation tasks in medical imaging. Milletari et al. [7] proposed the V-
net, which is based on a volumetric convolutional neural network. The V-net performs
segmentation on three-dimensional image volumes instead of two-dimensional image
slices and thereby benefits from utilizing information across slices. Further convolutional
neural network architectures have been proposed for the segmentation of other organs and
tissues such as lungs, brain regions, and tumors [8–11].

For extraocular muscle segmentation, Zhu et al. [12] proposed a three-dimensional
volumetric convolutional neural network that is based on V-net architecture. This proposed
CNN model inputs a volume of thirty-two adjacent slices with cropped region-of-interest,
which is localized to the area of either the left or right orbit, of size 256 by 256 pixels. How-
ever, this was developed and evaluated only on orbital images acquired without contrast
enhancement. Furthermore, depending on the window settings used, the boundaries of
extraocular muscles can be subjective and vary between studies. Hanai et al. [13] proposed
multiple CNN models where the first CNN segments the globe from the coronal CT image
and the second CNN performs the segmentation and trimming of the orbital area.

Thicknesses, cross-sectional areas, and volumes of extraocular muscles can be useful
in assessing their size for enlargement and monitoring size differences from progression or
response to therapy. These size parameters can vary based on the settings and methods
used including window settings and the plane of measurement [14,15]. Since the superior
rectus and superior levator palpebrae muscles could not be reliably distinguished from each
other, they were measured together as a single muscle group, namely the superior muscle
group. To measure the thickness, the horizontal diameters of the lateral and medial rectus,
and vertical diameters of the superior group and inferior rectus muscle are used. While the
vertical diameters of the superior muscle group and inferior rectus muscle were measured
on the coronal plane, the horizontal diameters of the medial and lateral rectus muscles
were measured on either the coronal or axial plane. Since the cross-sections of the medial
and lateral rectus muscles can be at an angle to the coronal plane, the horizontal diameters
as measured on the axial plane may be different from those measured on the coronal
plane. On the other hand, cross-sectional areas and volumes are computed directly from
the outlined segmentations [1,16]. To compute the cross-sectional areas of the extraocular
muscles, the outlined muscle boundaries on the coronal slice and the enclosed pixel sizes
are used. Similarly, the muscle volume is computed by adding the previously identified
cross-sectional areas and multiplying them with the slice thickness.

Despite the promise deep learning offers, challenges remain in developing clinically
applicable algorithms to segment and measure the size of extraocular muscles on CT in
an automated and generalizable manner. In particular, the CNN algorithms should be
able to carry out the segmentation and muscle size measurements on the overall CT of the
orbit including slices and sites that may or may not contain extraocular muscles. Since
there can normally be slight asymmetries between the left and right side, radiologists
evaluate and record measurements of extraocular muscles separately for left and right
orbital areas within their reports and findings. The automated algorithms therefore need
to provide segmentations and size results specific to left and right sides, respectively. In
the clinical setting, these specific measurements can potentially help radiologists while
drafting impressions and findings within their reports.

Here we address these challenges with a deep learning approach that can perform a
fully automated segmentation and size measurement of extraocular muscles on CT images
of the orbit without any manual inputs from a radiologist. We achieve this by (i) training
a convolutional neural network to segment extraocular muscles from orbit CTs, (ii) algo-
rithmically calculating the two-dimensional parameters for muscle size such as thickness
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and cross-sectional area, and (iii) providing the segmentations and size measurements for
left and right side separately. We evaluate the effectiveness of predicted segmentation and
measurements by comparing them against their ground truths using both quantitative and
qualitative evaluations.

2. Materials and Methods
2.1. Convolutional Neural Network (CNN)

Convolutional neural networks are a class of neural networks that perform well with
data that has a grid-like topology, which in our case is a multidimensional pixel array
of CT intensity values [17]. It is composed of multiple sequentially applied convolution
operations with each operation expressed as,

s = (x ∗ w), (1)

where, in CNN terminology, x is referred to as the input, w as the kernel, and the output s
as the feature map. For a 2-dimensional input image I and 2-dimensional kernel K (with
dimensions m and n), the convolution operation resulting in output matrix Z, implemented
mathematically using a cross-correlation operation, can be formulated as,

Z(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i + m, j + n)K(m, n) (2)

where i and j represent the element in the ith row and jth column of the matrix.
A typical layer in a convolutional network as shown in Figure 1 comprises three

operations: the convolution operation, the activation function followed by the pooling
function. The convolution operation applies many kernels (Ki) so that many different
feature maps are extracted at each layer. The activation function inputs the feature map
(Z) from the convolution operation and outputs the non-linear activation (A) thereby
introducing non-linearity in the layer. Most recent CNNs use the rectified linear unit
(ReLU) as an activation function, which is an element-wise operation on the feature map Z,
expressed as a = max(0,s). This is followed by a pooling function which replaces the output
of the network at a certain location with a summary statistic of the nearby outputs, which
helps make the pooling output (P) approximately invariant to minor translations or scale
of the input.
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Figure 1. Typical convolutional layer comprising of convolution, activation, and pooling operations.

Convolutional layers progressively extract higher dimensional image representations
(Pl—output P at layer l). With enough layers and training, a deep convolutional network
can yield robust features that help perform the cognitive task. The aim of training is to
arrive at the optimized set of values, referred to as parameters, within the kernels Kl (kernel
K at layer l). These parameters can successfully transform the original CT slice/volume (I),
with values in Hounsfield units (HUs) into the regions-of-interest, i.e., segmentation masks
for extraocular muscles. Arriving at this set of optimized network parameters is an opti-
mization task that is carried out using gradient-based algorithms such as gradient descent,
which iteratively updates the network parameters to arrive at the final network weights.
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The semantic segmentation of images involves assigning a class label to each pixel
in the image [18]. In the context of medical images, it can be used to segment anatomical
tissues which can later be analyzed for diagnosis purposes. Prior to deep learning, semantic
segmentation was carried out using pixel-wise classifiers such as random forests [19],
where the prediction for a specific pixel was made using the pixel intensities around that
pixel. Several convolutional neural network architectures have been shown to be useful
in medical image segmentation in recent years. While there have been many individual
architectures proposed, the existing CNN based medical image segmentation architectures
can be classified into three categories: fully convolutional neural networks, U-net, and
generative adversarial networks [20].

Fully convolutional networks (FCNs), proposed by Long et al. [21], was one of the first
deep learning works for semantic segmentation that used only convolutional layers. This
CNN architecture takes an image of any size and applies a series of successive convolutional
operations and produces the output segmentation map with the same size as the input
image. While a typical convolution operation would result in an output feature map that
is of lower size than input image, the final two layers use a deconvolution layer that up-
samples the feature map from the previous layer and outputs the resulting image with
same size as the original image. This architecture also uses skip connections where the
output from initial layers of the model is combined with the inputs to the final prediction
layer to provide higher-level semantic information, which results in better predictions that
respect global structure. However, the results from the up-sampling layers in FCN were
still relatively fuzzy and insensitive to the details. These shortcomings were addressed
in the subsequent CNN architectures such as the DeepLab v1, DeepLab v2, DeepLab
v3, and DeepLab v3+ [22–25] which resulted in better segmentation boundaries and at
multiple scales and made use of conditional random fields (CRF) [26]. SegNet [27] used the
encoder-decoder architecture with the up-sampling operation performed by a trainable
convolution layer. FCN networks have been used to segment multiple organs and tissues
such as brain tumors [28–30], eye [31,32], chest [33], liver [34], and left and right ventricles
of the heart [35].

The U-net architecture, proposed by Ronneberger et al. [6], is based on the encoder-
decoder architecture where the encoder module (contracting path) captures context, and the
expanding decoder module (expanding path) enables precise localization. The 3D U-net,
proposed by Çiçek et al. [36], realizes 3D image segmentation by inputting a continuous
sequence of 2D images. The V-net [7] can perform segmentation on 3D volumes by using
3D convolution kernels in place of 2D convolution kernels. Further works improved on
the U-net by adding an attention mechanism that helped the network localize better [37].
U-net and its variants have been used to segment multiple organs and tissues including
retinal vessels [38], chest [39], and heart [40].

Generative adversarial networks (GANs) are a class of neural networks in which two
networks, the generator module and discriminator module, compete against each other.
While the generator network uses random noise to generate an image, the discriminator
network judges whether the image is “real” or not. As iterations progress, the generator
network gets better at generating images that look more real and the discriminator network
becomes better at judging the generated images. In the work proposed by Luc et al. [41], the
generator network generated segmentation maps, and the discriminator network judged
whether the segmentation maps were coming from the ground truth or the generator.
GANs have been shown to successfully segment the brain [42], retinal vessels [43], and
spines [44] from medical images.

Due to its excellent performance, the U-net and its variants have been widely used in
various fields of computer vision. The U-net was chosen for this implementation because of
its ability to capture global context and precise localization. As shown in Figure 2, we use
the U-net architecture with convolutional layers as displayed in the legend (bottom-right).
The network is comprised mainly of down-sampling layers, i.e., convolutional layers that
reduce the feature map size, and up-sampling layers, i.e., convolutional layers that increase
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the feature map size, and skip connections between them to provide a direct flow of feature
maps from an early layer in the network to a later one. Skip connections are realized by
either concatenating the feature maps of the early layer to those of the later one or by
applying an element-wise summation.
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2.2. Dataset

For this retrospective study, we analyzed coronal CT images of the orbit acquired
from 215 patients between 1 January 2010 and 31 December 2019. After excluding patients
with facial trauma and/or image artifacts, the final 210 patients were randomly split into
training and test sets with 178 and 32 patients, respectively. The training set was used to
develop the model and the test set was used to evaluate the performance of the model on
scans previously unseen to the model. The model’s performance on a test set is important
since it gives an estimate of its ability to generalize predictions to unseen scans.

Each scan was annotated using 3D slicer (version 4.11) to create masks (ground truths)
of extraocular muscles from the DICOM files [45]. A multiclass mask was created with
muscles classes (L-medial rectus, L-lateral rectus, L-superior group (including L-superior
rectus and L-superior levator palpebrae), L-inferior rectus, R-medial rectus, R-lateral rectus,
R-superior group (including R-superior rectus and R-superior levator palpebrae), R-inferior
rectus) and background class.

The ground truths for extraocular muscle segmentations were analyzed by a board-
certified radiologist with a certificate of added qualification in neuroradiology. These
ground truths were used to train the CNNs in a supervised manner. Figure 3 shows an
example of (L-R) coronal plane, axial plane, and sagittal plane with the original DICOM
image (left) and EOM masks highlighted.

The comparison (Table 1) between the training and test set on baseline patient charac-
teristics (age, sex, and ground truth EOM thickness measurement) shows that there are no
significant differences between the training set versus the test set.
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sagittal CT images.

Table 1. Baseline patient characteristics of the training and test groups with mean (and standard
deviation) thickness and area in mm and mm2 respectively.

Train Test p-Value

N 178 32
Sex = M (%) 53 (30%) 9 (28%) 1

Age 46.67 (17.49) 50.97 (19.7) 0.21
Thickness—L-Medial Rectus 4.87 (0.84) 4.85 (0.7) 0.9
Thickness—L-Lateral Rectus 5.5 (1.13) 5.38 (1.18) 0.58
Thickness—L-Superior group 4.79 (0.93) 4.9 (0.77) 0.53
Thickness—L-Inferior Rectus 5.23 (1.07) 5.19 (1.02) 0.84
Thickness—R-Medial Rectus 4.74 (0.66) 4.66 (0.85) 0.55
Thickness—R-Lateral Rectus 5.62 (1.41) 5.87 (1.33) 0.35
Thickness—R-Superior group 4.85 (1.04) 4.99 (0.91) 0.48
Thickness—R-Inferior Rectus 5.13 (1.08) 4.97 (0.98) 0.44

Area—L-Medial Rectus 38.93 (8.54) 39.16 (6.55) 0.89
Area—L-Lateral Rectus 46.03 (10.03) 46.17 (12.05) 0.89
Area—L-Superior group 38.29 (9.66) 40.28 (8.04) 0.27
Area—L-Inferior Rectus 41.57 (11.78) 41.17 (9.35) 0.86
Area—R-Medial Rectus 38.14 (6.88) 38.56 (7.01) 0.75
Area—R-Lateral Rectus 47.2 (14.29) 49.81 (12.33) 0.33
Area—R-Superior group 40.1 (13.79) 41.39 (9.62) 0.61
Area—R-Inferior Rectus 42.38 (14.24) 41.14 (10.8) 0.64

2.3. Image Acquisition

The orbit scans were performed using 65 mL of Omnipaque 350 (injection rate of
1.2 mL/s with a delay of 55 s). Image acquisition was performed with field of view of
200 mm, collimation of 64 by 0.625 mm, source slice thickness of 0.9 mm with an increment
of 0.45 mm, 120 kV, 200 mAs, and 3 mm soft-tissue reconstructions in axial, coronal, and
sagittal planes.

2.4. Data Preprocessing

Since different studies may have varying different pixel spacing values, they are
first isometrically resampled to pixels of size 1 × 1 mm with the aid of the PixelSpacing
DICOM attribute and spline interpolation of order three. To facilitate a standard input
size for the network, we used a patch-based input as used in the original implementation
of U-net. For example, using this method, multiple patches of size (64, 64 pixels) are
drawn from random areas of an original CT slice of size (512, 512 pixels). This method
also acts as a data augmentation process and can alleviate the challenges of using a small
dataset. Since the patches can be drawn from any area of the overall image, the network
learns to be translation invariant and can effectively segment extraocular muscles in any
localized area of an input slice. Further data augmentation methods, which improve
the robustness of the model such as rotation, size scaling and noise addition are applied.
Flipping images horizontally from left right was not performed in this work. This was
to enable the network to learn to differentiate extraocular muscles on the left orbit from
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those on the right. Noise addition to CT images that can simulate low-dose acquisition
settings require access to the raw scanning data [46,47]. Since the raw sinogram data from
the scanners was not available at the time of training, Gaussian noise (of mean = 0 and
standard deviation = 10 Hounsfield Units) was added to the CT slice intensities. The scans
were then windowed to highlight extraocular muscles using level and width settings of
50 and 250 Hounsfield Units, respectively [14]. The scan inputs were then provided as a
stack of 2-dimensional patches, which were then fed into the network. Half of the patches
in this stack were drawn from the orbit area, and the other half was drawn from non-orbital
areas.

2.5. Architecture

We employed the 2-dimensional implementation of U-net as our CNN architecture.
Since the coronal plane is the only plane in which all rectus muscles can be visualized on a
2-dimensional slice, we trained a 2-dimensional U-net network that could predict all four
rectus muscles (left and right) using only coronal slices.

2.6. Loss Functions

Loss functions, which measure the dissimilarity between actual and predicted seg-
mentations, are important because they guide the network to learn meaningful predictions.
They also govern how the network should learn from mistakes (false positives, false neg-
atives, segmentation boundaries vs. volume, hard vs. easy scenarios). Loss functions
can be formulated to measure the mismatch in distribution, region, boundary, or a com-
bination of these [48]. Distribution-based loss functions such as weighted cross entropy
(WCE) train the network to minimize dissimilarity between the predicted and ground
truth distributions. Region-based loss functions such as the Dice similarity coefficient
loss [49], Jaccard (Intersection over Union) loss [50], and Focal Tversky loss [51] aim to
minimize the mismatch or maximize the overlap regions between the predicted and ground
truth segmentations. Boundary-based losses such as the boundary loss [52], surface Dice
similarity coefficient [10] aim to minimize the difference between the contours of predicted
and ground truth segmentations.

Weighted cross entropy (WCE) loss is defined as the measure of difference between
two distributions and is given mathematically defined as

WCE loss = − 1
N ∑C

c = 1 ∑N
i = 1 wcgc

i log sc
i , (3)

where gi
c is the ground truth value, si

c is the corresponding predicted segmentation proba-
bility and wc is the weight for each class c, and N is the total number of pixels.

Dice similarity coefficient (DSC) loss, also known as the overlap index, is used to
compare the similarity between predicted and ground truth segmentations. For binary
labels of ground truth gic ∈ {0,1} and predicted probability of class label pic ∈ [0,1] with
total number of pixels N, the DSC loss is expressed as

DSC loss = 1− ∑N
i = 1 picgic + ε

∑N
i = 1 pic + gic + ε

, (4)

where ε is a smoothing parameter with a value close to zero, which provides numerical
stability to prevent division by zero. Lower values of DSC indicate better overlap between
the predicted and ground truth segmentations.

Jaccard (Intersection over Union) loss measures the extent of overlap and penalizes
regions that do not overlap with the ground truth. For binary labels of ground truth
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gic ∈ {0,1} and predicted probability of class label pic ∈ [0,1] with total number of pixels N,
the IOU loss is expressed as

IOU loss = 1− ∑C
c = 1 ∑N

i = 1 gc
i pc

i

∑C
c = 1 ∑N

i = 1 gc
i + pc

i − gc
i pc

i

, (5)

Focal Tversky loss is an extension of the dice loss and addresses some of the issues with
Dice loss where the regions-of-interest are small. The Tversky index, in which generaliza-
tion of Dice loss that allows for flexibility in balancing false-positives and false-negatives., is
combined with the γ parameter, which controls for easy background and hard ROI training
examples. The Focal Tversky loss is given by,

FTLc = ∑c(1− TIc)
1
γ , (6)

where TIc is the Tversky Index, and parameter γ varies in the range [1,3].
Boundary loss measures the distances between two boundaries. The integral frame-

work, which is differentiable and can be used as a loss function, is formulated as

LBD = ∑Ω φG(p)sθ(p), (7)

where φG is the level set representation of the ground truth boundary and sθ(p) is the
SoftMax probability outputs from the trained network.

Compound loss functions use a combination of the above losses that are tailored for a
specific application. For example, if the objective of the segmentation is to arrive at only
volume or area measurements, region-based loss functions would be well suited to train the
CNN. However, if the clinical objective is to identify organ contours for radiation therapy
or a thickness measurement which depends on the contours identified, distance-based loss
functions would be well suited. Boundary-based losses would need to be used jointly with
a region-based loss to deliver improved segmentation results. Compound losses have also
been shown to be more robust loss functions [48].

It is worth noting that, in our application with extraocular muscles, we measure not
only the area and volume of the predicted segmentation but also its thickness, which
is measured from muscle boundary contours. For this reason, we train the U-net using
not only individual loss functions but also compound loss functions and pick the best
performing model.

2.7. Training & Experiment Design

To train our model, we used an Adam optimizer [53]. Adam is an optimization
algorithm that is used to arrive at the final network weights from a set of randomly
initialized weights by updating the network weights in an iterative manner. The networks
were allowed to train for a maximum of one hundred epochs on a Nvidia Tesla K80 GPU
(maximum 8 h).

Hyperparameters are model parameters that are set to control the learning process.
While some hyperparameters were chosen based on default values, other values were
chosen after preliminary performance evaluation.

Learning rate: Learning rates control how much the model weights are updated at the
end of each iteration. A large learning rate helps the algorithm learn fast, but it may also
make the training process unstable. On the other hand, a small learning rate will require
many updates before reaching the optimal solution and may make the training process
take too long to converge. Since Adam is an adaptive optimization algorithm, the learning
rates are computed individually for different parameters from estimates of first (mean) and
second (uncentered variance) moments of the gradients. After a preliminary evaluation of
the default settings, we set the value for learning rate of 0.0001, exponential decay rate for
the 1st moment (mean) estimates as 0.9, and exponential decay rate for the 2nd moment
(uncentered variance) estimates as 0.999.
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Image patch size: Patch size is the size of each image input to the CNN during the
training process. While larger patches contain more information, they also take more
memory resources during training. The U-net architecture applies a series of four pooling
operations, each of which reduce the image size by a factor of two. Therefore, the minimum
input image size would be 16. However, image patches of size 16 × 16 pixels would not
contain enough spatial and contextual information for the network to train on. On the
other hand, the maximum patch size is constrained by the maximum orbital scan size in
the coronal plane. In this work, a patch size of 128 × 128 pixels was used to facilitate the
patches generated to have at least one orbit fully with adjoining areas.

Batch size: Batch size is the number of patches that are input to the CNN at each step
of the training iteration. Using smaller batch sizes makes the network more resilient to
noise but also increases the training time significantly. To make efficient use of the GPU
memory, we used a batch size of 20 patches drawn from 4 training images for each step
within the training iteration.

Loss functions: In this work, we evaluated the performance for individual loss func-
tions and compound loss functions below: (i) weighted cross entropy, (ii) Dice similarity
coefficient loss, (iii) weighted cross entropy + Dice similarity coefficient loss, (iv) Focal
Tversky loss, (v) Dice similarity coefficient loss + boundary loss.

Dropout: Dropout [54] is a technique that approximates training many networks
with different architectures in parallel. This is implemented during training by randomly
setting a portion of the network to zero, thus having the effect of making the architecture
be treated as a layer with different numbers of nodes. This also helps prevent overfitting
by making the training process noisier and breaking-up co-adaptation situations where
hidden units may change in a way that they fix up the mistakes of other units. Dropout
has a tunable hyperparameter p, which is the probability of retaining a unit in the network.
This hyperparameter controls the intensity of dropout, where higher values of p (p ≈ 1)
correspond to lower dropout and lower values (p ≈ 0) correspond to more dropout. In this
work, we set the dropout hyperparameter p as 0.8.

Weight initialization: Initializers are used to define the way to set the initial random
weights of CNN layers. Initialization can have a significant impact on the training process,
convergence, and final performance. While a network initialized with high initial weights
may lead to exploding gradients, a network initialized with too low initial weights may
lead to vanishing gradients. In this work, we used Glorot normal initialization, also known
as Xavier initialization [55], where the weights are initialized by drawing samples from a
truncated normal distribution centered on zero and standard deviation, which is computed
dynamically as sqrt(2/(fan_in + fan_out)), where fan_in is the number of input units in the
weight tensor and fan_out is the number of output units in the weight tensor.

Cross-validation is a resampling method that uses different sections of the data to train
and validate the model. As illustrated in Figure 4, we performed k-fold cross validation,
where the original training sample of 178 studies is partitioned into k equal sized subsam-
ples. Of the k subsamples, a single subsample is chosen as validation set for evaluating
the model performance, and the remaining k−1 subsamples are used as training set. This
process is repeated k times, with each subsample used exactly once as the validation set. In
our experiments, we set k as 10. The validation results were then aggregated to produce a
single estimation. Using this estimate, we could compare the performance across parame-
ters, and select the best performing model. After this step, the best parameters were then
used to train the model on the training data and then the final evaluation was carried out
on test data.
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2.8. Muscle Size Measurement

For a given coronal slice i, the thickness of the extraocular muscles is measured by
fitting a rotated rectangle of minimum area that completely encloses the segmented muscle
contour. Since the cross-sections of extraocular muscles (in the mid-orbital region) on the
coronal plane are nearly ellipsoids, the length and width of the bounding rectangle are
the long axis diameter and short axis diameter (or thickness), respectively, of the muscle
cross-section.

As illustrated in Figure 5, the thickness (t) for each muscle m on coronal slice i, is
calculated as

tm
i = width (Rm

i), (8)

where Rm
i is the bounding rectangle with minimum area of muscle m on slice i. The

maximum thickness across all coronal slices is taken as the overall thickness of the muscle.
Similarly, the cross-sectional area (A) of muscle m on coronal slice i is given by

Am
i = Nm

i, (9)

where Nm
i is the number of pixels within the segmentation of muscle m on coronal slice i.

The maximum cross-sectional area across all coronal slices is taken as the cross-sectional
area of the entire muscle.

2.9. Evaluation

To perform quantitative evaluation, the Dice coefficient and intersection-over-union
(IOU) metrics were used. The extraocular muscles originate from the common tendinous
ring located at the apex of the orbit and insert onto the sides of the eyeball. The cross-
sections of the extraocular muscles become small as they crowd together towards their
ligamentous origin. Therefore, it is especially challenging for automated algorithms to
reliably segment the rectus muscles from each other near the apex of the orbit. Similarly,
at the anterior aspect of the orbit, it is hard to distinguish extraocular muscles from the
tendons inserting into the globe. For this reason, we split the coronal slices of the extraocular
muscles into three sections—(i) near insertion, (ii) central part, and (iii) near tendinous
origin. As shown in Figure 6, this was achieved by splitting the coronal slices in each study
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into three equal parts to form the three regions. We present an evaluation of the model
performance specific to each region.
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We also compared the thickness and cross-sectional area measurements of extraocular
muscles from ground truth segmentation to those from predicted segmentations using the
two metrics—mean absolute error (MAE) and mean absolute percentage error (MAPE),
given by

MAE =
1
n

n

∑
i = 1

∣∣∣xpr
i − xgt

i

∣∣∣ (10)

MAPE =
1
n

n

∑
i = 1
|
xpr

i − xgt
i

xgt
i

| (11)

where xi
pr is the predicted value, xi

gt is the ground truth value of the ith sample, and n is
the number of samples. The MAE and MAPE together can be used to evaluate how closely
the predicted measurements from the model align with the ground truth measurements.

To perform qualitative evaluation, the predicted segmentations from the models were
analyzed visually by the radiologist for similarity of contours and other subjective assess-
ments. An accept/reject decision was provided with rejected segmentations accompanied
by a reason.
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3. Results
3.1. Quantitative Evaluation

To evaluate the performance on the validation and test data, the same data preprocess-
ing steps were applied during model training, i.e., isometric resampling, drawing image
patches, and CT windowing, were applied to the test dataset as well. The final predicted
slice was then reconstructed from the individual patch predictions using sliding window
predictions and majority voting for each pixel to facilitate thickness and area measurements.

3.1.1. Model Performance

The results from 10-fold cross validation training process are summarized in Table 2.
The model trained using WCE+Dice compound loss function had the best overall perfor-
mance on cross-validation data with a mean Dice score of 0.92 for all eight extraocular
muscle classes with a standard deviation of 0.03. This was followed by the U-net model
trained using Dice+Boundary compound loss function with a mean dice score of 0.91 and a
standard deviation of 0.04. While the Dice+Boundary compound loss function had a better
Dice score for L-medial rectus and L-lateral rectus, the WCE+Dice compound loss function
consistently outperformed the other loss functions in the remaining classes. For this reason,
we selected the model trained using WCE+Dice compound loss as the final model.

Table 2. Results from training and evaluation using 10-fold cross-validation. Values indicate mean ±
standard deviation of Dice score and IOU score from 10 cross-validation iterations. Values in bold
represent the loss function setting that provides the best performance for a specific muscle class.

Evaluation
Metric Muscle

Loss Function

WCE Dice WCE + Dice FTL Dice + Boundary

Dice similarity
coefficient (DSC)

score

L-medial rectus 0.90 ± 0.01 0.91 ± 0.03 0.93 ± 0.02 0.90 ± 0.05 0.94 ± 0.01
L-lateral rectus 0.90 ± 0.00 0.91 ± 0.04 0.91 ± 0.03 0.90 ± 0.05 0.93 ± 0.01

L-superior group 0.84 ± 0.03 0.90 ± 0.03 0.91 ± 0.02 0.87 ± 0.06 0.87 ± 0.05
L-inferior rectus 0.90 ± 0.02 0.92 ± 0.03 0.94 ± 0.02 0.90 ± 0.03 0.93 ± 0.02
R-Medial rectus 0.90 ± 0.00 0.93 ± 0.02 0.94 ± 0.01 0.91 ± 0.02 0.93 ± 0.01
R-lateral rectus 0.88 ± 0.01 0.91 ± 0.04 0.91 ± 0.04 0.88 ± 0.06 0.90 ± 0.05

R-superior group 0.85 ± 0.01 0.89 ± 0.02 0.91 ± 0.02 0.87 ± 0.03 0.88 ± 0.03
R-inferior rectus 0.91 ± 0.01 0.90 ± 0.04 0.92 ± 0.02 0.90 ± 0.05 0.92 ± 0.03

All 0.89 ± 0.03 0.91 ± 0.03 0.92 ± 0.03 0.89 ± 0.05 0.91 ± 0.04

Jaccard (IOU)
score

L-medial rectus 0.81 ± 0.02 0.86 ± 0.04 0.88 ± 0.03 0.83 ± 0.07 0.89 ± 0.02
L-lateral rectus 0.83 ± 0.00 0.85 ± 0.05 0.86 ± 0.04 0.84 ± 0.06 0.87 ± 0.01

L-superior group 0.73 ± 0.04 0.82 ± 0.04 0.85 ± 0.03 0.79 ± 0.07 0.80 ± 0.05
L-inferior rectus 0.82 ± 0.03 0.86 ± 0.04 0.88 ± 0.03 0.83 ± 0.04 0.87 ± 0.04
R-medial rectus 0.82 ± 0.00 0.87 ± 0.03 0.89 ± 0.01 0.84 ± 0.03 0.88 ± 0.02
R-lateral rectus 0.79 ± 0.02 0.85 ± 0.05 0.85 ± 0.05 0.81 ± 0.07 0.84 ± 0.06

R-superior group 0.75 ± 0.01 0.82 ± 0.02 0.84 ± 0.03 0.79 ± 0.03 0.80 ± 0.03
R-inferior rectus 0.83 ± 0.02 0.84 ± 0.04 0.87 ± 0.03 0.83 ± 0.07 0.87 ± 0.04

All 0.80 ± 0.04 0.85 ± 0.04 0.87 ± 0.04 0.82 ± 0.06 0.85 ± 0.05

The performance of the selected U-net model was evaluated using test data and the
results are summarized in Table 3. The selected model that was trained using WCE+Dice
loss function could segment the extraocular muscles with a mean Dice score of 0.92 and
a standard deviation of 0.02, which corresponds to an IOU score of 0.87 and a standard
deviation of 0.03.

Model performance was also evaluated on different regions of the extraocular muscles
near their origin, central part and near their insertion and the results summarized in Table 4.
We observed that the model performed better on the central region than the regions near
the origin and insertion but the difference in performance was not statistically significant
(p-value = 0.1763).
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Table 3. Performance of selected U-net model (trained using WCE+Dice loss) on test data. Values
indicate mean ± standard deviation of Dice score and IOU score across 32 test scans.

Muscle DSC Score IOU Score

L-medial rectus 0.94 ± 0.07 0.90 ± 0.09
L-lateral rectus 0.93 ± 0.09 0.88 ± 0.10

L-superior group 0.90 ± 0.12 0.83 ± 0.13
L-inferior rectus 0.94 ± 0.08 0.90 ± 0.08
R-medial rectus 0.92 ± 0.16 0.88 ± 0.17
R-lateral rectus 0.93 ± 0.04 0.88 ± 0.06

R-superior group 0.87 ± 0.14 0.80 ± 0.15
R-inferior rectus 0.93 ± 0.09 0.88 ± 0.11

All 0.92 ± 0.02 0.87 ± 0.03

Table 4. Performance of selected U-net on test data split by extraocular muscle regions (near insertion,
muscle belly, and near origin).

Muscle Region 1:
Insertion

Region 2:
Central Part

Region 3:
Origin

L-medial rectus 0.89 ± 0.13 0.82 ± 0.16 0.97 ± 0.01 0.94 ± 0.02 0.91 ± 0.10 0.85 ± 0.13
L-lateral rectus 0.88 ± 0.15 0.81 ± 0.15 0.95 ± 0.02 0.90 ± 0.03 0.94 ± 0.08 0.89 ± 0.09

L-superior group 0.79 ± 0.26 0.71 ± 0.25 0.92 ± 0.06 0.86 ± 0.07 0.92 ± 0.05 0.85 ± 0.08
L-inferior rectus 0.93 ± 0.04 0.88 ± 0.06 0.94 ± 0.07 0.89 ± 0.08 0.95 ± 0.02 0.90 ± 0.04
R-medial rectus 0.91 ± 0.16 0.85 ± 0.16 0.79 ± 0.34 0.75 ± 0.35 0.83 ± 0.25 0.77 ± 0.25
R-lateral rectus 0.77 ± 0.20 0.66 ± 0.21 0.93 ± 0.03 0.87 ± 0.05 0.94 ± 0.04 0.89 ± 0.06

R-superior group 0.78 ± 0.29 0.70 ± 0.28 0.91 ± 0.04 0.84 ± 0.06 0.89 ± 0.04 0.80 ± 0.07
R-inferior rectus 0.89 ± 0.16 0.83 ± 0.16 0.95 ± 0.07 0.90 ± 0.08 0.94 ± 0.03 0.88 ± 0.06

All 0.86 ± 0.20 0.78 ± 0.20 0.92 ± 0.14 0.87 ± 0.15 0.91 ± 0.11 0.86 ± 0.12

3.1.2. Comparison of Muscle Size Measurements

The results from thickness and area measurements are summarized in Table 5. The
thicknesses and areas measured from the predicted segmentations, when compared with
the ground truth segmentations, had a mean absolute error of 0.35 mm and 3.87 mm2,
respectively. The corresponding mean absolute percentage errors in thickness and area
were 7 and 9%, respectively.

Table 5. Performance of selected U-net model (trained using WCE+Dice loss) on test data. Values
indicate mean ± standard deviation of Dice score and IOU score on cross-validation data.

Muscle MAE
Thickness (mm)

MAPE
Thickness

MAE
Area (mm2)

MAPE
Area

L-medial rectus 0.24 5% 1.99 6%
L-lateral rectus 0.35 7% 6.53 14%

L-superior group 0.37 8% 3.15 8%
L-inferior rectus 0.26 6% 4.2 10%
R-medial rectus 0.41 7% 3.93 8%
R-lateral rectus 0.46 9% 3.85 10%

R-superior group 0.33 7% 4.09 10%
R-inferior rectus 0.36 8% 3.18 9%

All 0.35 7% 3.87 9%

3.1.3. Model Performance on Noisy Images

To assess its robustness, the trained model was evaluated with inputs with varying
degrees of noise. During the training stage, the model was trained using images added
with a Gaussian noise with zero mean and a standard deviation of 10 HUs. During the
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testing stage, the input images were added with a Gaussian noise with standard deviations
of 5 and 10 HUs, respectively. The performance of the trained U-net on noisy images is
shown in Table 6. There was no significant reduction in performance (p-value = 0.8913),
evaluated using the Dice score, of the model on noisy images with Gaussian noise up to
(µ = 0, σ = 10). This can be explained by the fact that the U-net was trained on similar noisy
images during the training stage. Figure 7, shows a sample coronal patch from the test data
with and without noise, and its corresponding predictions by the trained model.

Table 6. Average performance of the trained U-net on 32 test cases where input images were added
with different levels of Gaussian noise. Values indicate mean DSC (and standard deviation) and
mean IOU (and standard deviation), respectively.

Without Added
Noise

With Added Noise
(µ = 0, σ = 5)

With Added Noise
(µ = 0, σ = 10)

L-medial rectus 0.94 ± 0.07 0.94 ± 0.08 0.93 ± 0.09
L-lateral rectus 0.93 ± 0.09 0.93 ± 0.07 0.92 ± 0.09

L-superior group 0.90 ± 0.12 0.89 ± 0.15 0.90 ± 0.13
L-inferior rectus 0.94 ± 0.08 0.94 ± 0.04 0.94 ± 0.09
R-medial rectus 0.92 ± 0.16 0.93 ± 0.10 0.92 ± 0.14
R-lateral rectus 0.93 ± 0.04 0.92 ± 0.08 0.92 ± 0.07

R-superior group 0.87 ± 0.14 0.86 ± 0.16 0.86 ± 0.17
R-inferior rectus 0.93 ± 0.09 0.93 ± 0.08 0.93 ± 0.07

All 0.92 ± 0.02 0.92 ± 0.12 0.92 ± 0.12

Diagnostics 2021, 11, x FOR PEER REVIEW 15 of 21 
 

 

 

Table 6. Average performance of the trained U-net on 32 test cases where input images were added 
with different levels of Gaussian noise. Values indicate mean DSC (and standard deviation) and 
mean IOU (and standard deviation), respectively. 

 
Without Added 

Noise 
With Added Noise 

(μ = 0, σ = 5)  
With Added Noise 

(μ = 0, σ = 10)  
L-medial rectus 0.94 ± 0.07 0.94 ± 0.08 0.93 ± 0.09 
L-lateral rectus 0.93 ± 0.09 0.93 ± 0.07 0.92 ± 0.09 

L-superior group 0.90 ± 0.12 0.89 ± 0.15 0.90 ± 0.13 
L-inferior rectus 0.94 ± 0.08 0.94 ± 0.04 0.94 ± 0.09 
R-medial rectus 0.92 ± 0.16 0.93 ± 0.10 0.92 ± 0.14 
R-lateral rectus 0.93 ± 0.04 0.92 ± 0.08 0.92 ± 0.07 

R-superior group 0.87 ± 0.14 0.86 ± 0.16 0.86 ± 0.17 
R-inferior rectus 0.93 ± 0.09 0.93 ± 0.08 0.93 ± 0.07 

All 0.92 ± 0.02 0.92 ± 0.12 0.92 ± 0.12 

 
Figure 7. Output from the trained U-net on sample coronal patch where input image has been added 
with different levels of Gaussian noise (with mean μ and standard deviation σ). 

3.1.4. Performance Comparison with Traditional Segmentation Methods 
Prior works that used traditional segmentation methods to segment extraocular mus-

cles were built and evaluated on MR images [2–5]. Hanai et al. [13] proposed a deep-
learning method to detect enlarged muscles and therefore only provided classification ac-
curacy of their model in detecting enlarged extraocular muscles and not segmentation 
evaluation results. The U-net based CNN model proposed by Zhu et al. [12] was built and 
evaluated on CT images. However, the imaging studies and ground truths that were used 
varied between the studies. Since there are no established benchmarks for extraocular 
muscle segmentation, we show the results from our model alongside previous works. In 
our proposed model, the superior rectus and superior levator palpebrae muscles were 
measured together as a single muscle group, namely, the superior muscle group. We also 

Figure 7. Output from the trained U-net on sample coronal patch where input image has been added
with different levels of Gaussian noise (with mean µ and standard deviation σ).

3.1.4. Performance Comparison with Traditional Segmentation Methods

Prior works that used traditional segmentation methods to segment extraocular mus-
cles were built and evaluated on MR images [2–5]. Hanai et al. [13] proposed a deep-
learning method to detect enlarged muscles and therefore only provided classification
accuracy of their model in detecting enlarged extraocular muscles and not segmentation
evaluation results. The U-net based CNN model proposed by Zhu et al. [12] was built
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and evaluated on CT images. However, the imaging studies and ground truths that were
used varied between the studies. Since there are no established benchmarks for extraocular
muscle segmentation, we show the results from our model alongside previous works. In
our proposed model, the superior rectus and superior levator palpebrae muscles were
measured together as a single muscle group, namely, the superior muscle group. We also
consider extraocular muscles from left and right as different classes. The analysis of the
evaluation metric (intersection over union) is summarized in Table 7.

Table 7. Regional IOU score of our model and previously published CNN models for extraocular
muscle segmentation on CT. Values indicate mean IOU ± standard deviation. SU-Net and SV-net
proposed by Zhu et al. [12] was trained and evaluated using images from 97 subjects without
contrast enhancement and our model was trained and evaluated using images from 210 subjects with
contrast enhancement.

Muscle SU-Net SV-Net 2D Coronal U-Net

Medial rectus 0.82 ± 2.83×10-5 0.84 ± 3.62 × 10-5 0.91 ± 0.12
Lateral rectus 0.80 ± 5.83 × 10-5 0.82 ± 3.56 × 10-5 0.89 ± 0.04

Superior rectus 0.73 ± 9.73 × 10-5 0.74 ± 7.84 × 10-5 -
Superior muscle group - - 0.84 ± 0.09

Inferior rectus 0.82 ± 2.83 × 10-5 0.84 ± 3.39 × 10-5 0.89 ± 0.06
Optic nerve 0.81 ± 1.77 × 10-4 0.82 ± 9.96 × 10-5 -

Total 0.80 ± 2.56 × 10-5 0.82 ± 3.22 × 10-5 0.88 ± 0.09

3.2. Qualitative Evaluation

Among the thirty-two test samples, thirty predicted segmentations from the U-net
algorithm were accepted while two were rejected. Example coronal slices from the two
rejected segmentations are presented in Figure 8. The predicted segmentation on Study
ID 2G04345 was rejected because the L-lateral rectus also included other orbital structures.
The predicted segmentation on Study ID 2G04323 was rejected because the L-lateral rectus
included areas of bone.
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4. Discussion

We have developed and evaluated a 2D CNN-based deep learning algorithm that can
perform the automated segmentation of extraocular muscles and provide measurements of
two-dimensional parameters for muscle size, such as thickness and cross-sectional area.
The proposed algorithm provides a method to carry out automated segmentation in a
computationally efficient way using only images in the coronal plane of a CT scan.

To improve the segmentation accuracy further, postprocessing steps such as threshold-
ing, erosion and dilation can be applied. The segmentations can therefore be further refined
to exclude bone and other orbital structures that are not extraocular muscles. Furthermore,
it is worth noting that the thickness errors (in mm) between predicted and ground truth
measurements were in the same range as the pixel sizes (0.3–0.4 mm) of the CT images. This
could be due to the data preprocessing (isometric resampling) step where we downsampled
all CT images to a constant pixel size of 1 mm × 1 mm. Since the CNN algorithm reads
and makes the prediction on resampled images, a single-pixel misclassification along the
short-axis of extraocular muscles can result in a MAPE of up to 10% during reconstruction
back to original pixel size. The downsampling step could potentially result in the loss of
granular information and therefore drive the errors in thickness and area measurements. A
training methodology that uses the original pixel intensities without isometric resampling
and various postprocessing techniques will be explored as part of future work.

Neural networks perform best and generalize successfully when input data at the time
of inference has a similar data distribution to that of the training data used. The proposed
model was developed using CT images of the orbit and of extraocular muscles (EOM)
with and without enlargement for male and female cases. Thus, it may not perform well
with scans of other modalities, such as MRI. Furthermore, the model needs to be trained
using other types of scans that might not include EOM for it to learn the other organs
that do not constitute EOM. Single institution training and testing data were used for this
study. Generalizability to other institutions and patient populations should be evaluated in
the future.

In this work, we evaluate one type of neural network architecture, i.e., the encoder-
decoder architecture to carry out semantic segmentation. As next steps, we could carry
out further evaluations using other neural network architectures that have shown promise
to work well for semantic segmentation, such as residual networks (ResNets) and region-
proposal networks.

5. Conclusions

Based on the results from the quantitative and qualitative evaluations, this study
demonstrates that CNN-based deep learning algorithms are effective at segmenting ex-
traocular muscles and measuring muscle sizes on CT images without any manual inputs
from a radiologist.
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