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Abstract: Background: Differentiating benign from malignant renal tumors is important for patient
management, and it may be improved by quantitative CT features analysis including radiomic.
Purpose: This study aimed to compare performances of machine learning models using bio-clinical,
conventional radiologic and 3D-radiomic features for the differentiation of benign and malignant solid
renal tumors using pre-operative multiphasic contrast-enhanced CT examinations. Materials and
methods: A unicentric retrospective analysis of prospectively acquired data from a national kidney
cancer database was conducted between January 2016 and December 2020. Histologic findings
were obtained by robotic-assisted partial nephrectomy. Lesion images were semi-automatically
segmented, allowing for a 3D-radiomic features extraction in the nephrographic phase. Conventional
radiologic parameters such as shape, content and enhancement were combined in the analysis.
Biological and clinical features were obtained from the national database. Eight machine learning
(ML) models were trained and validated using a ten-fold cross-validation. Predictive performances
were evaluated comparing sensitivity, specificity, accuracy and AUC. Results: A total of 122 patients
with 132 renal lesions, including 111 renal cell carcinomas (RCCs) (111/132, 84%) and 21 benign
tumors (21/132, 16%), were evaluated (58 +/− 14 years, men 74%). Unilaterality (100/111, 90% vs.
13/21, 62%; p = 0.02), necrosis (81/111, 73% vs. 8/21, 38%; p = 0.02), lower values of tumor/cortex
ratio at portal time (0.61 vs. 0.74, p = 0.01) and higher variation of tumor/cortex ratio between
arterial and portal times (0.22 vs. 0.05, p = 0.008) were associated with malignancy. A total of
35 radiomics features were selected, and “intensity mean value” was associated with RCCs in
multivariate analysis (OR = 0.99). After ten-fold cross-validation, a C5.0Tree model was retained for
its predictive performances, yielding a sensitivity of 95%, specificity of 42%, accuracy of 87% and
AUC of 0.74. Conclusion: Our machine learning-based model combining clinical, radiologic and
radiomics features from multiphasic contrast-enhanced CT scans may help differentiate benign from
malignant solid renal tumors.

Keywords: renal tumors; radiomics; RCC; CT; machine learning

1. Introduction

Renal cell carcinomas (RCCs) account for approximately 70% of all cases of renal cancer.
The most common subtypes are clear-cell renal cell carcinoma (ccRCC), papillary renal cell
carcinoma (pRCC) and chromophobe renal cell carcinoma (chRCC), accounting for 70%,
15% and 5% of all RCCs, respectively. As these subtypes have different natural histories and
prognoses, it is crucial to differentiate them accurately. Moreover, some common benign
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tumors show a similar presentation to that of RCCs. Oncocytoma, a benign renal tumor
accounting for 5% of all renal masses, is occasionally mistaken for RCC; oncocytomas
account for 4–10% of all nephrectomy cases [1]. Furthermore, 5% of angiomyolipomas
remain challenging to differentiate from RCC on CT due to their fat-poor nature. This may
lead to unnecessary surgical treatment, raising concerns regarding morbidity.

In some circumstances, i.e., when the malignancy status remains unclear before surgery,
percutaneous biopsy can be performed. This procedure shows excellent diagnostic per-
formance; it can differentiate between benign and malignant lesions with sensitivity and
specificity values of approximately 95%. However, in 20% of cases, the results remain
indeterminate, and the complication rate is 8% [2]. Furthermore, for some histological
subtypes, pre-operative histological diagnosis is challenging. A recent study reported
that 25% of oncocytomas suspected on biopsy were ultimately diagnosed as RCC after
surgical removal; 12.5% of these were of the chRCC subtype [3]. There has been an increase
in the number of biopsies, particularly on smaller and smaller tumors, with the risk of
non-contributory biopsies [4], hence the need to develop imaging characterization.

Multiparametric MRI has been well described in the evaluation of more common
subtypes of RCC; however, oncocytoma result in poor imaging diagnostic accuracy [5].

CT is used for renal mass characterization [6]. CT was chosen for the ease of access
and spatial resolution for small lesions. In routine clinical practice, qualitative and semi-
quantitative parameters are used in combination to distinguish benign from malignant renal
masses. Visual analysis of the tumor shape, size, content and enhancement is performed [7].
Some studies showed that an analysis of enhancement patterns on multiphasic contrast-
enhanced (MCE)-CT images has high diagnostic accuracy [8]. While enhancement analysis
is quantitative, shape and texture analyses remain more subjective and are thus vulnerable
to interpretation variability.

Large-scale quantitative parameters can be extracted from medical CT images and
then subjected to texture analysis for the detection of local variation in pixel intensity. This
has emerged as a novel technique to quantitively evaluate tumor heterogeneity, assess the
histopathologic characteristics of carcinomas and help predict prognosis [9–12].

Radiomics features provide information about the tumor intensity, shape and texture,
and application of machine learning analysis to improved imaging data interpretation.

Although recent studies have aimed to differentiate RCCs from benign renal tumors
using radiomics [12–14], none of them used three-dimensional (3D) radiomic feature
extraction combined with clinical and radiological conventional parameters to assess the
performance of machine learning (ML) models. The 3D contour-focused segmentation
showed a higher stable feature rate [15].

Therefore, the aim of this study was to evaluate the ability of ML models to differentiate
between benign and malignant solid renal tumors via the MCE-CT 3D segmentation of
extracted radiomic, radiological and clinical features.

2. Materials and Methods
2.1. Patients

In this retrospective analysis of prospectively collected data, we included all patients
who underwent robot-assisted partial nephrectomy for solid renal tumors at our institution
between January 2016 and December 2020. Ethics approval was granted by our institutional
ethics review board (IRB DR-2013-206). Participants were enrolled from a national kidney
cancer database. We included patients who had undergone pre-operative abdominal
MCE-CT at our institution. CT examinations performed outside our institution, and those
not conducted in accordance with our examination protocol or with low-quality images,
were excluded. Patients with missing picture archiving system data were also excluded.
Biological, clinical and histological data were extracted from the prospective database. The
clinical and biological features analyzed included sex, age and body weight at the time of
surgery, the Eastern Cooperative Oncology Group (ECOG) score, the glomerular filtration
rate, the presence of urologic symptoms and the clinical tumor–node–metastasis (TNM)
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stage. Histological findings of interest included malignancy, the histological subtypes of
benign and malignant tumors, the Fuhrman grade and the histopathological TNM stage.

2.2. CT Examinations

All imaging examinations were performed at our institution using the same 64-slice CT
scanner (Optima CT660; GE Healthcare, Milwaukee, WI, USA) before the patients under-
went nephrectomy. The CT parameters were as follows: 120 kV; automatic current selection;
maximum current, 500 mAs; rotation time, 0.7 s; collimation detector size, 40 × 1.2 mm;
field of view, 350 × 350 mm; matrix size, 512 × 512; and reconstruction section thickness,
1.5 mm. For the vascular anatomy analysis, the arterial phase reconstruction pixel size was
0.625 mm.

First, unenhanced CT was performed. Then, a specific enhanced acquisition protocol
was applied, including three-phase CT. Nonionic contrast medium (350–400 µmol/L)
was injected into the antecubital vein at a rate of 3.5–4 mL/s to a final volume of 80 mL.
Arterial phase images were obtained using the scanner’s automatic bolus tracking system
(SmartPrep; GE Healthcare), beginning 10 s after the attenuation threshold of 100 UH was
reached in the upper abdominal aorta; after an additional 100 s, portal phase images were
acquired. Finally, excretory phase images were acquired (10–15 min after injection).

2.3. CT

The CT scans were analyzed by one radiologist-in-training (C.G.) with 5 years of
image analysis experience. The radiologist was blinded to the clinical and histological
findings. The radiological features of all renal tumors were recorded, including infiltra-
tion, demarcated contours, homogeneity, calcifications, fat and hemorrhagic components,
necrosis, necrotic core, tumor implantation, venous extension, multifocality and bilaterality.
Representative cases are shown in Figures 1 and 2.
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Figure 1. Representative case of segmentation for a papillary renal cell carcinoma (pRCC). A 68-
year-old female with a pRCC. Unenhanced CT images (upper left), arterial phase (upper right),
nephrographic time (lower left) and excretory phase (lower right) show a well-defined, demarcated,
with heterogenous enhancement. Yellow outlined drawing represents segmentation margins.
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Figure 2. Representative case of segmentation for a clear cell renal cell carcinoma (ccRCC). A 55-year-
old man with a demarcated, well-defined, homogenous tumor, with a regular calcification, diagnosed
as a ccRCC, at multiphasic contrast-enhanced CT scan: unenhanced (upper left), arterial (upper
right), nephrographic (lower left) and excretory (lower right) phases. Red outline represents tumor
segmentation.

The enhancement pattern was noted for each lesion. A two-dimensional (2D) region
of interest was drawn around the lesion on a single slice for both arterial and portal
phase images. A second 2D region of interest was manually drawn on the same slice in
a homogenous part of the renal cortex, again for both arterial and portal phase images.
Finally, the ratios of the cortical to tumoral intensity values and of the arterial to arterial
phases were calculated.

All Digital Imaging and Communication in Medicine images were anonymized. Seg-
mentation was performed by C.G. using SOPHiA DDM for Radiomics v2.1.21 (SOPHiA
GENETICS, Saint-Sulpice, Switzerland). In accordance with previous studies, nephro-
graphic phase images were segmented due to their favorable tumor/renal parenchymal
contrast. First, the slice on which the tumor was clearest (axial, coronal or sagittal plane)
was chosen, and the tumor contours were precisely drawn by hand. Next, a volumetric
model of the tumor was constructed using a deformation algorithm. If necessary, the user
could manually adjust the semi-automatically obtained contours of the lesion. Each 3D
segmentation process took approximately 20 min. The user interface of the segmentation
software is shown in Figure 3.

More than 200 radiomic features were automatically extracted from the 3D segmenta-
tion model of the tumor (nephrographic phase). Previously described radiomic parameters
(shape, pixel intensity and texture features) were analyzed. Dimensionality reduction was
then performed using Kendall’s correlation coefficient to avoid redundant parameters. An
example process of the radiomic feature extraction is displayed in Figure 4.
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Figure 3. Three-dimensional (3D) segmentation software interface for a clear cell RCC. Tumor segmen-
tation on 2D slice at nephrographic phase (yellow outline, left), with corresponding 2D segmentations
on coronal and sagittal plans (lower right), and a volumic model of the 3D segmentation (upper
right) used for radiomic features extraction.
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Figure 4. Representative histogram for radiomic features extraction using software inter-
face. IBSI = Image Biomarker Standardization Initiative; GLCM = Gray-Level Co-occurrence
Matrix; GLRLM = Gray-Level Run Length Matrix; GLSZM = Gray-Level Size Zone Matrix;
GLDZM = Gray-Level Distance Zone Matrix; NGTDM = Neighborhood Gray Tone Difference Matrix;
NGLDM = Neighborhood Gray-Level Dependence Matrix.
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To differentiate between benign and malignant solid renal tumors from multimodal
(clinical, radiological and radiomic) data with the best predictive performance while en-
suring interpretability, the following ML models were trained: logistic regression with
LASSO regularization to avoid overfitting (Logit-LASSO), binary decision tree (rpart), sup-
port vector machine with linear kernel (svmLinear), bagging method via random forest
(RandomForest), and boosting method via C5.0 decision tree (C5.0Tree and wC5.0Tree to
deal with imbalanced outcome). Class weights in LASSO-logistic regression and C5.0 tree
were also incorporated to deal with the imbalance outcome (Logit-LASSO and wC5.0Tree,
respectively).

Trained models were tested using a 10-fold cross-validation method [16].
The models were compared in terms of their ability to distinguish malignant from be-

nign tumors based on sensitivity, specificity, accuracy and area under the receiver operating
characteristic curve (AUC) values.

2.4. Statistical Analyses

Clinical data are presented as the mean ± standard deviation for continuous vari-
ables and as numbers and percentages for categorial variables. The Bonferroni method
was applied for multiple comparisons. Univariable (Wilcoxon and Fisher’s tests) and
multivariable (l Logit-LASSO logistic regression, to obtain odds ratios (ORs)) analyses
were conducted. All reported p-values are two-sided, and p < 0.05 was taken to indicate
statistical significance.

3. Results
3.1. Patients and Tumors

A total of 122 patients were included who were surgically treated at our institution
between January 2016 and December 2020 (Figure 5). Overall, two had two renal tumors,
one had three renal tumors, and one had seven renal tumors; therefore, there were 132 renal
lesions in total. There were 111 RCCs: 79 ccRCCs, 16 chRCCs, 13 pRCCs and 3 other
rare renal carcinomas. There were also 21 benign lesions: 18 oncocytomas, 2 fat-poor
angiomyolipoma (fpAMLs) and 1 other rare benign renal tumor.
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Figure 5. Flow-chart of the study. CT = computed tomography; PACS = Picture Archiving and
Communication System; RCC = renal cell carcinoma. Numbers of patients and renal lesions are
in parentheses.
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The mean age at diagnosis was 58 ± 14 years. Renal tumors were more frequent
in males (87/132; 65.9%). Nine patients (7.3%) had sporadic kidney cancer, and seven
(5.5%) had a family history of renal cancer. Regarding the bio-clinical characteristics, the
mean body mass index was 26.7 kg/m2 (range: 17.7–46.9 kg/m2) and the mean Cockcroft
clearance at diagnosis was 88.4 mL/min. Twenty-five patients (18.9%) had urologic symp-
toms at diagnosis, and the majority (84.7%) had no physical limitations (ECOG score = 0).
Table 1 shows the characteristics of the overall study population as well as of the benign
and malignant groups.

Table 1. Characteristics of the study population.

Variable Benign
(n = 21)

Malignant
(n = 111)

Total
(n = 132)

Adjusted
p-Value

Sex 0.001

Female 16 (76.2%) 29 (26.1%) 45 (34.1%)

Male 5 (23.8%) 82 (73.9%) 87 (65.9%)

Cockcroft clearance 0.061

Missing data 0 1 1

Mean (SD) 71.229
(40.212)

91.758
(39.730)

88.467
(40.366)

Age 0.099

Missing data 1 1 2

Mean (SD) 64.450
(11.834)

57.327
(14.273)

58.423
(14.122)

Body weight 0.025

Mean (SD) 67.476
(16.366)

79.604
(18.391)

77.674
(18.567)

BMI 0.119

Mean (SD) 24.843 (4.968) 27.041 (5.567) 26.691 (5.518)

ECOG score 0.351

Missing data 0 8 8

0 20 (95.2%) 85 (82.5%) 105 (84.7%)

1–3 1 (4.8%) 18 (17.5%) 19 (15.3%)

Cancer history 0.099

No 20 (95.2%) 81 (73.0%) 101 (76.5%)

Yes 1 (4.8%) 30 (27.0%) 31 (23.5%)

Symptoms at diagnosis 0.240

No 20 (95.2%) 87 (78.4%) 107 (81.1%)

Yes 1 (4.8%) 24 (21.6%) 25 (18.9%)

Pathological stage * 0.103

T1 11 (52.4%) 84 (75.7%) 95 (72.0%)

T2/T3 10 (47.6%) 27 (24.3%) 37 (28.0%)

Family history of renal cancer 0.371

Missing data 0 5 5

Yes 0 7 (6.6%) 7 (5.5%)

No 21 (100%) 99 (93.4%) 120 (94.5%)
BMI, body mass index; ECOG, Eastern Cooperative Oncology Group. * Based on the American Joint Committee
on Cancer TNM staging system, 8th edition. Adjusted p-values < 0.05 are in bold.
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Univariable analysis showed that the risk of malignancy was higher in males than
females (73.9% vs. 23.8%, p = 0.001) and in those with a higher body weight at diagnosis
(79.6% vs. 67.4%, p = 0.02) (Table 1). In the multivariable analysis, the correlation between
sex and malignancy risk remained significant (OR = 2.35). A previous history of cancer
(OR = 1.07) also showed a significant correlation with malignancy (Table 2).

Table 2. Multivariable analysis of factors differentiating benign and malignant solid renal tumors.
The coefficients are given for the covariates selected by the Logit-LASSO procedure.

Variable Name Coefficient Odds Ratio (IC) p

(Intercept) −0.999 0.368

delta.ratio.tumor.cortex.AP −0.192 0.826 (0.057, 1) 0.682

Bilateral lesion—Yes (ref: No) −0.071 0.931 (0.583, 1) 0.332

Necrosis—Yes (ref: No) 0.223 1.250 (1, 6.355) 0.646

Intensity.mean.value −0.006 0.994 (0.983, 1) 0.640

Sex—Men (ref: Women) 0.853 2.346 (1.183, 4.384) 0.987

History_cancer—Yes (ref: No) 0.069 1.072 (1, 29.045) 0.650
The 95% confidence intervals were estimated using percentile approach, and the p-values were obtained as the
rate of non-selection of the feature, both over 1000 bootstrap replicates.

3.2. Conventional and Enhanced Radiological Features

Malignant lesions were significantly associated with unilaterality (90.1% vs. 61.9%,
p = 0.02) and necrosis (73% vs. 38.1%, p = 0.02) compared with benign lesions. The presence
of calcification (30.6% vs. 14.3%, p = 0.35), visible fat (9% vs. 19%, p = 0.41) and demarcated
contours (39.6% vs. 19%, p = 0.19) was not significantly different between benign and
malignant lesions (Table 3).

Table 3. Conventional radiological features.

Variable Name Benign
(n = 21)

Malignant
(n = 111)

Total
(n = 132)

Adjusted
p-Value

Bilateral.lesion 0.024

No 13 (61.9%) 100 (90.1%) 113 (85.6%)

Yes 8 (38.1%) 11 (9.9%) 19 (14.4%)

Calcification 0.348

No 18 (85.7%) 77 (69.4%) 95 (72.0%)

Yes 3 (14.3%) 34 (30.6%) 37 (28.0%)

Contour.regularity 0.185

Demarcated 17 (81.0%) 67 (60.4%) 84 (63.6%)

Infiltrating 4 (19.0%) 44 (39.6%) 48 (36.4%)

Fat 0.409

No 17 (81.0%) 101 (91.0%) 118 (89.4%)

Yes 4 (19.0%) 10 (9.0%) 14 (10.6%)

Homogeneous 0.714

No 14 (66.7%) 80 (72.1%) 94 (71.2%)

Yes 7 (33.3%) 31 (27.9%) 38 (28.8%)

Monofocal.lesion 0.099

No 8 (38.1%) 17 (15.3%) 25 (18.9%)

Yes 13 (61.9%) 94 (84.7%) 107 (81.1%)
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Table 3. Cont.

Variable Name Benign
(n = 21)

Malignant
(n = 111)

Total
(n = 132)

Adjusted
p-Value

Necrosis 0.025

No 13 (61.9%) 30 (27.0%) 43 (32.6%)

Yes 8 (38.1%) 81 (73.0%) 89 (67.4%)

Necrotic.core 0.099

No 16 (76.2%) 56 (50.5%) 72 (54.5%)

Yes 5 (23.8%) 55 (49.5%) 60 (45.5%)
Adjusted p-values < 0.05 are in bold.

In the multivariate analysis, bilaterality (OR = 0.93) was associated with benign lesions,
and necrosis showed a trend toward being associated with malignancy (OR = 1.25) (Table 2).
Regarding the enhancement pattern, RCCs had a lower tumor/cortex ratio in the portal
phase compared with benign tumors (0.61 vs. 0.74, p = 0.01), and the difference in the
tumor/cortex ratio between the arterial and portal phases was significantly greater for
RCCs than benign lesions (−0.22 vs. 0.05, p = 0.008). Moreover, the difference in the average
lesion intensity between the arterial and portal phases was lower in malignant than benign
tumors (0.11 vs. 0.6, p = 0.02). (Table 4).

In the multivariable analysis, the difference in the tumor/cortex ratio between the
arterial and portal phases was the only enhancement parameter to show a significant
difference between RCCs and benign tumors (OR = 0.83) (Table 2).

Table 4. Enhancement features.

Variable Name Benign
(n = 21)

Malignant
(n = 111)

Total
(n = 132)

Adjusted
p-Value

arterial.ROI.intensity.average 0 3 3 0.680

Mean (SD) 105.033
(47.859)

97.828
(42.567)

99.001
(43.355)

ratio.tumor.cortex.arterial 0 3 3 0.562

Missing data 0 3 3

Mean (SD) 0.809 (0.361) 0.847 (0.299) 0.841 (0.309)

ratio.tumor.cortex.portal 0 1 1 0.014

Missing data 0 1 1

Mean (SD) 0.740 (0.157) 0.612 (0.177) 0.632 (0.180)

delta.intensity.average.AP 0 3 3 0.024

Missing data 0 3 3

Mean (SD) 0.600 (1.275) 0.107 (0.537) 0.187 (0.727)

delta.ratio.tumor.cortex.AP 0 3 3 0.008

Missing data 0 3 3

Mean (SD) 0.055 (0.492) −0.217 (0.309) −0.172 (0.357)
Adjusted p-values < 0.05 are in bold.

3.3. Three-Dimensional Radiomic Features

More than 200 radiomic parameters were extracted by 3D segmentation in the portal
phase. Feature selection based on Kendall’s correlation coefficient led to the retention of
35 radiomic variables in the final analysis. A full list of the retained features is provided in
the Supplementary Materials.
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In the univariable analyses, five radiomic parameters significantly differentiated malig-
nant from benign tumors: “X90th.discretised.intensity.percentile” (p = 0.03), “Global.intensity.
peak” (p = 0.03), “Intensity.mean.value” (p = 0.008), “Local.intensity.peak” (p = 0.01) and
“volume.at.intensity.fraction.90” (p = 0.04) (Table 5). “Intensity.mean.value” was the only
radiomic feature that remained significant in the multivariable analysis (OR = 0.99) (Table 2).

Table 5. Three-dimensional radiomic features.

Variable Name Benign
(n = 21)

Malignant
(n = 111)

Total
(n = 132)

Adjusted
p-Value

X90th.discretized.intensity.percentile 22.906 (3.446) 20.435 (4.551) 20.828 (4.475) 0.025

Area.density. . .aligned.bounding.box 0.544 (0.054) 0.532 (0.042) 0.534 (0.044) 0.680

Area.density. . .convex.hull 1.045 (0.086) 1.027 (0.053) 1.030 (0.060) 0.933

Area.density. . .oriented.bounding.box 0.572 (0.047) 0.561 (0.036) 0.563 (0.038) 0.680

Center.of.mass.shift.cm. 0.076 (0.061) 0.112 (0.113) 0.106 (0.107) 0.360

Cluster.shade −91.862 (274.983) −80.688 (251.410) −82.466 (254.236) 0.680

Correlation 0.675 (0.134) 0.655 (0.149) 0.658 (0.146) 0.714

Flatness 0.776 (0.105) 0.763 (0.104) 0.765 (0.104) 0.680

Global.intensity.peak 163.910 (40.505) 140.206 (38.455) 143.977 (39.597) 0.025

Gray.level.variance..GLDZM. 28.405 (8.614) 24.046 (7.029) 24.739 (7.442) 0.105

High.dependence.high.gray.level.emphasis 14,606.667
(10,457.428)

11,350.721
(5853.078)

11,868.712
(6847.744) 0.632

High.dependence.low.gray.level.emphasis 0.167 (0.295) 0.479 (1.360) 0.429 (1.257) 0.140

Intensity.histogram.coefficient.of.variation 0.214 (0.084) 0.210 (0.064) 0.210 (0.067) 1.000

Intensity.mean.value 118.633 (43.093) 83.399 (25.630) 89.005 (31.661) 0.008

Intensity.based.interquartile.range..Original.Data. 43.410 (14.082) 41.619 (15.683) 41.904 (15.402) 0.599

Inverse.elongation 0.860 (0.070) 0.861 (0.096) 0.861 (0.092) 0.680

Large.distance.low.gray.level.emphasis 0.204 (0.215) 0.428 (0.665) 0.392 (0.621) 0.099

Local.intensity.peak 135.500 (48.979) 100.684 (40.422) 106.223 (43.608) 0.016

Max.value 227.190 (50.281) 242.550 (169.494) 240.106 (156.655) 0.180

Min.value..Original.Data. −54.714 (59.865) −68.604 (44.202) −66.394 (47.051) 0.714

Number.of.compartments.GMM. 3.333 (1.390) 3.333 (1.231) 3.333 (1.252) 1.000

Number.of.gray.levels 218.524 (75.883) 219.757 (102.488) 219.561 (98.485) 0.714

Skewness..Original.Data. −0.258 (0.587) 0.022 (1.025) −0.023 (0.972) 0.105

Small.distance.emphasis 0.496 (0.135) 0.433 (0.115) 0.443 (0.120) 0.099

Small.distance.high.gray.level.emphasis 167.005 (50.245) 135.899 (62.734) 140.847 (61.810) 0.051

Small.distance.low.gray.level.emphasis 0.005 (0.005) 0.004 (0.004) 0.004 (0.004) 0.714

Small.zone.emphasis 0.586 (0.033) 0.570 (0.031) 0.573 (0.032) 0.099

Spherical.disproportion 1.128 (0.105) 1.113 (0.112) 1.115 (0.111) 0.680

Volume.at.intensity.fraction.10. 0.998 (0.004) 0.999 (0.003) 0.999 (0.003) 0.714

Volume.at.intensity.fraction.90. 0.003 (0.006) 0.001 (0.002) 0.002 (0.003) 0.042

Volume.density. . .aligned.bounding.box 0.466 (0.035) 0.462 (0.042) 0.463 (0.041) 0.919

Volume.density. . .enclosing.ellipsoid 0.976 (0.014) 0.975 (0.022) 0.975 (0.021) 0.680

Volume.density. . .oriented.bounding.box 0.504 (0.027) 0.501 (0.036) 0.502 (0.035) 0.919

Volume.fraction.difference.between.intensity.fractions 0.995 (0.009) 0.997 (0.004) 0.997 (0.005) 0.105

Zone.size.entropy 6.610 (0.303) 6.598 (0.337) 6.600 (0.330) 0.919

Adjusted p-values < 0.05 are in bold. Data are means (standard deviation). GLDZM, gray-level distance zone
matrix; GMM, Gaussian mixture model.
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3.4. Machine Learning Predictive Models

Among the eight ML models, wC5.0Tree showed the best performance according to
its sensitivity (95%), specificity (42%), AUC (0.74) and accuracy (87%) (Table 6). Of the
111 malignant lesions, 106 were correctly identified by wC5.0Tree (true positive rate = 0.955),
whereas 5 were misclassified as benign (false negative rate = 0.045). Moreover, of the
21 benign lesions, 9 were correctly classified as benign (true negative rate = 0.43), and
12 were misclassified as malignant (false positive rate = 0.57). The most important predictors
for the wC5.0Tree algorithm are shown in Figure 6.

Table 6. Predictive performance of the machine learning-based models.

Model Accuracy Sensitivity Specificity Precision Brier Score F1 Score AUC

Rpart 0.895 0.983 0.429 0.901 0.098 0.94 0.608

C5.0Tree 0.861 0.956 0.362 0.888 0.117 0.921 0.736

Logit-Lasso 0.855 0.966 0.267 0.874 0.119 0.918 0.721

RandomForest 0.879 0.972 0.386 0.893 0.105 0.931 0.773

svmLinear 0.852 0.954 0.314 0.88 0.106 0.916 0.81

wRpart 0.765 0.815 0.5 0.896 0.19 0.854 0.654

wC5.0Tree 0.867 0.95 0.424 0.897 0.114 0.923 0.739

wllasso 0.811 0.865 0.524 0.906 0.159 0.885 0.705

SVM, support vector machine; AUC, area under the receiver operating characteristic curve.
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4. Discussion

This study compared ML models in terms of their ability to differentiate benign from
malignant solid renal lesions in patients undergoing pre-operative contrast-enhanced CT at
a single institution. The radiomic features were extracted after 3D segmentation of tumors
in the nephrographic phase, and eight ML models were trained on all of these features. The
C5.0Tree model showed the best predictive performance with a sensitivity of 95%, accuracy
of 87% and AUC of 0.74.

Recently, Yap et al. [13] reported a classifier with an AUC of 0.70–0.73 for distinguishing
benign from malignant tumors. In that study, radiomic features, shape and texture were
analyzed in a large cohort of 735 renal lesions. Thus, combined shape and texture analysis
can provide good classification performance. Yang et al. [12] included 118 RCCs and
45 fpAMLs in their study and differentiated them using a radiomic model based on non-
contrast CT examinations. An AUC of 0.90 was achieved, while for the analysis of four-
phase contrast-enhanced CT images, the AUC was 0.88. Sun et al. [17] compared the
ability of ML models to differentiate among several histological subtypes in an analysis of
290 renal tumors. Their classifiers achieved sensitivity values of 86–90% for distinguishing
RCCs from benign lesions and ccRCCs from other malignancies; the respective accuracy
values were 86% and 90%. Interestingly, the models did not always perform better than
trained radiologists. That is the only study in the literature to compare the performance
of radiological, radiomic and combined radiological/radiomic models; the model based
on enhancement ratios and radiomics performed better than both the radiomic features-
only model and expert radiologists. Sun et al. also trained the same support vector
machine model to differentiate ccRCCs from pRCCs and chRCCs; ccRCCs from fpAMLs
and oncocytomas; and pRCCs and chRCCs from benign lesions.

Erdim et al. [14] achieved very good performance for their random forest algorithm:
84 solid renal masses were correctly identified as malignant at an accuracy of 91.7%. Al-
though this rate is higher than that in our study, they included a smaller patient cohort and
artificially adjusted the groups in terms of malignancy to reduce the impact of malignancy
on model performance.

The most recent meta-analysis on the use of radiomic features to characterize renal
tumors, by Muhlbauer et al. [18], included 30 studies. The overall quality of the studies was
relatively low, with a median radiomic quality score of 19.4%. The main reasons for this
were insufficient use of feature reduction methods, a lack of internal and external validation
and poor data availability. Moreover, ML models using radiomic features are susceptible to
overfitting.

Notably, the present study involved all of the common histological subtypes of renal
tumors and developed an ML model to differentiate ccRCCs from other malignant subtypes,
ccRCCs from fpAMLs and oncocytomas, and all malignant subtypes from benign tumors.
In the majority of recent studies, the predictive performance of ML models was tested
without distinguishing among subtypes [12,19–22]. Deng and Yang [12,19] recently differ-
entiated fpAMLs from RCCs (OR = 2.7–4.4). Other studies distinguished oncocytomas from
RCCs [23–25]. Li et al. developed an ML model to differentiate chRCCs from oncocytomas
and achieved very good performance (AUC = 0.964). These models were all developed
with the ultimate goal of routine clinical use.

In this study, we used an innovative, semi-automatic 3D segmentation process (in the
nephrographic phase) to obtain a volumetric tumor model. Radiomic parameters, including
shape, pixel intensity and texture features, were extracted and analyzed. The vast majority
of previous radiomic studies used 2D segmentation techniques [12,14,22] and limited data
extraction processes, especially those involving heterogeneous tumors. Our semi-automatic
method allowed us to analyze tumor margins in one slice and to obtain a volumetric model
of the masses via a software-based, time-efficient deep learning algorithm.

Our study had several limitations. First, the cohort was imbalanced; malignant
and benign tumors represented 84% and 16% of all tumors, respectively. We included
patients who underwent surgical treatment for the removal of a renal lesion; before partial
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nephrectomy, the images were reviewed, and most of the benign lesions were excluded.
Furthermore, fpAMLs accounted for only 1.5% of all solid renal tumors in our cohort, which
is lower than the rates (6–13%) reported in other recent studies [13,17,19]. Furthermore, we
only included patients who underwent pre-operative CT examination at our institution
using a protocol specific for MCE-CT. This allowed us to obtain homogenous imaging data,
thus increasing the robustness of the analysis of radiomic features. However, this also raises
issues concerning the clinical relevance and generalizability of the results. Furthermore,
the 3D segmentation technique automatically reduces the margins of the volumetric model
by 1 mm. This method is widely used in radiomic studies for margin shrinkage, which
frequently described manual reductions in tumor contours of 1–3 mm [14,21,22,26], because
it reduces the vulnerability of radiomic features to partial volume effects. However, Kocak
et al. [27] recently showed that segmentation had a non-negligible impact on radiomic
features. Their “specific contour” segmentation method yielded AUC values of 0.85–0.98
when distinguishing benign from malignant tumors compared with 0.75–0.8 when using
the margin shrinkage approach. Since this is time consuming, it is not adapted to current
clinical practice at the moment.

Finally, our findings were not validated against external data. Regarding the relatively
small number of renal tumors included in the cohort, we trained and evaluated the models
using data from the entire cohort and the 10-fold cross-validation technique. Although
this method is widely used in radiomic studies, larger cohorts and external validation sets
should be used to assess the performance of the ML algorithm developed herein.

5. Conclusions

This study showed that ML models can help with the non-invasive differentiation of
malignant from benign solid renal tumors. These classifiers can efficiently analyze clinical,
conventional radiological and radiomic features extracted from MCE-CT images to help
clinicians diagnose and treat renal tumors.
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