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Abstract: Lung cancer is a prevalent malignancy that impacts individuals of all genders and is often
diagnosed late due to delayed symptoms. To catch it early, researchers are developing algorithms
to study lung cancer images. The primary objective of this work is to propose a novel approach
for the detection of lung cancer using histopathological images. In this work, the histopathological
images underwent preprocessing, followed by segmentation using a modified approach of KFCM-
based segmentation and the segmented image intensity values were dimensionally reduced using
Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO). Algorithms such as KL
Divergence and Invasive Weed Optimization (IWO) are used for feature selection. Seven different
classifiers such as SVM, KNN, Random Forest, Decision Tree, Softmax Discriminant, Multilayer
Perceptron, and BLDC were used to analyze and classify the images as benign or malignant. Results
were compared using standard metrics, and kappa analysis assessed classifier agreement. The
Decision Tree Classifier with GWO feature extraction achieved good accuracy of 85.01% without
feature selection and hyperparameter tuning approaches. Furthermore, we present a methodology to
enhance the accuracy of the classifiers by employing hyperparameter tuning algorithms based on
Adam and RAdam. By combining features from GWO and IWO, and using the RAdam algorithm,
the Decision Tree classifier achieves the commendable accuracy of 91.57%.

Keywords: histopathology; benign; adenocarcinoma; PSO; GWO; KL divergence; IWO; multilayer

perceptron; bayesian linear discriminant analysis classifier

1. Introduction

Cancer is increasingly common, and doctors use blood tests, biopsies, and image
analysis for its diagnosis. It originates from damaged cells and varies among individuals.
Understanding its source helps us comprehend its condition [1]. Lung cancer, often tied
to smoking or harmful exposures, is a prevalent cancer type causing rising death tolls
globally [2]. It affects both genders and has a low survival rate. Early detection is crucial for
better outcomes. The five-year survival rate is approximately 34% for surgically removable
early-stage cancer, compared to less than 10% for inoperable cases. Lung cancer treatment
depends on histological characteristics, categorized as small cell (SCLC) and non-small
cell (NSCLC) types, of which 80% to 85% are NSCLC and the rest are SCLC [3]. NSCLC
has subtypes such as benign, adenocarcinoma (ACA), and squamous cell carcinoma (SCC).
SCC displays characteristics such as the presence of clusters of polyhedral cells, keratiniza-
tion, and the formulation of keratin pearls. Once the tissue type is identified, suitable
treatments can be selected: either surgery, chemotherapy, radiation, targeted therapy, or
immunotherapy.

Early detection and treatment of cancer are vital for better patient outcomes. Tradi-
tional diagnostic methods involve clinical assessments, lab tests, imaging, and a procedure
called biopsy [4], which is considered the gold standard. During biopsy, tissue samples
are taken and examined under a microscope using techniques such as hematoxylin and
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eosin staining. This histopathological analysis helps identify abnormal tissue growth
and cell characteristics. Accurate identification and classification of individual cell nuclei
are of utmost importance when evaluating tissue samples for cancer diagnosis. Pathol-
ogists inspect these samples at different magnifications, looking for signs of malignancy
such as irregular cell shape, dark nuclei, and increased mitotic figures [5], and count to
generate reliable results [6]. Manual histopathological examination is a time-consuming
process due to the frequent presence of numerous nuclei from diverse categories clustered
together in histopathological images, which can result in disagreements among patholo-
gists [7], prompting the development of automated systems. Researchers have utilized
image processing, pattern recognition, and machine learning/deep learning techniques to
create computer-aided diagnostic (CAD) systems. These systems aim to detect and clas-
sify carcinomas quickly and reliably [8]. Machine learning and deep learning algorithms
improve CAD performance as they learn from more data. These approaches use either
microscopic images or whole slide images (WSIs) and extract features to aid in diagnosis.
The challenge is to create a novel, versatile, and fully automated CAD system that can
handle both microscopic images and WSIs, regardless of any imaging artifacts. Automated
analysis of microscopic images is vital for evaluating digitized specimens, reducing inter-
observer variations, and improving objectivity and reproducibility, as emphasized by Foran
et al. [9]. This advancement can enable comparative studies of diseases and potentially aid
in diagnostic decision-making.

Different imaging techniques, such as ultrasounds, MRIs, CT scans, X-rays, and needle
biopsies, are used to diagnose lung cancer. X-ray imaging, considered a fundamental tech-
nique for lung examination, possesses restricted resolution and the potential to overlook
specific areas of interest [10]. CT scans are commonly used to detect early stages of lung
cancer and locate tumors before surgery, but they expose patients to harmful radiation with
repeated scans. MRI demonstrates notable sensitivity and specificity, valuable for identify-
ing bone metastases, although it is not advisable for diagnosing lung cancer. Ultrasound, a
non-invasive method, proves adept at identifying postoperative lung issues and surpasses
X-rays in effectiveness [11]. While image examination aids in diagnosis, staging, treatment
evaluation, and prognosis assessment, histopathological examination remains the most
reliable method to determine tumor characteristics and clinical stages. Histopathological
images offer an intricate view of cellular and tissue-level transformations linked in differen-
tiating between various conditions and cancer types, empowering pathologists to deliver
precise and reliable diagnoses. Moreover, they are invaluable for pinpointing distinct
biomarkers linked to various cancer types and grades, facilitating tumor classification and
subtyping. Histopathological images form a dependable diagnostic framework known for
its consistency and reliability in cancer diagnosis [12]. By harnessing extensive datasets
of annotated histopathological images, it becomes feasible to create highly dependable
algorithms for automated cancer diagnosis. These algorithms effectively streamline the
diagnostic process, reducing the necessity for extensive manual examination [13].

The objective of this study is to create a classification framework that can analyze
histopathological images data related to lung cancer. The goal is to accurately classify
individuals as either having cancer or not, using machine learning techniques and meta-
heuristic algorithms for tasks such as feature extraction, feature selection, and classification.
The following subsection analyzes various methods for cancer detection and classification
using image processing and classification techniques.

Review of Previous Work

In recent times, the research community has shown significant interest in diagnosing
Lung Cancer through histopathological images. Numerous methodologies have been
explored, utilizing a range of machine learning and deep learning techniques, across
diverse datasets to detect instances of lung cancer.

Various strategies have been proposed to identify irregularities in lung-related images,
encompassing chest radiographs, CT scans, ultrasound images, histopathological images,
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and microarray data. Ozekes and Camurcu [14] utilized template matching, while Schilham
et al. devised a computer-aided detection (CAD) system that encompasses preprocessing,
the identification of candidate nodules, feature extraction, and cancer classification [15].
Wang et al. [16] executed the classification of pathology images concerning lung cancer
using a convolutional neural network (CNN) methodology, incorporating cell segmentation.
The final layer of the CNN model integrated the Softmax activation function to enhance
the classification process. Through the application of the region of interest (ROI) technique
as a preliminary step, they focused on cell areas containing relevant tumors. The achieved
classification accuracy for the three-class image dataset reached 90.1%. Dehmeshki et al. [17]
employed a genetic algorithm based on shapes for template matching, while Suarez-Cuenca
et al. used an iris filter for CT image discrimination [18]. Murphy et al. used a K-nearest
neighbor (KNN) classifier for nodule detection [19], and Giger et al. used geometric features
in their CAD system for CT images.

Wei et al. [20] undertook the categorization of histopathological images depicting
six classes of lung cancer utilizing CNNs. They specifically employed ResNet models for
their investigation. The ResNet models were integrated with pre-trained approaches from
ImageNet and COCO image databases. Prior to the model training phase, the input data
underwent preprocessing, which included the application of augmentation techniques. The
study’s achievement in terms of classification F-score reached a notable 90.4%. Mohammed
Al-Jabber et al. [21] employed histopathological images from the LC25000 dataset, employ-
ing both ANN and the GoogLeNet and VGG-19 models. This combination yielded an
impressive accuracy of 99.64%. Teramoto et al. [22] effectively distinguished histopatholog-
ical images spanning three types of lung cancer through the application of a deep learning
model. They implemented an augmentation approach that involved rotating, flipping, and
applying filters to each image. Following this, they employed their developed deep CNN
model to carry out the classification process. The outcomes of their classification efforts
yielded an accuracy of around 70%. Shapcott et al. [23] conducted their model training by
initially subjecting the input data to a preprocessing stage, integrating the augmentation
technique. They employed a deep learning methodology for classifying histopathological
images related to colon cancer. The dataset encompassed four distinct classes. To facilitate
cell identification, a cell patches algorithm was employed on each image. The images were
segmented into specific dimensions through segmentation procedures. The classification
process was then conducted using the CNN model based on the defined cell patches. The
obtained correlation accuracy rates ranged between 90% and 96.9%.

Barker et al. an automated system to classify brain tumors using digital pathology
images [24]. Ojansivu et al. explored an automated method for categorizing breast cancer
from tissue samples [25]. Ficsor et al. proposed an automated classification method for
colon inflammation using digital microscopy images of histological sections [26]. The
authors of a study, Mouelhi et al. [27], used various techniques such as Haralick’s textures,
histogram of oriented gradients (HOG), and color-based statistical moments (CCSM) to
extract features from biopsy images and classify cancerous cells. The features included
energy, correlation, homogeneity, contrast, GLCM texture features, as well as RGB, gray
level, and HSV color components. Huang and Lai [28] focused on histology image analysis,
employing texture features and KNN, SVM for image classification and segmentation. Their
approach achieved a classification accuracy of 90.07% and 92.8%. Gessert et al. [29] executed
the classification procedure employing CNN models based on transfer learning, leveraging
microscopic images of colon cancer. Their study employed a dataset that comprised both
benign and malignant images. They trained the dataset using various models including
Inception, VGG, and DenseNet. Among these, the DenseNet model yielded the most
promising classification outcome, achieving a classification accuracy of 91.2%.

Sinha and Ramkrishan [30] studied small biopsy images, analyzing cell characteristics
such as shape, size, color, and other properties. Four classification methods were com-
pared: Bayesian, KNN, neural networks, and SVM. The last two methods achieved the
highest accuracy rates of 94.1%, while the first two had lower rates of 82.3% and 70.6%.
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Kasmin et al. [31] examined microscopic biopsy images, considering characteristics such as
cell /nuclei size, cell boundary length, minimum polygon area enclosing a cell, major axis
length of an ellipse fitted to a cell, filled cell area, and average cytoplasmic intensity. They
used neural networks and achieved classification accuracies of 86% and 92%. Chia-Hung
Chen et al. [32] used a convolutional neural network to diagnose endobronchial ultrasound
images, achieving an improved accuracy of 85.4% compared to traditional methods. Azka
Khoirunnia et al. [33] developed a lung cancer detection system using a combination of
CNN and RNN with Microarray data. In their research, CNN achieved 83% accuracy, RNN
reached 71%, and the fusion of CNN and RNN (CRNN) attained the highest accuracy at
91%. Shahid Mehmood et al. [34] focused on classifying histopathological images of lung
and colon cancers. By using AlexNet along with a technique called Class-Selective Contrast
Enhancement, they achieved an impressive accuracy of 98.4%.

This paper is structured as follows: Section 2 focuses on the methodology employed
for detecting lung cancer. Section 3 explores the feature extraction techniques including
Particle Swarm Optimization and Grey Wolf Optimization whereas Section 4 explores the
feature selection techniques, such as KL Divergence, and Invasive Weed Optimization.
Section 5 explains the different classifiers used and hyper parameter updating method and
its implementation. Section 6 presents the cumulative results, and Section 7 concludes
the paper.

The following section deals with the methodology employed for identifying lung
cancer through histopathological images.

2. Methodology for Lung Cancer Detection

This study employed lung histopathological images sourced from the LC25000 Dataset,
which is available online. Andrew Borkowski and his colleagues from James Hospital
Tampa, University of South Florida, and the Moffitt Cancer Center in Florida, USA, worked
together to collectively assemble this dataset. The dataset encompasses histopathological
images representing lung and colon cancer cases. Excluding colon cancer cases, the col-
lection includes a total of 500 lung tissue images, divided equally between Benign Lung
tissue and Lung Adenocarcinomas. These images were originally captured from pathology
glass slides and were later resized to square dimensions of 768 x 768 pixels, down from
their original size of 1024 x 768 pixels. The dataset underwent augmentation, resulting in
an expansion to a comprehensive set of 10,000 lung histopathological color images which
are categorized into two classes: Benign (N) and Adenocarcinoma (ACA), each consist-
ing of 5000 images. These images are resized to a standard size of 256 x 256 followed
by converting into a grey scale image. Notably, the images portray lung benign tissue
characterized by abnormality but not indicative of cancer, while lung adenocarcinoma, the
most prevalent form of lung cancer in the United States and notably linked to smoking,
forms the second category.

Figure 1 shows the general schematic diagram for identifying and categorizing lung
cancer in histopathological images. The input histopathological image will undergo conver-
sion into a linear vector comprising 65,536 elements (due to the image’s size of [256 x 256]).
The procedure involves image pre-processing and a modified KFCM-based segmentation.
During segmentation process approximately as [190 x 190] of the original image (i.e., nearly
36,100 intensity values) are segmented and used for further processing. These values will
be directly employed to initialize the positions of birds in the Particle Swarm Optimization
(PSO) and grey wolves in the Grey Wolf Optimization (GWO) algorithms. Optimization
algorithms such as PSO and GWO are used to obtain a matrix of [512 x 10] dimensionally
reduced intensity values from the segmented images. These dimensionally reduced fea-
tures undergo feature selection techniques such as KL divergence and IWO. The selected
features are then inputted into classifiers to evaluate their performance of the classifiers.
Furthermore, an enhancement in the accuracy of lung cancer classification across various
classifiers including SVM, KNN, Random Forest, Decision Tree, Softmax Discriminant,
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Multilayer Perceptron, and BLDC classifiers is achieved through the implementation of a
Hyper Parameter Updation algorithm based on the RAdam technique.
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Figure 1. Schematic representation for detecting lung abnormalities from Histopathological Images.

2.1. Histopathological Image Preprocessing

Histopathological analysis serves as the definitive standard for evaluating the quality
and clinical staging of tumors [35]. In the realm of diagnosing and treating medical
conditions, healthcare professionals heavily rely on histopathological images. These images
establish a crucial cornerstone for predicting patient survival rates [36].

As per available reports, histopathological images present several challenges:

e  The images exhibit intricate geometric structures and complex textures that arise from
the vast diversity in structural morphology [37].

e  Notably, histopathological images are susceptible to color inconsistencies and noise
due to external factors such as variations in illumination conditions [38].
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e  Variations in microscope magnification, equipment settings, and other variables con-
tribute to inconsistencies in image sizes and resolutions within histopathological
images [39].

e  FElements of significance, such as local micro-vessels with distinctive textural char-
acteristics, significantly influence disease diagnosis within histopathological images.
Extracting these features is of paramount importance in supporting the classification
and diagnosis of lung cancer [40].

Due to these factors, the histopathological images we encounter are frequently not
perfect and these images show that image quality is affected by noise during acquisition
and artifacts during sample preparation and slide digitization. Preprocessing methods are
employed in histopathological images to enhance image quality, rectify anomalies, amplify
pertinent characteristics, and establish uniformity, ultimately resulting in heightened pre-
cision and dependability of diagnostic outcomes. The study demonstrates that using an
efficient adaptive median filter enhances image quality, reduces artifacts, and facilitates
accurate diagnosis and analysis. However, when subjected to an adaptive median filter,
these images tend to become smoother and exhibit reduced noise, rendering them suitable
for our forthcoming investigations. After artifact removal, the filtered histopathological
images are used for segmentation. Here, the size of the selected region of interest (ROI) is
256 x 256 which is the complete original image.

2.2. Histopathological Image Segmentation

A Modified Kernel Fuzzy C-Means methodology is employed to effectively segment
normal and abnormal regions in histopathological images even though outliers are encoun-
tered. Image segmentation is the process of dividing an image into distinct regions based
on certain image characteristics, with the goal of isolating and identifying specific regions
within the image [41]. In this scenario, we have an input histopathological image denoted
as H, which consists of a set of color images x; at pixeli (i =1, 2, ... N) and these color im-
ages are represented as X = {x1, X, ..., xy } C R, in the k-dimensional space. The clus-
ter centers within the histopathological images are represented as Y = {y1, y2, ..., ¥c },
where c is a positive integer (2 < ¢ < N), and m;; represents the membership value for
each pixel i in the j-th cluster (j =1, 2, ... ¢). In the Kernel Fuzzy C-Means algorithm,
clusters are formed in the image space by assigning distinct membership values to all
pixels. The objective function or general equation for the Kernel Fuzzy C-Means algorithm
is expressed as follows in the Equation (1):

N ¢
Okrcm = sz?] ||xi—yj||2,1 <n<oo )
i=1j=1

where n represent an exponent used for regularization, with the condition that, n > 1, and
| — Y; H2 denotes the squared grayscale Euclidean distance between x; and y;, which is
given in Equation (2):

s

Cc
Y mij=1, myj € 0,1, 0< Y my <N @)
j=1

i=1

Using the membership function derived from the alternate optimization approach,
the process of iteratively updating the cluster centers is carried out according to the
Equations (3) and (4).

1
T (lxi =12/l = el

®)

m,']' =

)1/(7171)
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To reduce the impact of noise, the Equation (5) incorporates the spatial information of

neighboring pixels,

N ¢ N ¢
Okren—s = Y Yo mlllxi =yl + -3 Y- (2 I, —yj||2> ®

i=1j=1 i=1j=1 ren;

Here, the spatial information is denoted by «, N; represents the set of pixels and its
cardinality is defined as N, the neighborhood function is substituted by || ¥; — y;|
of NLRre;\] |xi — v 2, where, % represents a color scale-filtered image, and the Euclidean

R

distance is replaced with the correlation distance measure to avoid the neighborhood
function. The updated equation is represented in Equation (6):

2.
,in place

N ¢ N ¢
2 2
Oxrem—siz) = Yo 3 mi I = yil* +a)s Y mi (Ix = ;1) ©)
i=1j=1 i=1j=1

In this study, a modified version of KFCM computes the parameter 7; for each cluster
at every iteration to substitute for « [42]. The calculation of this parameter utilizes the
correlation function, as outlined in the Equation (7):

o ming ;i (1 — C(y’j,y]-))
I maxg (1 - C(yr, ')

@)

Here C represents the correlation function or correlation distance measure. Here,
determining the precise characteristics of C typically necessitates a large number of patterns
and numerous cluster centers to identify optimal value for 77;. To address this challenge, a
solution is devised by integrating spatial context and scale information through the incor-
poration of fuzzy factor. The objective function of the KFCM, as presented in Equation (8),
incorporates the inclusion of the fuzzy factor F;;.

N ¢
Oc krem = Y 3 [m i7"l 1 — yj I + ] ®)
i=1j=1

Then the altered fuzzy factor Fl-’]- is derived using Equation (9).

Fi= Y wp(l—my)" ©)
CEN, i#k

This adjusted fuzzy factor plays a crucial role in influencing local neighbor relation-
ships and substituting the traditional distance metric with a correlation function. Here, w;;
represents the fuzzy factor for cluster i, and 1 — C(x; — ;) signifies the correlation metric
function. Since the histopathological images contain variation in intensities, gradients,
and complex backgrounds, it becomes imperative to employ a modified KFCM-based seg-
mentation method to distinguish between the region of interest (ROI) and the background
in the image. Figure 2 illustrates the sequence of the original image, the filtered image,
the identified ROI within the ACA image, and the segmented image generated using the
modified KFCM for the Adenocarcinoma (ACA) class.
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(d)

Figure 2. (a) Original ACA image; (b) Filtered ACA image; (c) ROI of the ACA Image; (d) Segmented
ACA image.

The following section focuses on the methods utilized for extracting dimensionally
reduced image features, aimed at enhancing the classification and detection of lung cancer
using histopathological images.

3. Feature Extraction

Feature extraction techniques condense essential information from images into com-
pact feature vectors, enabling the effective classification of complex image datasets using
linear algorithms [43]. As the abundant features within histopathological images serve
as a fundamental resource for clinicians to conduct diagnoses, the proficient extraction
of these image features stands as a pivotal factor in enhancing the precision of computer-
aided diagnosis [44]. This study delves into the impact of two distinct feature extraction
techniques such as PSO and GWO on the classification of histopathological images related
to lung cancer.

3.1. Particle Swarm Optimization (PSO)

Kennedy and Eberhart introduced the PSO algorithm in 1995, which draws inspiration
from the hunting behavior of birds. This optimization method relies on a population and
leverages the social dynamics of bird flocks. It starts by creating particles and setting key
parameters for the optimization process. [45].

Every particle has a unique position that is traced by the following equation:

k ko ok k
xl' = (xﬂ, xiz, e ,xiq) (10)
The velocity is traced by the following equation:
k ko k k
Yi = (yilfyizf' : -r%'q) (11)
Each particle’s velocity is updated as:
yi'(H - wiy;‘ + 1 (pbesti - xf‘) + corp (gbestl- - xf‘) (12)

Here, r1 and r; represent randomly selected values within the range of 0 to 1. The
acceleration coefficients, denoted as c; and ¢y, play a role in analyzing the motion of
particles. The weight function is expressed as:

w; = Wmax — Wiin < k (13)
kmax

The position of each particle is given by:

x = 4yt (14)
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The particle that possesses the optimal position progresses to the next level. The best
position for an individual particle is represented by the letters “p-best”, while the letters
“g-best” represent the best position among all particles. The weight parameter “w;” is
chosen between 0.45-0.9, maximum iteration values are 100-1000, both r; and r, are set to
0.85, cognitive component (¢ ) and Social Component (¢;) are chosen between 1.0-2.0. The
above values are determined based on the trial-and-error method.

3.2. Grey Wolf Optimization (GWO)

Grey wolves are known for living and hunting in groups called packs [46]. The
process of searching and hunting involves plotting to track and approach a target efficiently.
This optimization technique, inspired by the search and hunting patterns of gray wolves,
employs symbols such as Alpha («), Beta (), and Gamma () to represent the best, next
best, and third best solutions in mathematical modeling. Lambdas are presumed to be
the remaining possible solutions and they guide the alpha, beta, and gamma wolves in
searching and surrounding the prey. Three coefficients, A, B, and C are suggested to
describe the encircling behavior. The equation of hunting strategy is formulated as follows:

Dy = |By-Xo — X(1)] (15)
Ds = |Bo-Xg — X(1)] (16)
Dy = [B3-Xy — X(t)] (17)

where D,, Dg and D.,, denotes the adjusted distance variables from the alpha, beta, and
delta positions to the other wolves, By, B, and B3 are coefficients that assist in adapting
these distance variables, t signifies the ongoing iteration, X indicates the position of the
grey wolf and it follows as,

X1 = | Xy — A1Dy| (18)
Xp = | Xg — A Dy (19)
X3 = | Xy — A3D,| (20)
x(n = 022 e1)

The parameters A and B can be mathematically expressed as follows:
A=2ir —i (22)

B=2n (23)

The control parameter i chases A, which eventually drives the lambda wolves to
flee from the dominant wolves such as «, B and . When there are multiple dominant
wolves (I Al > 1), the grey wolves run away from them, allowing lambda wolves to
search extensively and explore more during optimization. However, when there are fewer
dominant wolves (| Al < 1), the grey wolves approach them and follow their guidance
in hunting, which is called local search in optimization. During the iterations, the control
parameter i is linearly decreased from 2 to 0, and is represented as,

i=2— (iter)- (24)

max_iter

where max_iter indicates the maximum iteration, and it is started from the beginning.
In the context of the classification problem, the introduction of randomness through

variables 1 and r; leads to heightened fluctuations in the wolves’ positions. Consequently,

their ability to effectively converge towards the target (prey) becomes hindered. To address
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this issue, a decision has been made to treat the values of ry and r, in Equations (9) and (10)
as control parameters within a confined range of [0, 1], rather than allowing them to
remain purely random. Through empirical experimentation, it has been determined that
the optimal performance of the Grey Wolf Optimization (GWO) algorithm is achieved
when both r; and r, are set to 0.8. This adjustment enhances the accuracy of the GWO
algorithm in tackling the classification problem.

3.3. Statistical Analysis

To enhance the accuracy of cancer prediction using dimensionally reduced features,
it is advisable to calculate statistical parameters from the region of interest. The intensity
values, which have been reduced in dimensionality through methods such as PSO (Particle
Swarm Optimization) and GWO (Grey Wolf Optimization), are then examined using
statistical measures such as Mean, Variance, Skewness, Kurtosis, Pearson Correlation
Coefficient (PCC), and CCA (Canonical Correlation Analysis). These statistical parameters
help determine whether the outcomes accurately reflect the inherent properties of lung
cancer data within the subspace. These attributes were derived for both normal and
malignant classes.

The statistical parameters of cancer data, extracted using the PSO and GWO methods,
are shown in Table 1. Variance quantifies data spread. Notably, Table 1 reveals lower mean
values for normal cases using both PSO and GWO, while higher mean values are evident
for malignant cases using both methods. Furthermore, the Malignant group demonstrates
greater data spread compared to the Normal group as indicated by Table 1. GWO shows a
Pearson correlation coefficient of 1 for both cases, implying strong intra-class correlation.
Skewness and kur