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Abstract: Background: Although recurrence rates after radiofrequency catheter ablation (RFCA) in
patients with atrial fibrillation (AF) remain high, there are a limited number of novel, high-quality
mathematical predictive models that can be used to assess early recurrence after RFCA in patients
with AF. Purpose: To identify the preoperative serum biomarkers and clinical characteristics as-
sociated with post-RFCA early recurrence of AF and develop a novel risk model based on least
absolute shrinkage and selection operator (LASSO) regression to select important variables for pre-
dicting the risk of early recurrence of AF after RFCA. Methods: This study collected a dataset of
136 atrial fibrillation patients who underwent RFCA for the first time at Peking University Shen-
zhen Hospital from May 2016 to July 2022. The dataset included clinical characteristics, laboratory
results, medication treatments, and other relevant parameters. LASSO regression was performed on
100 cycles of data. Variables present in at least one of the 100 cycles were selected to determine
factors associated with the early recurrence of AF. Then, multivariable logistic regression analysis was
applied to build a prediction model introducing the predictors selected from the LASSO regression
analysis. A nomogram model for early post-RFCA recurrence in AF patients was developed based
on visual analysis of the selected variables. Internal validation was conducted using the bootstrap
method with 100 resamples. The model’s discriminatory ability was determined by calculating
the area under the curve (AUC), and calibration analysis and decision curve analysis (DCA) were
performed on the model. Results: In a 3-month follow-up of AF patients (n = 136) who underwent
RFCA, there were 47 recurrences of and 89 non-recurrences of AF after RFCA. P, PLR, RDW, LDL,
and CRI-II were associated with early recurrence of AF after RFCA in patients with AF (p < 0.05).
We developed a predictive model using LASSO regression, incorporating four robust factors (PLR,
RDW, LDL, CRI-II). The AUC of this prediction model was 0.7248 (95% CI 0.6342–0.8155), and the
AUC of the internal validation using the bootstrap method was 0.8403 (95% CI 0.7684–0.9122). The
model demonstrated a strong predictive capability, along with favorable calibration and clinical
applicability. The Hosmer–Lemeshow test indicated that there was good consistency between the
predicted and observed values. Additionally, DCA highlighted the model’s advantages in terms of
its clinical application. Conclusions: We have developed and validated a risk prediction model for
the early recurrence of AF after RFCA, demonstrating strong clinical applicability and diagnostic
performance. This model plays a crucial role in guiding physicians in preoperative assessment
and clinical decision-making. This novel approach also provides physicians with personalized
management recommendations.

Keywords: atrial fibrillation; radiofrequency ablation; early recurrence; LASSO regression; nomogram

1. Introduction

Atrial fibrillation (AF) has become a prevalent sustained cardiac arrhythmia in clinical
practice. Epidemiological studies have revealed that the incidence of AF affects between
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2.3% and 3.4% of the population [1]. With an increasing aging population and the im-
provement of medical technology, the incidence and prevalence rate of AF are significantly
increasing [2]. The effect of hemodynamic changes, progressing atrial and ventricular
mechanical dysfunction, and thromboembolism contribute to an increased risk of stroke,
heart failure, and increased mortality in patients with AF [3]. Radiofrequency ablation
(RFCA) is currently the primary treatment for the recovery of sinus rhythm and prevention
of complications in patients with AF that is not controlled by pharmacologic therapy and is
difficult to treat [4–6].

However, the evidence suggests that patients experiencing AF recurrence after RFCA
are not uncommon [7–9]. AF recurrence can be categorized into early recurrence (within
3 months after RFCA) and late recurrence (occurring more than 3 months after RFCA).
Previous studies have found that the incidence of the early recurrence of AF (ERAF) is
as high as 40–60% [10,11]. The 90 days after RFCA surgery are referred to as the “blank
period”, during which, early recurrence of AF takes place. It has been proposed that early
recurrence is associated with factors such as inflammatory damage during the ablation
process [12], transient autonomic nervous system imbalances [13], and uneven scar tissue
formation [14], but these associations lack specificity and are not often considered as actual
clinical recurrences [15–17]. Nevertheless, many studies have demonstrated a connection
between early and late recurrences after RFCA [18–20]. The concept of the “blank period”
is still controversial, and early recurrence of AF should not be ignored [21,22]. In recent
years, some studies have found early recurrence to be a strong predictor of late recurrence
after radiofrequency ablation of atrial fibrillation [23]. The risk factors for early recurrence
and the significance of early recurrence in AF are still unclear. Therefore, studying the risk
factors for early recurrence in patients with AF after RFCA is of great significance for the
long-term treatment of postoperative AF patients.

At present, most studies only identify factors that may affect atrial remodeling and
involve the pathogenesis of AF as indicators for predicting the recurrence of AF. For
instance, certain serum inflammatory markers such as C-reactive protein (CRP), interleukin-
6 (IL-6), interleukin-2 (IL-2), endothelin-1, matrix metalloproteinase-2, and tumor necrosis
factor-alpha have been considered relevant to the early recurrence of AF after RFCA [24–27].
However, the predictive value of these factors for AF recurrence remains controversial, and
these biomarkers can only be reflective during the acute phase; as such, they cannot be
used for the early identification of patients at high risk of AF recurrence after RFCA [28].
Currently, research on predicting the risk of postoperative recurrence in patients with AF
through machine learning algorithms is very limited. Various risk scores for AF recurrence
have been identified, but the discriminatory ability of these scores is highly variable and
there are no widely used models to quantitatively predict AF recurrence in patients after
RFCA [29]. In this study, we quantified preoperative parameters associated with early AF
recurrence and employed the LASSO regression analysis to identify risk factors predicting
early AF recurrence after RFCA. We developed and validated a novel predictive model to
assess the risk of AF recurrence in patients undergoing RFCA, thereby equipping clinicians
with additional potential tools to rapidly identify high-risk patients for early intervention
and consequently reduce the recurrence rate of AF after RFCA.

2. Materials and Methods
2.1. Study Population

This study retrospectively analyzed the data of 150 patients with AF (including
95 with paroxysmal AF and 41 with persistent AF) who underwent their first RFCA
procedure in the Department of Cardiology at Peking University Shenzhen Hospital from
May 2016 to July 2022. All procedures were guided using the CARTO3 three-dimensional
mapping system, and successful restoration of sinus rhythm was achieved. Inclusion
criteria: Patients with a confirmed diagnosis of AF based on medical history, electrocar-
diography, or Holter monitoring (ESC 2020 AF guidelines) who underwent RFCA were
included. Exclusion criteria: age < 18 or >90 years; presence of left atrial or left auricle
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thrombus detected by preoperative transesophageal echocardiography; severe valvular
heart disease (severe mitral insufficiency and stenosis, severe tricuspid insufficiency and
stenosis); severe heart failure (NYHA III or NYHA IV); malignant tumors in patients with a
life expectancy of less than one year; hyperthyroidism; and chronic obstructive pulmonary
disease. Among them, 136 individuals (90.7%) met the inclusion criteria and were included
in this study (Figure 1).
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This study has been approved by the Medical Ethics Committee (No. [2023] (078)) of
Peking University Shenzhen Hospital, and all procedures were conducted in accordance
with the principles of the Declaration of Helsinki and its subsequent amendments or
comparable ethical standards.

2.2. Clinical Data

Basic baseline data of patients were collected, including age; gender; and whether they
had hypertension, diabetes, coronary atherosclerotic heart disease, severe kidney disease
(chronic renal failure IV, V), chronic obstructive heart disease, or severe cardiac insufficiency
(cardiac function III, IV). Preoperative echocardiography (esophageal echocardiography),
12-lead electrocardiogram, 24 h Holter monitoring, and blood biochemical measurements
were collected from patients.

2.3. Radiofrequency Catheter Ablation

All patients underwent RFCA under the guidance of the CARTO3 three-dimensional
mapping system. A circular electrode was used to construct a complete left atrial anatom-
ical model. Cold saline-solution-infused temperature-controlled ablation catheters were
employed to perform circumferential isolation procedures on the left and right pulmonary
veins. Ablation power was set to between 35 and 50 W, temperature was 43 ◦C, and the
saline infusion rate was 17 mL/min. The ablation endpoint was achieved with electrical
isolation of the pulmonary veins in the left atrium.

2.4. Postoperative Follow-Up and Recurrence

All patients underwent regular follow-up visits at the arrhythmia clinic at 1 week,
1 month, and 3 months after RFCA, or when symptoms of discomfort were found. Dur-
ing these visits, physical examinations and 12-lead electrocardiograms were performed.
Patients experiencing symptoms of arrhythmia recurrence (such as palpitations, dizzi-
ness, etc.) were subjected to 24 h or 72 h Holter monitoring. If some patients were followed
up at external institutions due to individual circumstances, telephone follow-up was con-
ducted. The study endpoint was defined as the first documented occurrence of atrial
tachyarrhythmia (atrial flutter, AF, atrial tachycardia) lasting >30 s within the initial three
months following RFCA. Based on the 3-month postoperative follow-up records, patients
were categorized into recurrence and non-recurrence groups.

2.5. Post-Analysis Variable Definitions

Based on the values of neutrophils (N), lymphocytes (L), monocytes (M), platelets
(P), hemoglobin (Hb), and red cell distribution width (RDW) of preoperative patients,
new inflammatory indices were determined as follows: the ratio of hemoglobin to red cell
distribution width (HRR) was defined as Hb/RDW, the systemic immune inflammation
index (SII) was defined as P × N/L, the neutrophil to lymphocyte ratio (NLR) was defined
as N/L, the platelet to Lymphocyte ratio (PLR) was defined as P/L, and the lymphocyte to
monocyte ratio (LMR) was defined as L/M.

2.6. Statistical Methods

Continuous variables were presented as the mean standard deviation or median and
interquartile range, and group comparisons were performed using either the Student’s
t-test or the Mann–Whitney U test. Categorical variables were expressed as frequencies
and percentages, and group comparisons were conducted using the chi-squared test or
Fisher’s exact test. Regarding the development of the predictive model, modern statistical
shrinkage techniques, specifically, the least absolute shrinkage and selection operator
(LASSO) regression, were employed to select factors related to the early recurrence of AF.
The LASSO regression analysis is a shrinkage and variable selection method for linear
regression models. In order to obtain the subset of predictors, the LASSO regression
analysis minimizes the prediction error for a quantitative response variable by imposing a
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constraint on the model parameters that cause regression coefficients for some variables to
shrink toward zero. Variables with a regression coefficient equal to zero after the shrinkage
process are excluded from the model while variables with non-zero regression coefficient
are most strongly associated with the response variable. Based on the type measure of
−2log-likelihood and binomial family, the LASSO regression analysis running in R software
runs the K cross-validation for the centralization and normalization of included variables
10 times and then picks the best lambda value. “Lambda.lse” gives a model with good
performance but the least number of independent variables. So, the LASSO method was
used to analyze the data in the training set to select the optimal predictors in the present
risk factors. Then, multivariable logistic regression analysis was used to build a prediction
model by introducing the feature selected in the LASSO regression model [30]. All of the
selected features had statistical significance and were applied to develop the nomogram
prediction models for he early recurrence of AF after RFCA. The discriminative ability of the
model was determined by calculating the AUC. Internal validation was performed using
bootstrap resampling (repeated 100 times). The model’s calibration was assessed using
the Hosmer–Lemeshow test, and the clinical utility of the prognostic model was evaluated
through DCA [31]. Statistical analyses were conducted using R software (version 4.3.1; R
Foundation for Statistical Computing, Vienna, Austria). A significance level of p < 0.05 was
considered statistically significant.

3. Results
3.1. Characteristics and Univariate Analysis of Recurrent AF after RFCA

After a 3-month follow-up, 47 patients experienced AF recurrence after RFCA, while
89 patients did not. Table 1 summarizes the demographic and clinical characteristics of the
two groups. In the univariate analysis, the recurrence group exhibited significantly higher
levels of P, PLR, RDW, LDL, and CRI-II compared to the non-recurrence group (p < 0.05).
There were no statistically significant differences in baseline characteristics between the
two groups for the remaining variables (p > 0.05).

Table 1. Baseline and clinical characteristics (N = 136).

Rhythm after Surgery (3 m)
p-Value

Recurrence (n = 47) Non-Recurrence (n = 89)

Age (year) 61.09 ± 11.88 59.51 ± 11.41 0.456
Gender (n, %) (Male versus

female)
31 (34.8) versus 16

(34.0) 58 (65.2) versus 31 (66.0) 1.000

Hypertension (n, %) 19 (40.4) 39 (43.8) 0.843
Coronary artery disease (n, %) 7 (14.9) 11 (12.4) 0.882

Diabetes mellitus (n, %) 8 (17.0) 14 (15.7) 1.000
Severe renal dysfunction (n, %) 3 (6.4) 4 (4.5) 0.947

Severe cardiac insufficiency (n, %) 13 (27.7) 22 (24.7) 0.868
COPD (n, %) 0 (0.0) 0 (0.0) -

N 4.12 ± 1.75 3.90 ± 1.41 0.419
L 1.84 ± 0.53 1.93 ± 0.63 0.392
M 0.44 ± 0.15 0.46 ± 0.19 0.725
P 226.57 ± 65.65 202.85 ± 57.33 0.031

Hb 138.30 ± 18.20 137.90 ± 15.43 0.893
NLR 2.38 ± 1.28 2.22 ± 1.13 0.474
PLR 130.17 ± 42.92 111.64 ± 36.53 0.009
LMR 4.42 ± 1.55 4.75 ± 2.49 0.398

SII 540.64 ± 360.91 448.47 ± 261.72 0.090
RDW 13. 17± 1.48 12.62 ± 0.84 0.006
HRR 10.66 ± 1.93 11.00 ± 1.57 0.272
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Table 1. Cont.

Rhythm after Surgery (3 m)
p-Value

Recurrence (n = 47) Non-Recurrence (n = 89)

TG 1.28 ± 0.52) 1.39 ± 0.84 0.416
TC 4.36 ± 0.91 4.09 ± 1.04 0.136

HDL 1.11 ± 0.23 1.13 ± 0.28 0.816
LDL 2.95 ± 0.76 2.64 ± 0.79 0.030
CRI-I 4.00 ± 0.91 3.73 ± 0.94 0.117
CRI-II 2.71 ± 0.79 2.42 ± 0.78 0.044

Antiplatelet drugs 18 (20.2) 6 (12.8) 0.396
Beta-blockers 37 (41.6) 6 (12.8) 0.522
ACEI/ARBs 39 (83.0) 69 (77.5) 0.600

Calcium channel blockers 7 (14.9) 4 (15.7) 1.000
Statin drugs 25 (53.2) 55 (61.8) 0.431

3.2. Variable Selection Based on the LASSO Regression

The LASSO regression was used to establish the mathematical prediction model.
According to the non-zero coefficients calculated by the LASSO regression analysis, the
following four most powerful factors were determined: PLR, RDW, LDL, and CRI-II
(Figure 2). Among these factors, RDW is the greatest risk factor for early recurrence of
AF after RFCA, and the absolute value of this coefficient was the largest. The regression
coefficients of each factor are shown in Table 2.
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Table 2. LASSO regression screening for AF recurrence outcome performed once at random.

Factors LASSO Coefficient

PLR 0.002958548
RDW 0.148474080
LDL 0.127461973

CRI-II 0.002393739
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3.3. Development of the Model for Predicting the Risk of Early Recurrence of AF after RFCA

The results of the logistic regression analysis among PLR, RDW, LDL, and CRI-II are
given in Table 3. All of these four predictors showed significant statistical differences. So,
introducing the above four independent predictors, we constructed a nomogram based on
PLR, RDW, LDL, and CRI-II to predict the risk of early recurrence of AF after RFCA. As is
shown in the nomogram (Figure 3), with the increase in RDW, PLR, LDL, and CRI-II, the
line chart score gradually increased, and the risk increased accordingly, indicating that the
risk of early recurrence of AF increased after RFCA. In the nomogram model, the scores of
RDW, PLR, LDL, and CRI-II were 100, 73, 60, and 35, respectively.

Table 3. Predictors for the risk of early recurrence of AF after RFCA.

OR 95% CI p-Value

PLR 1.002 1.000–1.004 0.048
RDW 1.102 1.028–1.181 0.006
LDL 1.134 1.029–1.249 0.012

CRI-II 1.592 1.006–2.520 0.047Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 15 
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3.4. Prediction Model Validation

Subsequently, we generated the ROC curve for the predictive model. The AUC was
0.7248 (95% CI 0.6342–0.8155), highlighting the favorable diagnostic performance of the
model (Figure 4A). Internal validation used the bootstrap method (resampling = 100), which
resulted in an AUC of 0.8403 (95% CI 0.7684–0.9122) (Figure 4B). Moreover, the model
exhibited good calibration, as indicated by a nonsignificant Hosmer–Lemeshow test result
with a p-value of 0.239. This suggested that there was no statistically significant lack of fit
between the predicted and observed values. To assess its clinical utility, we performed DCA
(Figure 5). The DCA plot reveals that across the threshold probability range of 0.18–0.80,
relative to “all individuals with AF recurrence” or “all individuals without AF recurrence”,
the model provides a substantial net benefit.
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(resampling = 100). AUC is 0.8403 (95% CI 0.7684–0.9122).
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Figure 5. The DCA of the nomogram. The DCA shows that when the threshold probability is between
0.18 and 0.8, compared with “all individuals with recurrent AF” or “individuals without recurrent
AF”, the application of this line chart will increase the net benefit.

4. Discussion

This study revealed an early recurrence rate of 34.6% (47/136) among AF patients after
RFCA. We screened the risk factors for the early recurrence of AF by LASSO regression and
developed a novel model to predict the risk of early recurrence of AF after RFCA. Multivari-
able logistic regression analysis was used to build a prediction model by introducing the
feature selected in the LASSO regression model. In addition, a nomogram for predicting
the recurrence of AF was established according to the standard procedure. This model
has good discrimination and calibration. A nomogram is considered to be a reliable and
practical predictive tool that can generate the individual probability of clinical events by
integrating a different prognosis and different determinants [32], and quantify individual
risk by combining a variety of important prognostic factors [33]. Notably, our research is
the first to incorporate HRR, SII, CRI-I, and CRI-II into the predictive model for the early
recurrence of AF after RFCA.

RFCA has become an important therapeutic strategy for improving symptoms and
controlling heart rhythm [7,8]. However, the high recurrence rate of AF remains a significant
challenge for clinicians. Some studies have found early recurrence to be a strong predictor
of late recurrence after radiofrequency ablation of atrial fibrillation [23]. Therefore, we
evaluated the individual risk of the early recurrence of AF before RFCA and identified
patients at high risk of recurrence early, so as to guide clinical decision-making, minimize
the postoperative recurrence rate of patients with AF, and improve the quality of life
of patients.

Studies have shown that the level of inflammation is closely related to the occurrence
and recurrence of AF [34,35]. Andrea Frustaci [36] found inflammatory markers in the
atrial tissues of AF patients, including fibrosis, leukocyte infiltration, and oxidative damage.
These inflammatory substances lead to electrical remodeling and structural reshaping
of atrial tissues, potentially promoting the recurrence of AF [24,37]. Currently, most
studies only look for factors that may influence atrial remodeling and are involved in
the pathogenesis of AF, serving as indicators for predicting AF recurrence, for instance,
some serum inflammatory biomarkers like CRP, IL-6, and IL-2. However, the predictive
value of these factors for AF recurrence remains controversial, and these biomarkers can
only be reflected in the acute phase, and they fail to early identify high-risk patients for
AF recurrence. In this study, through an extensive literature review, we discovered several
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novel inflammation markers, including HRR, SII, CRI-I, and CRI-II, which can serve as
significant predictive factors for cardiovascular diseases. We incorporated these variables
into our study, employing the LASSO regression algorithm for variable selection and
model establishment. Additionally, we developed a nomogram model for predicting AF
recurrence after RFCA.

RDW is a blood parameter describing the change in red blood cell volume, which is
mainly used in the differential diagnosis of anemia [38]. In recent years, RDW has been
considered as a new inflammation predictor of cardiovascular disease [39,40]. Even in
patients with lower CRP levels, increased RDW and cardiovascular disease mortality were
statistically significant [41,42]. Increased RDW represents the biological processes of inflam-
mation, aging, oxidative stress, nutritional deficiency, and impaired renal function [43]. It
has been reported that an increase in RDW increases all-cause mortality and the occurrence
of major adverse events in patients with AF [39,44,45]. In a prospective study, Kadri Murat
Gurses et al. found that increased RDW may be a predictor of recurrence after cryoablation
in AF patients [46]. To sum up, RDW may be an important predictor of the early recurrence
of AF after RFCA.

The Castelli risk index (CRI) is a non-traditional lipid parameter that is calculated
based on various lipoproteins in the blood. It is mainly used to evaluate the level of
blood lipids clinically, and it has been proven to be associated with the inflammatory
response in vivo [47]. It has been reported that lipid levels are involved in the occurrence
and development of AF, but its pathophysiological mechanisms remain unclear. In vitro
experiments have indicated that the lipid composition of the myocardial cell membrane
surface might be involved in regulating the function of ion channels that initiate AF [48,49].
Traditionally, it has been believed that high levels of LDL cholesterol and TC, along with
low levels of HDL cholesterol, are associated with the occurrence of AF [50]. However, in
recent years, many studies have overturned this viewpoint. It was found that TC and LDL
cholesterol are negatively correlated with AF [51]. The relationship between traditional
lipid levels and AF still remains controversial. Compared with simple traditional lipid
levels, CRI-I and CRI-II may be better at predicting the occurrence of cardiovascular
adverse events.

SII is composed of P, N, and L, and is considered by researchers to be a new predictive
index of inflammation that not only reflects the overall inflammatory state of the body, but
also reflects the compensatory function of immune cells and the role of promoting coagula-
tion [52]. It has been found that the increase in NLR, PLR, and LMR is associated with a new
onset of AF and recurrence after RFCA [53–55], which can also lead to the development of
atrial remodeling. Previous research has indicated that the prognostic significance of SII is
more clinically valuable compared to its components (NLR or PLR) [56–58]. It is commonly
used to predict adverse outcomes in various cancer patients [59]. In the past two years,
SII has been shown to be associated with cardiovascular disease [60–62]. Studies have
suggested that SII can serve as a predictive marker for AF occurrence following coronary
artery bypass graft surgery [63]. However, there have been no reports on the correlation
between SII and AF recurrence after RFCA. This study aims to explore the relationship
between SII and early AF recurrence following RFCA.

In this study, we included N, L, M, P, Hb, NLR, PLR, LMR, TG, TC, HDL, and LDL as
routine blood parameters as these parameters have been used to study the recurrence of
AF. We also added some new inflammatory indicators, including RDW, HRR, CRI-I, CRI-II,
and SII, which are considered to be closely related to the occurrence and development of
cardiovascular disease. Although HRR, CRI-I, and SII failed to pass the screening of the
LASSO regression, this study is the first to explore their relationship with the postoperative
recurrence of AF. Multivariate logistic regression analysis of these four predictors found
that they all showed statistically significant differences. We finally included four predictive
factors: PLR, RDW, LDL, and CRI-II to create a nomogram predictive model. The model
was internally validated (bootstrap method), demonstrating good discrimination and
applicability, which makes our risk prediction more attractive in clinical practice. In our
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new model, all risk factors were obtained before RFCA, which means that the risk of the
early postoperative recurrence of AF can be evaluated and predicted before RFCA, and
further preventive measures can be taken before surgery to reduce the recurrence of AF
and improve the long-term prognosis of patients.

5. Limitations

This study involved single-center research with a relatively small sample size, which
may affect the generalizability of the findings. A multi-center study with a larger sample
size should be conducted to further enhance the robustness of the results. Continuous
rhythm monitoring was not performed after RFCA in patients, potentially missing asymp-
tomatic recurrences. At present, there is evidence that the predictors of recurrent AF in the
first 3 months are related to late recurrence [23]. Therefore, it is undoubtedly necessary to
study the predictive factors of early AF recurrence in the future. Furthermore, external vali-
dation of the predictive model is required. Since there is no available 1-year follow-up data,
it is not possible to compare long-term ablation success rates associated with recurrence
during the blank period.

6. Conclusions

In summary, we have developed a novel preoperative nomogram prediction model
based on the LASSO regression algorithm. This model incorporates four predictive factors
and is designed to assess the risk of early postoperative recurrence in AF patients after
RFCA. The model demonstrates strong discrimination and calibration capabilities, as well
as a certain level of clinical applicability.
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N Neutrophil granulocyte count
L Lymphocyte count
M Monocyte count
P Platelet count
Hb Hemoglobin
NLR Neutrophil to lymphocyte ratio
PLR Platelet to lymphocyte ratio
LMR Lymphocyte to monocyte ratio
SII Systemic immune inflammation index
RDW Red cell distribution width
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HRR The ratio of hemoglobin to red cell distribution width
TG Triglyceride
TC Total cholesterol
LDL-c Low density lipoprotein cholesterol
HDL-c High density lipoprotein cholesterol
CRI-I Castelli risk index I
CRI-II Castelli risk index II
COPD Chronic obstructive pulmonary disease
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