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Abstract: Objective: Skin diseases constitute a widespread health concern, and the application of
machine learning and deep learning algorithms has been instrumental in improving diagnostic
accuracy and treatment effectiveness. This paper aims to provide a comprehensive review of the
existing research on the utilization of machine learning and deep learning in the field of skin disease
diagnosis, with a particular focus on recent widely used methods of deep learning. The present
challenges and constraints were also analyzed and possible solutions were proposed. Methods: We
collected comprehensive works from the literature, sourced from distinguished databases including
IEEE, Springer, Web of Science, and PubMed, with a particular emphasis on the most recent 5-year
advancements. From the extensive corpus of available research, twenty-nine articles relevant to the
segmentation of dermatological images and forty-five articles about the classification of dermatologi-
cal images were incorporated into this review. These articles were systematically categorized into
two classes based on the computational algorithms utilized: traditional machine learning algorithms
and deep learning algorithms. An in-depth comparative analysis was carried out, based on the em-
ployed methodologies and their corresponding outcomes. Conclusions: Present outcomes of research
highlight the enhanced effectiveness of deep learning methods over traditional machine learning
techniques in the field of dermatological diagnosis. Nevertheless, there remains significant scope for
improvement, especially in improving the accuracy of algorithms. The challenges associated with the
availability of diverse datasets, the generalizability of segmentation and classification models, and the
interpretability of models also continue to be pressing issues. Moreover, the focus of future research
should be appropriately shifted. A significant amount of existing research is primarily focused on
melanoma, and consequently there is a need to broaden the field of pigmented dermatology research
in the future. These insights not only emphasize the potential of deep learning in dermatological
diagnosis but also highlight directions that should be focused on.

Keywords: dermatology; vitiligo; deep learning; machine learning; image segmentation; classification

1. Introduction

The skin is the largest organ in the body, and plays a crucial role in defending against
environmental threats such as bacteria, viruses, and harmful substances. Skin diseases are a
widespread health problem affecting people of all ages, and they can be caused by various
factors such as genetics, lifestyle, and environmental exposure. Some of the most common
skin diseases include acne, skin cancer, seborrheic keratosis, psoriasis, melanoma, and
vitiligo, as depicted in Figure 1. Because of the progressive and prevalent nature of skin
diseases, their adverse effects can significantly impact the physical and mental well-being
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of patients. Consequently, accurate and timely diagnosis is crucial for effective treatment
and health management.
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Recently, some skin diseases are still lagging behind regarding their clinical diagnosis
and treatment. For example, there are some skin diseases that are difficult to diagnosis due
to the lack of obvious pathological features in their early stages [1–3], such as skin cancer
and vitiligo. Traditional diagnoses of dermatological diseases rely heavily on the visual
inspection of skin features and subjective evaluations based on prior experience [4]. This
approach often lacks precise, objective, and quantitative criteria; even dermatologists are
not immune to the possibility of misdiagnosis. Even more unfortunately, in some remote
areas where access to dermatologists is limited, non-dermatologists are often responsible
for diagnosing and treating dermatological diseases with limited knowledge and training
in this specialized field. Despite the availability of dermatology textbooks as reference
material, these individuals still face significant challenges in achieving accurate diagnoses.
The scarcity of dermatologists and an unbalanced distribution of healthcare resources
exacerbate the difficulty of accurate diagnoses in such areas.

Fortunately, Artificial Intelligence (AI) technology based on image recognition has
emerged as a promising approach for the diagnosis of skin diseases. AI algorithms can be
trained with large datasets of skin images to learn the patterns associated with different
skin diseases. This enables them to provide more accurate diagnoses than humans in some
cases, particularly in cases where the disease is in its early stages. Additionally, through
meticulous design and careful debugging, AI algorithms might be not subject to the biases
of humans, which can lead to more objective diagnoses. As such, AI-based diagnostic tools
have the potential to overcome some of the challenges associated with diagnosing skin
diseases [5–7]. Currently, the most commonly used AI algorithms include machine learning
(ML) and deep learning (DL) algorithms. Both of these can identify repetitive features of
skin lesions and summarize them, allowing accurate diagnoses of benign and malignant
lesions. DL typically exhibits superior performance when dealing with large datasets
and complex features. However, ML methods can still be useful in certain situations,
especially when the data size is limited. These approaches can be employed in computer-
aided diagnosis (CAD) systems, offering precise classification outcomes for dermatologists.
Additionally, for non-dermatologists, these systems can help to reduce errors resulting
from limited expertise. Therefore, it is of great interest to delve into the evolution and
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recent achievements of ML and DL methods in the field of dermatological diagnosis, to
identify the current challenges and offer appropriate recommendations to drive progress.

This paper provides insights into the application of ML and DL methods in dermato-
logical diagnosis, assessing their achievements in the segmentation and classification of
medical images, and conducting a review of existing issues. By comparing and summariz-
ing these methods, the limitations of current research are elucidated, and future directions
for development are proposed. It is expected that the improved algorithms can achieve
more accurate diagnostic results and a faster speed of diagnosis to promote the further
development of computer-aided diagnosis systems for skin diseases.

2. Materials
2.1. Study Selection

We searched four databases, including Pubmed, IEEE, SpringerLink, and Web of
Science, for original English research papers. In the course of this analysis, only papers
that had been published in journals and documented the appropriate scientific process
were considered.

Papers were included based on the following inclusion criteria: (i) the presence of
segmentation and classification algorithms for binary or multi-class skin lesions, (ii) the
use of ML or DL methods, (iii) publication in English.

Exclusion criteria were used to exclude unrelated studies based on the following list
of criteria: (i) review articles, (ii) case reports, (iii) books, and (iv) outdated literatures.

The PRISMA flow chart in Figure 2 depicts the selection process [8]. The initial
search yielded 157,036 eligible literature sources. These sources added to the 5287 records
identified through other methods, such as forward and backward snowballing. After
eliminating duplicate records, the number of papers was reduced to 131,985 records.
Following the application of the inclusion criteria, we identified and further scrutinized
1197 full-text articles, applying specific exclusion criteria. The time frame for the research
articles selected for this paper is 2015–2023, and progress made in the last five years was
particularly emphasized. As a result, we selected 29 articles related to dermatological
segmentation methods and 45 articles related to dermatological classification methods.
The algorithms of the selected articles were divided into traditional ML methods and DL
methods, and their results were discussed.

2.2. Datasets

In this section, the most commonly used datasets in this area of research are described.
A wide range of available and free online datasets, such as DermNet, MED-NOOE, DermIS,
ISIC 2017, ISIC 2018, ISIC 2019, ISIC 2020, and Derm7pt were used.

DermNet contains over 20,000 images of skin diseases, encompassing more than 200
different skin conditions and symptoms [9]. These images are acquired and evaluated by
dermatological professionals; they categorize and label the images according to the type
and severity of the skin condition.

The MED-NODE [10] dataset consists of 70 melanoma and 100 nevus images from
the Digital Image Archive of the Department of Dermatology, University Medical Center
Groningen (UMCG), which are used for the detection of skin cancer from macroscopic
images. Figure 3 displays a selection of melanoma and nevus images.

DermIS is a large medical image dataset for the analysis and diagnosis of skin im-
ages [11]. This dataset, developed by the Medical Image Processing Laboratory at the
University of Erlangen in Germany, includes more than 3000 images of dermatological
diseases, covering more than 20 different types of skin conditions.

The ISIC 2017 dataset, provided by the International Skin Imaging Collaboration
(ISIC) [12], includes 2770 high-quality dermoscopic images, including 1290 cases of benign
skin, 1113 cases of malignant melanoma, and 367 cases of other types of malignant skin.
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The ISIC 2018 dataset is a publicly available dataset for skin image classification
provided by the ISIC [13]. This dataset was compiled from data concerning all anatomical
sites, except mucosa and nails, using various dermoscopy techniques from retrospective
samples of patients who had been screened for skin cancer at multiple institutions. The
training dataset consists of seven classes: actinic keratosis (AKIEC), basal cell carcinoma
(BCC), benign keratosis (BKL), dermatofibroma (DF), melanocytic nevus (NV), melanoma
(MEL), and vascular lesions (VASC). There are different numbers of images in each group.
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MEL has 1113, NV has 6705, BCC has 514, AKIEC has 327, BKL has 1099, DF has 115, and
VASC has 142. Figure 4 presents the seven categories of skin disease images in ISIC 2018.
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ISIC 2019 [14] consists of eight recognized classes and one outlier image class. These
classes are MEL, NV, BCC, AKIEC, BKL, DF, VASC, and basal cell carcinoma (SCC). This
dataset consists of 25,331 images, of which 867 are for AKIEC, 2624 are for BKL, 3323 are for
BCC, 239 are for DF, 12,875 are for NV, 4522 are for MEL, and 628 are for SCC. The VASC
has 253.

Another dataset from the ISIC is ISIC 2020 [15], containing 2000 dermoscopic training
images of unique benign and malignant skin lesions from over 33,126 patients. Each
image is associated with one of the individuals using a unique patient identifier. All
malignant diagnoses have been confirmed via histopathology, and benign diagnoses have
been confirmed via agreement among experts, longitudinal follow-up, or histopathology.
The full publication describing all characteristics of this dataset is available in preprint form
and has not yet been peer-reviewed.

Derm7pt (also known as Derm7k) is a dataset for the classification of skin disease [16]
containing over 20,000 images of patients with skin diseases and their corresponding
diagnostic labels. This dataset collects both clinical and nonclinical photographs, including
real cases and synthetic data, to cover as many dermatological types as possible. The skin
diseases in the Derm7pt dataset include common skin cancers, viral infections, fungal
infections, allergic reactions, inflammatory and autoimmune diseases, etc.

2.3. Selection Criteria of AI Algorithms for Different Types of Skin Images

AI technology has found widespread applications in the field of dermatological diag-
nosis [17]. This is attributed to its capacity to address crucial challenges associated with
dermatological diagnosis, including the diversification of skin conditions and the extraction
of complex features. ML and computer vision techniques facilitate efficient and automated
image classification, as well as rapid feature recognition [18].

When dealing with diverse sizes and types of dermatological images, the choice of
modeling method becomes crucial. Common modeling approaches include Convolutional
Neural Networks (CNNs) and Support Vector Machines (SVMs) [19]. The selection of
the appropriate method closely depends on both the quantity and quality of the available
samples. Given the different imaging modalities employed in clinical dermatology, such
as dermoscopy, reflectance confocal microscopy (RCM), and very high-frequency skin
ultrasound (VHF skin ultrasound), this choice becomes even more important. Table 1
summarizes the imaging criteria and applicable models for the three different imaging
devices [20–30].
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Table 1. Three types of imaging equipment, their imaging standards, and their applicable models [20–30].

Imaging Equipment Skin Imaging Standards Model of Applicability

Dermoscopy

1. Overall skin lesion: natural light was used as the light
source, and the mode and magnification were noted.

2. Local details: the maximum magnification and clear
images of the skin lesions were taken.

AlexNet, VGG, GoogLeNet,
ResNet, CNN [20–24].

RCM

1. Longitudinal scanning: we scanned from the stratum
corneum to the superficial dermis;
each layer’s thickness was 5 µm.

2. Horizontal scanning: pathological changes in the
stratum corneum, stratum granulosum, stratum

spinosum, stratum basale, dermo-epidermal junction,
and superficial dermis were scanned.

3. Local details: for each layer of pathological changes,
photos of local details were taken.

SVM, CNN, InceptionV3, Bayesian
model, Nested U-net [25–29].

VHF skin ultrasound

1. Longitudinal scanning: the lesion area was scanned
using high-frequency or ultra-high-frequency

ultrasound, and the scanning frequency (20 MHz, 50
MHz, etc.) was marked.

2. Overall and detailed imaging:
it was able to clearly display the epidermis, dermis,

and subcutaneous tissue, and measure the range,
depth, blood flow, and nature of skin lesions

and their relationship with surrounding tissues.

DenseNet-201, GoogleNet,
Inception-ResNet-v2,

ResNet-101, MobileNet [30]

Deep neural networks are used to process clinical images and high-dimensional
representations of the local skin features are extracted. The disease status of skin regions
in photographs can be explained via the skin surface’s properties, represented in the
images [31]. In order to obtain the decision result of the diagnosis, the pictures are analyzed
and the retained characteristics are entered into the classifier [32–34].

3. Methods

This section offers a comprehensive overview of DL and ML algorithms tailored for
the field of dermatology. These algorithms are categorized into two distinct but interre-
lated domains: segmentation and classification of skin diseases. By examining these two
critical areas, we delve into the advanced techniques and methods that play a vital role in
enhancing the diagnosis and analysis of skin conditions.

3.1. Segmentation Methods

In the domain of medical imagery, traditional recognition of images mainly relies on
edge segmentation and feature extraction methods [35]. For all skin diseases, the accurate
segmentation of skin images is essential for detecting and localizing lesions. In this section,
we explore two distinct approaches, encompassing DL-based methods and traditional ML
processing techniques, with a particular focus on the emerging research trend concerning DL-
based methods. Figure 5 summarizes the advantages and drawbacks of both traditional ML
and DL models in the context of image segmentation and classification applications [36–50].
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3.1.1. Traditional Machine Learning

Numerous techniques are employed for the segmentation and feature extraction of
skin disease images. In 2015, a segmentation method was proposed for vitiligo lesions
on the posterior trunk using Linear Spectral Clustering (LSC) superpixels and Random
Forests [51], resulting in improved segmentation outcomes. Unfortunately, this method
is only suitable for smooth, normative skin and not for other types of skin, such as skin
with lesions. Alam et al. [52] proposed a color-based segmentation method using K-
means clustering, complemented with morphological image processing techniques. This
method can accurately segment eczema lesion areas with a classification accuracy of
90%. However, its dependence on color information makes it unsuitable for other skin
lesion types. Building upon [52], Thanh et al. [53] proposed two adaptive approaches,
utilizing the normalization of color models, namely RGB and XYZ, to estimate global
thresholds of skin lesion segmentation. Their method outperforms the Otsu segmentation
method in terms of grayscale model segmentation. Yet, similar to [52], it exhibits limited
adaptability for specific lesions and skin colors. Chica et al. [54] and Nurhudatiana et al. [55]
introduced Independent Component Analysis (ICA) and Fuzzy C-Means (FCM) for vitiligo
segmentation, respectively. In the ICA method, melanin images derived from ICA were
processed using area growth techniques to segment vitiligo lesions. Both methods are only
applicable to lesions on smooth skin and overlook facial lesions, with a relatively small
sample size. Dash M et al. [56] introduced an image segmentation system grounded in the
Bayesian model. This approach extracted 859 features and integrated swarm intelligence
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algorithms with traditional K-means and FCM clustering algorithms. This method exploits
multiple features and clustering algorithms to improve the segmentation accuracy, but also
has the drawback of increasing the computational complexity.

The above segmentation methods are all traditional ML methods, which are heavily
dependent on threshold settings for image analysis. If the threshold value is not set reason-
ably, it will decrease the generalization ability of the model and lead to false recognition.
Therefore, in terms of image segmentation, DL holds several advantages over traditional
ML methods:

(1) Enhanced feature learning: DL models possess robust feature learning capabilities,
automatically deriving advanced feature representation from data, in contrast to the
manually designed features relied upon by ML models.

(2) Improved generalization: DL models exhibit strong generalization capabilities, per-
forming well with small datasets, whereas ML models typically demand extensive
manual feature engineering and large datasets.

(3) Scalability: DL models can be efficiently trained on large-scale data and manage such
datasets rapidly through distributed computing, whereas ML models struggle due to
their need for manual feature design.

(4) Flexibility: DL models offer a more adaptable structure, accommodating a wide range
of tasks and data types, unlike ML models, which require manual design for distinct
tasks and data types.

In conclusion, within the aspects of image segmentation, DL excels over ML due to its
superior feature learning capabilities, generalization scalability, and flexibility, making it a
valuable asset in practical applications.

3.1.2. Deep Learning

With the development of DL, some architectures have shown great potential in im-
age segmentation tasks, such as U-Net, Fully Convolutional Networks (FCNs), and Fully
Connected Neural Networks (FCNNs). The application of DL in medical image segmen-
tation has become a popular topic of research [57–60]. Several CNN-based segmentation
methods have been devised, such as the Fully Convolutional Deconvolution Network
(FCDN) [61], Deep Fully Convolutional Network (DFCN), founded on the Jaccard distance
method [62], Convolutional–Deconvolutional Neural Network (CDNN) [63], U-shaped
FCN, and multi-stage FCN [64]. All of these methods are based on the integration and
development of FCNs, demonstrating their superior segmentation accuracy. Nevertheless,
they often need substantial datasets for effective training and may exhibit limitations in
capturing segmentation details and low-intensity regions. Figure 6 provides an overview
of five image segmentation models and their respective domains of expertise.

Some U-Net-based CNN models have been used in the study of skin lesion segmen-
tation studies. These approaches typically demand fewer resources and smaller training
datasets. Tschandl et al. [65] designed an FCNN with a U-Net style architecture, incorpo-
rating a pre-trained ResNet34 as the encoding layer for lesion segmentation, which is a
preliminary step in the diagnosis of skin cancer from dermoscopic images. This method may
be helpful when only a limited number of labeled samples are available for segmentation
training. Unfortunately, since it is based on ImageNet pre-training, this method requires
an adequate amount of segmentation training data in order to work. Peng et al. [66] refor-
mulated the U-Net model for melanoma lesion detection based on [65], and proposed an
adversarial network to address overfitting issues stemming from simpler samples. Adver-
sarial networks can enhance the quality of segmentation results by generating adversarial
data. While this approach helps to improve accuracy and robustness, it consumes signifi-
cant computational resources and time in training and optimizing the adversarial network.
Additionally, the choice of network architecture and hyperparameters may impact the
segmentation outcomes. Adegun et al. [67] introduced a skin lesion segmentation method
employing an FCN based on the U-Net architecture, enhancing the model through batch
normalization. FCNs can efficiently process spatial information in the images and generate
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pixel-level segmentation outcomes, showing high accuracy and robustness in segmentation
tasks. Thanh D N H et al. proposed a method that combines VGG-16 coding with U-Net
architecture for skin lesion segmentation [68]. Their approach optimally utilizes the U-Net’s
strengths, particularly in the case of limited training data. These studies emphasize the
potential of U-Net-based Convolutional Neural Networks (CNNs) in skin lesion segmenta-
tion. Compared to traditional methods, the U-Net architecture exhibits the advantage of
accommodating smaller training sets and adeptly mitigating overfitting. Furthermore, its
performance can be further elevated through the addition of supplementary layers.
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In addition to U-Net, there are other CNN-based architectures that have been used
in this field. The Multi-Scale Fully Convolutional DenseNets (MSFCND) model [69] is
a CNN-based approach capable of segmenting images of arbitrary sizes after training.
Compared to U-Net, one of the most commonly used FCNs in medical image analysis,
this method excels in most evaluation metrics. This superiority can be attributed to its
integration of multiscale contextual information in the downsampling paths and the incor-
poration of multiscale depth supervision in the upsampling paths. Nasr-Esfahani et al. [70]
introduced the Dense Pooling Full Convolutional Network (DPFCN) model, designed
to segment damaged regions in skin images using dense pooling layers. This network
overcomes limitations observed in many contemporary state-of-the-art segmentation meth-
ods, especially in the boundary detection phase, and outperforms other algorithms in
skin lesion segmentation. In [71], an enhanced skin lesion segmentation model, based on
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deformable three-dimensional convolution and ResU-next++ (D3Dc-resu-next++), was
proposed. Traditional neural network models often struggle to extract deep image features
and are susceptible to gradient vanishing during backpropagation. In contrast, the 3D con-
volutional structure in this model effectively extracts diverse levels of image information,
enhancing its efficiency. The use of ResU-NeXt++ stitches together different information lev-
els obtained via the 3D convolutional structure, while the improved dynamic convolutional
layer can better prevent the gradient disappearing, which significantly enhances the CNN’s
ability to model geometric transformation. At the same time, the transfer learning method
applied to D3Dc-ResU-NeXt++ emphasizes the contrast between the lesion area and normal
areas, thus improving segmentation efficiency and robustness, and the adoption of RAdam
further accelerates the convergence rate of the neural network. In [72], a method combining
U-Net with an empty spatial pyramid pool (ASPP) is presented for the segmentation of
skin lesions. This CNN model is an enhanced U-Net architecture, which includes an ASPP
module to improve the effectiveness. Additionally, extended convolution allows the kernel
to capture larger perceptual regions for better feature learning, with the incorporation of
a batch normalization layer to normalize the feature map. This method primarily targets
mobile platform applications with lightweight models. Although it achieved impressive
performance with the ISIC challenge dataset, further validation of its generalization ability
is warranted.

In 2023, Yuta et al. [73] developed a CNN-based skin lesion region segmentation
system using the DeepLabv3+ model. Their CNN-generated segmented images were
closely similar to those manually cropped by dermatologists. To enhance the accuracy
of skin lesion detection, this research team adopted a strategy of segmenting multiple
regions from the original images, enabling the extraction of attributes from various skin
lesions. This approach significantly improved the segmentation accuracy of the CNN
model, facilitating a clearer distinction between lesion areas and normal skin regions
(e.g., around the lips and eyes). The application of this skin segmentation system resulted
in an impressive 90% detection rate for infectious diseases. Nevertheless, their study
faces limitations, notably the relatively small sample size and significant data variation
among different types of skin lesions, potentially introducing bias into the DL process. To
enhance the robustness of CNN-based skin lesion segmentation systems, the need for more
extensive image data in training is evident. It is worth noting that a recent prospective
study highlighted the superior performance of AI over general practitioners, particularly
when working with balanced datasets [74]. In the same year, a state-of-the-art approach
for segmentation was presented by Dasari et al. [75]. This method utilized the newly
developed W-EFO algorithm combined with enhanced U-Net to improve the segmentation
of skin damage characteristics by analyzing the fitness function. Their proposed method
sources input images from three distinct datasets and preprocesses them through grayscale
conversion, color removal, and contrast enhancement. Through experimental analysis, the
provided W-EFO-E-CNN with enhanced U-Net achieved a remarkable 98% accuracy across
all datasets. This skin lesion model surpasses conventional methods in terms of various
optimization techniques, segmentation methods, and classifiers. However, it is important
to note that further inclusion of clinical data is necessary to mitigate potential errors in the
data samples.

In the domain of vitiligo image segmentation, a weakly supervised approach was
introduced by Bian et al. [76]. This method requires only class labels of clinical images,
employing a deep CNN to generate activation maps and produce image segmentation
results. The effectiveness of this technique is highlighted by its unique ability to integrate
activation maps with hyperpixel-based saliency propagation, resulting in segmentations
that preserve the edges of lesions exceptionally well. Rigorous evaluations have confirmed
the superiority of this method, representing the pioneering use of DL algorithms in the
field of vitiligo image segmentation. Furthermore, the development of the Vit2019 dataset,
comprising 2000 vitiligo images, opens doors for the use of data-driven algorithms in sub-
sequent studies. The accurate segmentation of lesion skin borders is crucial for measuring
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the progression and severity of vitiligo. Nevertheless, many existing methods still rely
on human intervention, even within weakly supervised settings. Low et al. [77] intro-
duced a U-Net-based CNN with great potential for vitiligo segmentation. CNNs, acting
as enhanced feature extractors, use U-Net with modified shrinkage paths to generate the
initial lesion segmentation. High-confidence pixels are subsequently utilized as “seeds” for
segmentation through the watershed algorithm, leading to rapid and reliable segmentation
without manual intervention. This method notably reduces the time required for manual
segmentation, thereby optimizing computer resource utilization and reducing the necessity
for extensive post-prediction corrections. It is crucial to note that this study is limited by a
scarcity of data resources and would benefit from further validation with more extensive
datasets. Khatibi T et al. [78] presented a method for locating vitiligo lesions in skin images
using the Stack Ensemble of Deep and Conventional Image Segmentation (SEDCIS) method
for unsupervised stack integration. This localization of vitiligo lesions facilitates precise
segmentation and evaluation of their surfaces. While this method demonstrated a notable
Jaccard score of 0.94, it is primarily suited for segmenting patchy vitiligo and may not be
optimal for full-face vitiligo segmentation. In 2021, an advanced automatic segmentation
method for facial vitiligo was presented [79], breaking away from the limitations of previ-
ous methods confined to normative skin or vitiligo patches. This algorithm, employing an
FCN with a U-Net structure and transposed convolutional layers (as illustrated in Figure 7),
achieved superior segmentation results. U-Net, widely adopted for biomedical image
segmentation, excelled in generating precise segmentation boundaries due to its symmetric
shrinkage and expansion paths. Moreover, transposed convolutional layers enhanced the
upsampling performance. Notably, during the convolution process, differential weighting
was applied to vitiligo and non-vitiligo pixels to emphasize the former during training.
The algorithm’s results outperformed all existing automatic vitiligo segmentation methods
and even surpassed the visual assessments of the two dermatologists involved in the study.

3.2. Classification Methods

This section provides an overview of the ML and DL approaches used in the classifica-
tion of skin diseases. We particularly emphasize the application and in-depth analysis of DL
methods. By exploring these techniques, we aim to provide a comprehensive understanding
of advances in the field of dermatological diagnosis and the role of DL within them.
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3.2.1. Traditional Machine Learning

The ultimate objective of CAD systems is the classification of medical images. Before
the advent of DL, the standard practice involved the manual definition of image features,
including texture, image shape, and grayscale histograms, among others. Subsequent to
feature selection, ML models, such as SVMs, logistic regression, and Random Forests, were
widely employed for classification. Notably, in the domain of dermatological classification,
SVM, K-Nearest Neighbor (KNN), and Naive Bayes models have been prevalent [80–85].

In a study conducted by Pennisi et al. [86], the performance of four classifiers—Adaboost,
Naive Bayes, KNN, and Random Forest—was evaluated for distinguishing between benign
(common and atypical nevi) and malignant lesions (melanoma). Adaboost emerged as
the optimal performer among these classifiers. However, the study found that while
the segmentation method exhibited very high accuracy in handling benign lesions, its
accuracy significantly decreased when dealing with malignant lesions. Consequently, this
algorithm’s results may not be sufficiently accurate for malignant lesions. In 2015, a novel
approach for the automatic classification of skin diseases was introduced, combining KNN
and an SVM for dermatological disease classification [87]. The individual accuracy of
KNN-based classification was 76%, and SVM-based classification achieved 78%, while the
fusion of these two classifiers reached an accuracy of approximately 85%. This innovative
approach represented a pioneering effort in classifier fusion, demonstrating the superior
performance of the combined classifier. Nevertheless, the system’s overall performance was
hindered, primarily due to degradation in certain classes resulting from the heterogeneity
in data resources. In 2016, Suganya et al. employed K-means clustering to segment skin
lesions in dermoscopic images, using an SVM classifier for the classification of skin diseases,
particularly melanoma [88]. While most classification methods have primarily concentrated
on melanocytic skin lesions, this approach proved effective for high-precision classification
of skin cancers in both melanocytic skin lesions and non-melanocytic skin lesions within
the epidermal layer. Future research should aim to address the segmentation of skin lesions
in the dermal layer. In 2017, Rahman et al. proposed a similar method using KNN and SVM
classifiers [89]. Their approach incorporated color thresholding for image segmentation,
followed by higher-order statistical analysis of various color planes. Extracted features were
subjected to SVM and KNN classifiers for robust classification. The integration of rigorous
preprocessing and feature extraction from standard digital images led to an improvement
in classification accuracy.

In 2018, a multi-classification CAD system that combines more than two classifiers
was developed, employing five classifiers: decision tree, KNN, SVM, and fusion classifiers
with diverse kernels in conjunction with Artificial Neural Networks for dermatological
classification. The study concluded that the SVM classifier, featuring non-linearity, demon-
strated the best performance [90]. While the classification results for skin lesions were
not exceptional, this research accomplished the classification of six diseases and offered
cost-effective dermatological care through image processing and ML algorithms. In 2019,
Murugan et al. [91] proposed a watershed segmentation method to classify skin images,
enhancing the segmentation accuracy and consequently the classification accuracy. Their
method integrated extracted features, including shape characteristics, the ABCD rule, and
GLCM. Notably, the SVM’s implementation of the ABCD rule exhibited a progressive
evaluation phase using an innovative classifier technique. In comparison to Random Forest
and KNN, the SVM demonstrated superior results, characterized by high accuracy and
robustness, along with commendable out-of-sample generalization. In 2020, Balaji et al.
introduced a dynamic graph-cutting algorithm for skin lesion segmentation and applied a
plain Bayesian classifier for classification [92]. The classifier demonstrated ease of imple-
mentation, rapid output prediction, and commendable performance, even in multi-class
prediction scenarios. It is essential to acknowledge that the classification methods men-
tioned above rely heavily on feature extraction from segmented lesion images, leading
to the performance being contingent on the quality of feature selection. In contrast, DL
methods have shown superior capability in addressing this challenge.
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3.2.2. Deep Learning

DL, as a subset of ML, exhibits considerable promise compared to traditional ML
algorithms. In the domain of medical image classification, with the rapid advancement
of DL models, particularly the widespread adoption of deep CNNs, establishing neural
network models has been regarded as a prevailing approach for automatic feature extrac-
tion and dermatological classification (as depicted in Figure 8, illustrating the process of
classifying skin diseases using DL). Notably, Nasiri et al. [93] introduced a classification
approach for skin lesions founded on CNNs, selecting a CNN with 16 convolutional and
pooling layers for iterative training and learning. This method significantly enhanced the
image classification efficiency and underwent rigorous validation with 1796 dermoscopic
images. Nevertheless, its applicability is currently limited to melanoma classification.
Ahmad et al. [94] presented a hybrid classification method that combines a deep Convo-
lutional Neural Network (DCNN) with stacked Bidirectional Long Short-Term Memory
(BLSTM) networks. Their proposed model capitalizes on the strengths of both approaches,
mitigating classification inaccuracies and irrelevant feature selection, especially in scenarios
involving highly similar images of malignant and benign lesions. This process entails the
extraction of deep features from facial images through the CNN, followed by the input of
sequential features into the dual BLSTM network, ultimately leading to dermatological
image classification through the Soft-max function. Through extensive testing on two
dermatological datasets to enhance generalizability, their method achieved an impressive
average accuracy of 91.73%. In contrast to contemporary dermatological classification
methods, this approach represents a significant advancement in dermatology classification.
With the availability of powerful computational resources, more complex DL systems are
under development. Nonetheless, sometimes these complex systems take too much time to
train and are therefore inefficient. In 2022, an Eff2Net model was introduced [95], which
incorporates the Efficient Channel Attention (ECA) module to replace the standard Squeeze
and Excitation (SE) module within EfficientNetV2. This deliberate modification effectively
decreases both the number of trainable parameters and those learned by the CNN. The
EfficientNet model is well-known for its ability to achieve high accuracy within a shorter
time and fewer parameters. The ultimate results demonstrate that this model achieved
superior classification performance with a lower computational complexity.
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lutional layers (three maximum pooling layers) for hierarchical feature extraction, followed by a
fully connected DeepID layer and a Soft-max output layer for classification. This model takes
39 × 31 × 1 inputs and predicts disease categories (n). When the input size changes, the height and
width of the graph in the subsequent layer changes accordingly.

In a study conducted by Mohammed et al. [96], a dermatological classification algo-
rithm was proposed that employs a combination of SVMs and Back Propagation Neural
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Networks (BPNNs). Their methodology commenced with an adjustment of elements
through the application of regularized Random Forests, followed by the implementation
of image enhancement techniques. The outcome of this research was remarkable, with an
impressive classification accuracy of 99.7% and sensitivity of 99.4%. However, it is essential
to note that the dataset they considered comprises only 400 images, underscoring the need
for further validation using a more extensive dataset to robustly establish this method’s
validity. Zia Ur Rehman et al. [97] sought to enhance the performance of pre-trained
MobileNetV2 and DenseNet201 models through the addition of supplementary convolu-
tional layers, aiming to optimize skin cancer detection. This method specifically targeted
the discrimination between benign and malignant categories of skin cancer, leading to a
notable accuracy rate of 95.50%. Additionally, this study introduced Gradient-Weighted
Class Activation Mapping (Grad-CAM) visualization, representing a pioneering step to-
ward an interpretable classification algorithm in the field. In the context of dermatological
studies, CNNs often rely on classical loss functions, which restricts their ability to learn
discriminative features from skin images.

To overcome this limitation, Ahmad et al. [98] presented an innovative approach
utilizing the ResNet152 and InceptionResNet-V2 models, combined with a triplet state
loss function. This pioneering research was the first to employ the triple loss function in
dermatological images. Their approach involved embedding input images into Euclidean
space using the deep CNN ResNet152 and InceptionResNet-V2 models, calculating L-2
distances in the Euclidean space through the triple state loss function to extract discrimina-
tive features of dermatological images. This approach had improved accuracy compared
to many existing approaches for such dermatological tasks. Wu et al. [99] introduced a
classification methodology that utilizes transfer learning-based CNNs for the classifica-
tion of facial skin. Their approach employed five prominent CNN architectures, which
were initially pre-trained on extensive datasets. These architectures include ResNet-50,
Inception-v3, DenseNet121, Xception, and Inception-ResNet-v2. Transfer learning was
skillfully applied to these models, and through a meticulous performance comparison, it
was evident that the model demonstrated commendable performance across the six facial
skin classification tasks. Furthermore, their models consistently achieved higher average
accuracies when utilizing transfer learning, reaffirming the efficacy of this approach in the
domain of dermatological image classification.

In a separate contribution, Hosny et al. [100] proposed a DCNN methodology tailored
for the precise classification of melanoma. Notably, this approach adeptly addressed the
complexities arising from variations in skin texture. To counterbalance the data deficien-
cies in existing DL-based methods, their methodology comprised a multi-step process. It
commenced with preprocessing the input image, followed by the segmentation of regions
of interest (ROIs). Then, they employed rotations and shifts to enhance the segmented
ROI image. The performance of this novel approach was extensively evaluated using
various DCNN architectures, including Alex-net, ResNet101, and GoogleNet, across multi-
ple datasets, including MED-NODE, DermIS and DermQuest, and ISIC 2017. The results
distinctly indicated that their approach achieved optimal classification, particularly when
employing the enhanced GoogleNet architecture. Simultaneously, the research team in-
troduced an additional high-precision method designed for a seven-class classification
task [101]. This approach utilized the pre-trained AlexNet as a foundational framework.
While the parameters of the original model served as initial values, the weights of the
three replacement layers were randomly initialized. Rigorous testing was conducted using
ISIC2018, resulting in notable success. The proposed method effectively classified skin
lesions into seven distinct categories, demonstrating impressive performance in metrics in-
cluding accuracy, sensitivity, specificity, and precision, with values reaching 98.70%, 95.60%,
99.27%, and 95.06%, respectively. Notably, this achievement surpassed the outcomes of
existing studies by a margin of at least 6%. Subsequently, the team progressed their work
to formulate a model capable of effectively handling an eight-class classification task [102].
They harnessed the power of transfer learning by employing a pre-trained model from
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GoogleNet, initializing parameters and further refining them through training. However,
meticulous testing unveiled a certain level of randomness in their classification results,
attributed to an imbalance in the distribution of sample images within the dataset. In a
separate study [103], a groundbreaking approach was introduced, featuring a novel Resid-
ual Deep Convolutional Neural Network (RDCNN) tailored for diagnosing skin cancer
lesions. This innovative model, trained and tested across six distinct skin cancer datasets,
demonstrated its proficiency in extracting crucial features with exceptional precision, even
when dealing with datasets of limited size. Worth noting is the inclusion of innovative
shortcut connections in the RDCNN, setting it apart from established architectures such
as ResNet. The performance of their proposed RDCNN classification model consistently
outperformed existing methods for skin lesion classification. However, it is important to
highlight that this model excelled in binary classification tasks, leaving room for further
improvement in its performance for multi-class scenarios.

In a recent investigation [104], a CNN based on the InSiNet architecture was intro-
duced to distinguish benign and malignant skin cancer lesions. This study involved testing
the model under consistent conditions, utilizing 10,000 images from several ISIC datasets.
Remarkably, the proposed algorithm achieved a classification accuracy of 94.59% with
the ISIC 2018 dataset. This achievement prompted a comparative assessment of the pro-
posed algorithm against seven other ML technologies, including GoogleNet, DenseNet-201,
ResNet152V2, EfficientNetB0, RBF SVM, logistic regression, and Random Forest [105–107].
The distinctive strength of this approach lies in the InSiNet architecture, characterized by
its reduced parameter count, lightweight models, shorter processing times, and superior
accuracy. This efficiency is, in part, attributed to the selective discarding of irrelevant
data that often constitutes noise in skin cancer lesion analysis. The elimination of such
noise contributes positively to algorithm performance. Consequently, to further elevate
classification accuracy, efforts should focus on enhancing the segmentation process.

In the year 2023, a hybrid CNN architecture that amalgamates DenseNet and residual
networks was proposed for skin lesion classification tasks [108]. This innovative approach
simplifies the intricate task of classifying skin lesions by training a unified CNN architecture
to handle multiple classification challenges. Comprehensive analyses of the study results
illustrate that superior performance can be obtained when multiple DL algorithms are
combined. This methodology effectively decreases the complexity associated with the
features present in skin lesion images and mitigates the need for the extensive parameter
tuning required by conventional CNN models. Subsequently, Vatsala et al. introduced
a fusion model that capitalizes the strengths of U-Net and CNN models [109]. Initially,
U-Net was employed to localize and extract ROIs from dermoscopic images, followed
by CNN-based multi-class classification on these segmented images. The optimization of
the model’s performance was facilitated by employing both Adam and Adadelta optimiz-
ers. The experimental findings conclusively demonstrate that this fusion model surpasses
other state-of-the-art techniques across all performance parameters. Furthermore, Para-
vatham et al. [110] proposed a DCNN model that incorporated global average pooling
and preprocessing techniques. This approach aims to mitigate the common issue of over-
fitting in conventional deep CNN models and enhance the early-stage accuracy of skin
cancer detection. In addition, they thoughtfully designed a user interface for evaluating
the effectiveness of this DCNN model. It is important to highlight that this study, like
its predecessors [108,109], employed the HAM10000 dataset, which is afflicted with data
class imbalance. This imbalance problem often leads to the model being biased toward
predicting the majority of categories while neglecting the minority. Consequently, while the
overall accuracy may be high, classification accuracy for specific categories can significantly
suffer. In a recent pioneering work, Gan et al. [111] introduced a cutting-edge multimodal
transformer algorithm. This innovative approach integrates two encoders for processing
images and metadata, along with a decoder for fusing multimodal information. The dataset
used in this study comprised dermatological images and clinical metadata. Within the
network, a Visual Transformer (ViT) model adept at deep feature extraction from images
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was skillfully employed. Metadata, conversely, were treated as labels and embedded using
a novel soft label encoder (SLE). The decoder section introduced a novel mutual attention
(MA) module designed to optimize the fusion of image and metadata features. In com-
parison to preceding state-of-the-art methods, this model exhibited superior performance,
representing a significant advancement in the field of dermatological diagnosis.

While these DL methods have demonstrated impressive results and are extensively
adopted for classifying neoplastic and inflammatory skin diseases, their application in
the intelligent diagnosis of pigmented skin diseases, specifically vitiligo, remains notably
limited. This limitation arises from challenges encompassing inadequate data volumes, a
lack of specific targeting for vitiligo, and diminished detection accuracy. Further research
is imperative to address these limitations and broaden the scope of AI applications in the
diagnosis of pigmented skin diseases.

In 2019, a method employing CNNs for intelligent vitiligo detection was introduced [112].
This method underwent training on three distinct CNN models, namely Resnet50, VGG16,
and Inception v2. Importantly, the training incorporated three different color space rep-
resentations (RGB, HSV, YCrCb) on the same vitiligo dataset, with evaluation metrics
encompassing accuracy, sensitivity, and specificity. As vitiligo lesions exhibit distinct con-
trast features under varying color space transformations, these three models fully leverage
complementary color information, leading to substantial performance enhancements. This
innovative approach exemplifies the pioneering strides made using DL within the domain
of vitiligo diagnosis. In 2020, a vitiligo diagnosis system was introduced, comprising three
essential components [113]. A distinguishing feature of this system is the utilization of
images generated through a Cycle Consistent Adversarial Network (Cycle GAN) under
a wood lamp. Furthermore, this system incorporated an advanced super-resolution tech-
nique, Attention-Aware DenseNet with Residual Deconvolution (ADRD), to enhance image
resolution. Finally, the classification aspects of the system relied on Resnet50. Through
comparative analysis with images lacking preprocessing, a substantial improvement in clas-
sification accuracy was observed, affirming the effectiveness of the applied preprocessing
method. In 2022, Guo et al. proposed a hybrid DL model for vitiligo lesion detection [114].
This hybrid model integrates three diverse datasets and employs three distinct models.
Their approach utilizes YOLO v3 for lesion localization, and UNet++ for lesion segmen-
tation, and combines the outputs of these models for comprehensive testing. A notable
advantage of this hybrid model is its proficiency in detecting small lesions, a valuable
feature considering the variability in the number and size of vitiligo lesions. It is essential to
highlight that, currently, this model is primarily suited for evaluating the severity of vitiligo
lesions in individuals of Asian ethnicities. Further assessments are imperative to determine
its applicability to other ethnic skin types. An alternative approach for vitiligo detection
involves the utilization of the Learning Vector Quantization (LVQ) neural network [115].
LVQ is an artificial neural algorithm based on supervised learning that is trained using
known data. The algorithm categorizes images into affected and unaffected areas, em-
ploying learning vectors for quantitative vitiligo assessment. This method achieved an
impressive classification accuracy of 92.22%.

Collectively, these methods highlight the widespread application of DL techniques
in the diagnosis of skin diseases, demonstrating remarkable effectiveness. As algorithms
continue to enhance and data quality continues to improve, the accuracy of CNN models
in classifying common skin diseases is steadily rising. Among the various neural network
types, CNNs stand out for their ability to handle complex samples.

The DL methods for dermatological classification discussed in this section predomi-
nantly center around CNN-based methods and customized hybrid CNN networks. Conse-
quently, it becomes evident that CNNs occupy a pivotal role and hold substantial signifi-
cance in the field of dermatological classification [116–122].
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4. Results
4.1. Indicators of Evaluation

In dermatological research, assessments of ML and DL models are rigorously con-
ducted using a suit of standardized metrics. These metrics include accuracy (AC), sensitivity
(SE), specificity (SP), the Dice score (DI), and the Jaccard index (JA). The formulae for each
evaluation metric are as follows.

AC =
TP + TN

TP + FP + TN + FN
(1)

DI =
2·TP

2·TP + FP + FN
(2)

JA =
TP

TP + FP + FN
(3)

SE =
TP

TP + FN
(4)

SP =
TN

FP + TN
(5)

where TP, TN, FP, and FN refer to the number of true positives, true negatives, false
positives, and false negatives, respectively.

For diverse tasks, the relative importance of these evaluation metrics varies signif-
icantly, depending heavily on the specific application context and requirements of the
task. In the domain of segmentation tasks, three principal evaluation metrics emerge as
particularly salient, each serving unique roles and possessing varying degrees of relevance:

JA: Also recognized as the intersection-over-union (IoU), JA assesses the degree of
overlap between model-generated segmentation outcomes and the actual segmentation
results in image segmentation tasks. Consequently, it assumes paramount importance in
scenarios necessitating high-precision segmentation.

AC: In image segmentation tasks, achieving precise segmentation of all target regions
represents a fundamental requirement. Hence, pixel-level accuracy is the second-most
critical metric, ensuring that all target regions are accurately delineated.

SE: Given the typically diminutive size of skin lesions in medical images, segmentation
models must exhibit heightened sensitivity to accurately detect these minute skin lesion
areas. Therefore, SE takes precedence in this context, enabling the correct identification of
all such areas.

In the domain of classification tasks, AC serves as the most fundamental and widely
used metric. AC gauges the proportion of correctly classified samples relative to the total
sample count, meriting its top rank. Subsequently, SE and SP come into play as crucial
metrics to assess the classification efficiency of the model, thus following AC in importance.
The JA and DI metrics are principally employed to measure the segmentation efficacy
of classifiers. They gain prominence in tasks demanding precise segmentation and are
therefore placed fourth and fifth in the order of significance.

4.2. Analysis of results

Within the field of image segmentation, DL methods are currently used for most skin
diseases to segment skin lesions as a means of identifying diseases and achieving good
results [123–125]. Table 2 provides a comparative analysis of segmentation algorithms
regarding five fundamental evaluation metrics: AC, SE, SP, JA, and DI. Remarkably, there
is minimal disparity between ML and DL methods in terms of the AC, SE, and SP metrics.
In the context of segmentation tasks, the proper selection and design of features play an
indispensable role. Traditional ML techniques often require manual feature design and
selection, a process that usually demands specialist expertise. While this method can
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be laborious and time-consuming, it allows for detailed feature selection. In contrast,
DL methods offer the advantage of automatically deriving feature representations from
data, reducing the reliance on manual feature engineering. However, it is essential to
acknowledge that the quality of this feature selection may not match the meticulous nature
of manual feature design. Nevertheless, despite the trade-off in terms of time and human
resources, DL methods are still at the forefront in terms of performance. Regarding the
JA metric, traditional ML algorithms exhibit a gradual increase in their Jaccard values
with enhancements and adjustments in their segmentation methods. However, even
with these improvements, the highest threshold typically reached is only 0.81. Notably,
this figure falls below the average Jaccard value achieved via DL methods (0.821). This
observation highlights the substantial potential of DL algorithms in the domain of image
segmentation, surpassing the capabilities of ML techniques. It is particularly noteworthy
that the automated utilization of DL methods for segmenting prevalent skin diseases,
such as melanoma, has led to significant advancements in this field, providing valuable
insights for researchers involved in medical image segmentation [126]. The majority
of DL techniques employed in the field of computer imaging predominantly rely on
the architecture of CNNs. CNNs are renowned for their characteristics, including local
awareness and parameter sharing, and have emerged as the preferred architectural choice
for processing image data. They have established themselves as distinguished tools in
various applications related to image processing.

Table 2. Performance comparison of various dermatological segmentation algorithms.

Reference Method AC SE SP JA DI

[51] LSC (ML, 2015) 96.2% 92.6% - 0.81 -
[52] K-means (ML, 2016) 90% - - - -
[53] RGB threshold (ML, 2019) - - - 0.789 0.876
[53] XYZ threshold (ML, 2019) - - - 0.8 0.884
[54] ICA (ML, 2019) - 99.49% 98.46% 0.7087 -
[56] FCM (ML, 2020) 90.89% 92.84% 88.27% - -
[58] FCN (DL, 2017) 95.3% 93.8% 95.2% 0.841 0.907
[60] FCDN (DL, 2017) 99.53% 87.9% 97.9% 0.783 0.865
[61] DFCN (DL, 2017) 93.4% 82.5% 97.5% 0.765 0.849
[62] FCRN (DL, 2017) 85.5% 54.7% 93.1% - -
[63] SegNet (DL, 2021) - 95.6% 95.42% - 0.749
[63] U-Net (DL, 2021) - 96.4% 94.8% - 0.733
[64] FCN (DL, 2018) - - - 0.884 -
[65] ResNet34 (DL, 2019) - - - 0.768 0.851
[66] U-Net (DL, 2019) 97% 90% 99% 0.88 0.94
[67] FCN U-Net (DL, 2019) 90% 96% - 0.83 -
[68] U-Net, VGG-16 (DL, 2021) 96.7% 90.4% 98% 0.846 0.915
[69] MSFCDN (DL, 2018) 95.3% 90.1% 96.7% 0.785 0.869
[70] DPFCN (DL, 2019) 98.9% 92.4% 99.6% 0.852 0.916
[71] ResU-NeXt ++ (DL, 2021) 96% - - 0.8684 0.9235
[72] U-Net (DL, 2022) 90.74% - - 0.7572 -
[73] DeepLabv3 + (DL, 2023) 95% 90% 90% - -
[75] W-EFO-E-CNN (DL, 2023) 98% 99.54% 50% 0.987
[76] DCNN (DL, 2019) - - - 0.714 -
[77] U-Net (DL, 2020) - - - 0.887 -
[78] SEDSIC (DL, 2021) 97% 98% 96% 0.94 0.97
[79] FCN-UTA (DL, 2021) - 86.36% - 0.7381 0.8493

In the field of image classification, skin diseases can be systematically categorized into
three distinct classes based on their underlying characteristics and clinical manifestations:
neoplastic, inflammatory, and pigmented. Table 3 offers a comparative analysis of clas-
sification algorithms, with a focus on three key evaluation metrics: AC, SE, and SP (the
primary criterion for ranking works from the literature is the methodology used, whether it
is ML or DL.). It is crucial to emphasize that the notable variance in accuracy across diverse
methods can be ascribed to a multitude of factors. These factors encompass the nature of
the classification task, the type of data employed, the specific domain of application, and
the scale of the dataset. Classification tasks can be categorized as either multi-class tasks
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(e.g., four-class or six-class classification) or binary classification tasks. Moreover, the
diversity of data types is a pivotal aspect, with clinical images, dermoscopic images, wood
images, and others contributing to the variance in classification results. The nature of
the region under consideration can also wield a substantial influence on the classification
outcomes, whether it pertains to facial areas, complex areas of skin, or smooth areas of
skin. Additionally, the size of the dataset plays a pivotal role, with certain tasks involving
extensive datasets comprising thousands of images, while others may have smaller datasets
with only a few hundred images. Variations in these factors can significantly influence
the performance of classification models. Hence, when evaluating disparities between the
performances of DL and ML methods, along with their internal mechanisms, it is impor-
tant to consider their overall trends and levels of accuracy. In the context of neoplastic
and inflammatory skin diseases [86–104], the DL approach has demonstrated a higher
classification stability, overall accuracy, and overall specificity relative to the ML method.
Particularly noteworthy is the classification accuracy achieved with the BPNN, which
reached an impressive 99.7%. This milestone underscores the substantial progress made by
DL algorithms in the field of dermatological classification, especially in the realm of neoplas-
tic and inflammatory skin diseases, for which these algorithms have reached a reputable
level of application [127]. For pigmented skin diseases, including vitiligo [112–115], extant
classification algorithms are capable of achieving diagnostic accuracies exceeding 85%. This
accomplishment is undeniably encouraging. However, the insufficient number of studies
in this area leads to these findings having a lack of scientific validity and persuasiveness.
Also, the generalization of these models remains inadequately validated, necessitating
further scrutiny. While these algorithms may perform well on specific datasets, robust
efforts toward validating their broader applicability and accuracy across diverse datasets
are required. Addressing these issues may provide substantial prospects for future research
endeavors within the field of pigmented skin diseases.

Table 3. Comparison of classification algorithms for various skin diseases.

Reference Methods AC SE SP Classes Data Type Data Size

[86] Adaboost (ML, 2015) 89.35% 93.5% 85.2% 2 Dermoscopic images -
[87] KNN–SVM (ML, 2015) 85% - - 5 Clinical images 726
[88] SVM (ML, 2016) 96.8% 95.4% 89.3% 2 Dermoscopic images 320
[89] KNN–SVM (ML, 2017) 90% - - 4 Dermoscopic images -
[90] SVM (ML, 2018) 92.3% - - 3 Dermoscopic images -
[91] SVM (ML, 2019) 89.43% 91.15% 87.71% 2 Dermoscopic images 1000
[92] Naive Bayes (ML, 2020) 72.7% 91.7% 70.1% 6 Dermoscopic images 1646
[93] CNN (DL, 2020) 75% 73% 78% 2 Dermoscopic images 1796
[94] BLSTM (DL, 2022) 89.47% 88.33% 97.17% 7 Dermoscopic images 10,015
[95] Eff2Net (DL, 2022) 84.70% 84.70% - 4 Clinical images 17,327
[96] BPNN (DL, 2020) 99.7% 99.4% 100%% 2 Dermoscopic images 400
[97] DenseNet201 (DL, 2022) 95.5% 93.96% 97.06% 2 Dermoscopic images 3297
[98] Inception-ResNet-V2 (DL, 2020) 87.42% 97.04% 96.48% 4 Clinical images 14,000
[99] Inception-ResNet V2 (DL, 2019) 89.63% 77% - 6 Clinical images 11,445
[100] GoogleNet (DL, 2020) 99.29% 99.22% 99.38% 2 Dermoscopic images 2376
[101] AlexNet (DL, 2020) 98.7% 95.6% 99.27% 7 Dermoscopic images 10,015
[102] GoogleNet (DL, 2020) 94.92% 79.8% 97% 8 Dermoscopic images 29,439
[103] RDCNN (DL, 2022) 97% 94% 98% 2 Dermoscopic images 2206
[104] InSiNet (DL, 2022) 94.59% 97.5% 91.18% 2 Dermoscopic images 1471
[105] GoogleNet(Inception-V3) (DL, 2020) 83.78% 87.5% 79.41% 2 Dermoscopic images 1471
[106] DenseNet-201 (DL, 2020) 87.84% 95% 79.41% 2 Dermoscopic images 1471
[107] ResNet152V2 (DL, 2020) 86.49% 92.5% 79.41% 2 Dermoscopic images 1471
[108] DenseNet, ResNet (DL, 2023) 95.1% 92% 98.8% 7 Dermoscopic images 10,015
[109] U-Net, CNN (DL, 2023) 97.96% 84.86% 97.93% 7 Dermoscopic images 10,015
[110] DCNN (DL, 2023) 97.204% 97% - 7 Dermoscopic images 10,015
[111] Visual Transformer (DL, 2023) 93.81% 90.14% 98.36% 7 Dermoscopic images 10,015
[112] Resnet50, VGG16, Inception v2 (DL, 2019) 87.8% 90.9% 91.9% 2 Clinical images 38,677
[113] Cycle GAN, ADRD, Resnet50 (DL, 2020) 85.69% - 90.92% 2 Wood lamp images 10,000
[114] YOLO v3, PSPNet, UNet ++ (DL, 2022) 85.02% 92.91% - 3 Clinical images 2720
[115] LVQ Neural Network (DL, 2017) 92.22% - - 3 Clinical images 1002
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5. Discussions

In recent years, researchers have become increasingly interested in ML- and DL-
based methods for dermatological diagnosis and have made significant progress [117,128].
Although both ML and DL have achieved very impressive results in the above literature,
with the increasing complexity of this task and the increasing amount of data, DL is
gradually becoming the dominant method and possesses more potential in this field.
Across the published literature, DL methods have shown achievements in dermatological
diagnosis comparable to those of dermatologists. A great deal of research and innovative
system development is required to develop and validate superior algorithms or systems
that support new imaging techniques [129]. Many automated dermatological diagnostic
methods have been developed, but a complete decision support system has not yet been
fully realized. In this section, we first describe the current state of research. Then, we
discuss the main challenges faced by DL in the field of dermatological diagnosis. Instead of
describing specific cases in detail, we focus more on the underlying challenges and explain
the root causes that lead to these problems. Finally, we try to provide some suggestions for
solving these problems.

5.1. Current State of Research

This section offers a comprehensive overview of ML- and DL-based algorithms for
skin lesion segmentation and classification. In terms of segmentation, substantial progress
has been made in the field since its inception in 2015 [130]. The volume of research papers
published on skin lesion segmentation published within the last eight years (2015–2022) sur-
passes the number of papers published in the preceding seventeen years (1998–2014) [131].
However, despite extensive research efforts, skin lesion segmentation remains an unre-
solved challenge, as evidenced by the ISIC 2018 Skin Lesion Segmentation Field Rankings.
While some studies have achieved high Jaccard values, such as reaching 0.94, this does
not conclusively establish that DL algorithms have fully conquered the realm of image
segmentation. The generalizability and robustness of these methods are yet to be defini-
tively demonstrated, primarily due to constraints related to dataset size and characteristics.
Consequently, we posit that the field of skin lesion segmentation via DL warrants further
dedicated research.

In terms of classification, there has been remarkable progress in enhancing the diag-
nostic accuracy and efficiency of dermatological classifications. In past clinical diagnostic
scenarios, the accuracy of diagnosis often hinged on the image quality and the experience
of the dermatologist, making it highly subjective and susceptible to misdiagnosis. The
advent of ML and DL algorithms has led to the development of CAD systems that signifi-
cantly support dermatologists in diagnosing skin diseases. Evidently, DL-based methods
effectively address the limitations of traditional ML-based methods. When compared to
traditional ML, DL demonstrates the superior performance, boasting an average classifi-
cation accuracy of 89.5% and even reaching a maximum of 99.7%. These data affirm the
relative development of DL research in the domain of dermatological disease classification.
However, unlike segmentation, classification faces a major challenge known as the “black
box” problem. In the field of medical image processing, the interpretability of classification
results using DL methods remains a major challenge [132].

To better visualize the current state of research on skin lesion detection, a search of the
Google Scholar database was conducted on 9 November 2023. Research papers with the
keywords “skin lesion classification”, “skin lesion segmentation”, “skin lesion detection”
and “skin lesion identification” in their title were screened. The results of this search are
shown in Table 4, which shows that the number of publications on skin disease diagnosis
is increasing every year. Melanoma and skin cancer were identified as the main areas of
interest for skin lesion identification and were discussed in more than 70% of the papers.
Among the collected publications, the use of ML and DL in skin disease identification was
discussed in 197 papers. Of these papers, 167 mentioned the DL method, while the other
30 used the ML method. Thus, researchers preferred DL methods. The CNN method was
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reported as the current most popular DL method [133], which is perfectly fitting with its
success in image recognition tasks. Besides this, a large number of studies on transfer
learning methods have emerged in publications of the last three years [134], which shows
the current trend of research in the field of skin image diagnosis.

Table 4. Number of publications relating to skin diagnosis.

Year 2018 2019 2020 2021 2022 2023

Publication No. 104 127 161 190 245 233

5.2. Challenges

As DL has evolved over the past few years, various efforts to utilize DL methods for
dermatological diagnosis have been proposed, with promising performances. However,
there are still several issues that need to be addressed before DL can be widely applied to
real-world clinical scenarios for use in dermatological diagnoses.

5.2.1. Limitations of Datasets

Limitations in terms of datasets have two main components: the size of the dataset and
the type of dataset. Previous work using DL for dermatological diagnoses has typically been
trained and tested using datasets with a limited number of images. The largest publicly
available dermatology dataset is the ISIC dataset [13], which contains over 20,000 images of
skin. While one can obtain any large amount of dermatological data without any diagnostic
information from the Internet, labeling such a large amount of dermatological data with
diagnoses requires expertise. Nevertheless, training a deep neural network requires a
large amount of data for labeling. Too few data can lead to problems such as overfitting.
Therefore, larger datasets with diagnostic information are needed to train deep neural
networks for effective skin disease diagnosis. In addition to this, imbalances in the samples
of the dataset can greatly affect the diagnostic results. For some rare diseases and minority
groups, only a limited number of images are available for use in training. A large number
of algorithms to date have shown a bias toward such minorities [135], which can lead to a
larger gap between their sensitivity and specificity in multi-classification tasks.

5.2.2. Explainability of Deep Learning Methods

DL models are often considered “black box” models. The principles of DL models as
“black box” models have not been explained at this stage, which may lead to unpredictable
system outputs. Such an “end-to-end” decision-making model results in DL having a
weak explanatory power. The internal logic of DL is not clear, making the diagnostic
results of this model less convincing. Humans cannot really understand how a machine
works, even if it is actually inspired by humans [136]. In the field of medicine, especially
for disease diagnosis, interpretable studies of dermatological classification can ensure the
reliability and safety of these systems by providing a clear understanding of the behavior
and boundaries of the system toward all of its components. Doctors and patients should
understand the rationale behind disease diagnosis in order to make informed decisions.
Therefore, before DL algorithms are applied in clinical diagnoses, the transparency of the
model must be improved.

5.2.3. Homogenized Research Directions

Currently, the majority of studies in both the classification and segmentation domains
focus on tumors and inflammatory skin diseases because of their prevalence and associated
health risks, particularly melanoma and skin cancer. The prominence of these diseases may
stem from their unique features that make them easier to recognize and classify via images.
Although, pigmented skin diseases are of equal significance as they also have substantial
health implications for patients [129], such as vitiligo. An in-depth study of pigmented skin
diseases is equally demanding [137], as they often require in-depth analyses and diagnoses.
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Moreover, most of the current research has been focused on dermoscopic images due
to the fact that dermoscopic images are more often collected and have better properties
for segmentation and classification. However, with the increasing use of smartphones,
clinical images can be obtained through digital cameras or smartphones easily, which can
be valuable in assessing the severity of a patient’s lesions [138]. In order to advance the
development and application of clinical images in skin diagnosis, the standard of images
captured using smartphones should be consistent with those taken by clinicians during the
examination of skin lesions, and the relevant features of these images should fully support
the diagnosis.

5.2.4. More Innovative Algorithms Are Needed

After summarizing and comparing the current algorithms, it was found that there are
some key limitations that make it difficult for the reported algorithms to achieve significant
improvements in their diagnostic accuracy. As shown in the examples from the literature
presented in the previous sections, most existing dermatological diagnostic tasks usually
use the current popular DL architectures for image segmentation or classification, and
the ML architectures have not changed much; secondly, the ML architectures for different
types of dermatological diseases are uniform, and very few studies select the appropriate
type of deep neural network for the specific dermatological diagnostic task [139]. Finally,
the current DL algorithms mainly rely on unimodal data as inputs in many tasks, which
leads to overly homogeneous and insufficiently comprehensive criteria for classification
and diagnosis. In the case of unimodal data, algorithms can only make decisions based
on information from that modality, lacking the richness of information available from
multimodal data.

5.3. Future Directions

AI has made great strides in the field of dermatological recognition, and the use of
DL methods in dermatological diagnosis is becoming increasingly popular. Nevertheless,
as discussed above, there are still some challenges in this field that need to be actively
addressed in order to achieve satisfactory diagnostic results. In order to address these
challenges and achieve better dermatological diagnosis results, future research and practices
can explore and focus more effort on the following areas.

5.3.1. Establish a Standardized Dermatological Image Dataset

To facilitate the training of more precise and resilient deep neural networks, it is imper-
ative to assemble larger, more diverse, and more representative skin lesion image datasets
that encompass manually labeled segmentation outcomes for each image. Automated or
semi-automated data labeling tools, such as Fiji, LabelMe, and Imagetagger, can be used
to efficiently label massive amounts of data [140]. In addition, there are some problems
with the existing publicly available skin image datasets. Current public datasets such as
the ISIC contain dermatological images of light-skinned subjects primarily from the United
States, Europe, and Australia. While current disease recognition models perform well in
these subjects, their efficacy has been questioned when dealing with dermatological images
of individuals from other geographic regions [141]. Therefore, there is a need for more
balanced and standardized datasets that include clinical data from different regions, gen-
ders, ages, skin types, and ethnicities in order to improve the generalization performance
of the models.

5.3.2. Provide Reasonable Explanations for Predicted Results

Interpretability is an important factor that limits the application of DL methods in
clinical diagnostic scenarios. In order to improve the interpretability, visualization tools
and techniques can be used, which can help users to understand the decision-making
process of the model. For example, by using heatmaps, the importance of features can be
visualized, while by visualizing decision trees, the branching structure of the tree model
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can be clearly presented. Therefore, the research and development of interpretable tools
and techniques is a key direction for the field of DL, contributing to the transparency of
models and the trust of users. In addition, one possible solution is to start from the aspect
of feature representation, providing reasonable explanations for predictions based on the
ABCDE criteria or the seven-point skin lesion malignancy checklist [142]. Interpretability
also has the potential to monitor ethical and compliance-related issues raised by biases
in training data. It provides a more effective mechanism to address the bias and auditing
issues posed by AI [143].

5.3.3. Increase the Diversity of the Types of Research

Researchers need to refocus their attention beyond just concentrating on areas concern-
ing melanoma and skin cancer. While the emphasis on melanoma is undoubtedly critical
for life-threatening reasons, we must recognize that the broader spectrum of skin conditions
that dermatologists face in their clinical practice, including a wide range of benign lesions,
is equally important. Future research efforts should aim to achieve a more comprehensive
classification and segmentation of dermatological conditions, including neoplastic, inflam-
matory, and pigmented skin diseases, in order to establish a more comprehensive basis for
medical diagnoses and treatment. This will require encouraging researchers to develop
systems that can accurately segment and classify different types of skin lesions. In addition,
future research should focus more on clinical images rather than dermoscopic images to
better meet the practical needs of dermatologists.

5.3.4. Actively Explore Innovative Models and Methods

Changing technological routes and optimizing algorithms is the most focal way to
overcome the current challenges. Innovations in algorithms and technology should be
considered in the following areas:

(1) Try to use the latest model architecture. The Swin transformer is a new model of
computer vision proposed in 2021 with a wide applicability for tasks including im-
age segmentation, image recovery, and image reconstruction [144,145]. Currently,
only a limited number of studies have reported the use of this model for medical
images [146–148]. The Swin transformer, through its hierarchical structure and self-
attentive mechanism, has shown powerful feature extraction and modeling capabilities
in medical image processing, providing potential opportunities for improvement and
innovation in medical image analysis and diagnosis [149]. This suggests that the
application of modified models in medicine deserves further research.

(2) Innovate areas of utilization of traditional methods. As mentioned above, there have
been many works utilizing transfer learning techniques to improve the performance
of DL models in dermatological diagnosis tasks [105–107]. At the same time, recent
developments regarding transfer learning in other domains can be utilized to facilitate
the success of DL in dermatological diagnosis tasks. It is worth mentioning that
Reinforcement Learning (RL) also has the potential to be applied to dermatological
diagnosis. Recent studies have demonstrated the successful application of RL in
different domains [150], partly due to the powerful function approximation capabilities
of DL algorithms. RL is very effective in dealing with sequential problems, and many
medical decision-making problems fall into this category. Therefore, RL can be used
to solve these problems. There have been some works utilizing RL to solve medical
image processing tasks with promising results [151]. However, there is no work that
applies RL to dermatological diagnostic tasks. Thus, RL may be a potential tool for
solving the problems regarding dermatological diagnosis.

(3) Fusion of multimodal data. Integrating multi-source data such as images, text, and
biological features can enhance the performance of dermatological diagnostic models.
In a clinical setting, accurate dermatological diagnosis is not only dependent on a single
skin image, but also requires the consideration of additional clinical information such
as medical history, risk factors, and overall skin assessment. Some studies have verified
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significant improvements in diagnostic performance including these additional data
and close-up images [118]. Therefore, this information could be incorporated into the
process of model training and testing for skin disease diagnoses. In addition, medical
record data can also be processed using techniques such as document analysis [152]
and data mining [153], and taken into account in the diagnostic process as well. This
multimodal data fusion model has proven its effectiveness in recent studies and can
be extended to the field of dermatological diagnosis.

6. Conclusions

The development of AI-based diagnoses of skin lesions is a research area of great
interest, which benefits from appropriate methodologies and abundant datasets that are
continuously updated. Despite the progress made in the last decade, many aspects still
require further investigation and improvement.

In this paper, we review methods for the segmentation and classification of skin
lesions using ML and DL, and discuss the current state of research, its challenges, and
future directions for DL-driven dermatological diagnosis. These studies help to enhance
the development of advanced concepts and methods. In summary, there is a need for
establishing more standard datasets, developing more visualization tools, innovating
model architectures, and fusing multiple techniques in the future to comply with the
trends of dermatological image segmentation and classification. There is a particular need
to develop more reliable automated diagnostic methods when faced with an increasing
variety of clinical data.
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skin image classification with multicriteria model evaluation. Sensors 2021, 21, 5846. [CrossRef] [PubMed]

31. Panayides, A.S.; Amini, A.; Filipovic, N.D.; Sharma, A.; Tsaftaris, S.A.; Young, A.; Foran, D.; Do, N.; Golemati, S.; Kurc, T.; et al.
AI in medical imaging informatics: Current challenges and future directions. IEEE J. Biomed. Health Inform. 2020, 24, 1837–1857.
[CrossRef]

32. Abdullah, M.N.; Sahari, M.A. Digital image clustering and colour model selection in content-based image retrieval (CBIR)
approach for biometric security image. In AIP Conference Proceedings; AIP Publishing: College Park, MD, USA, 2022; Volume 2617.

https://doi.org/10.17632/bfmpbx432k.2
https://doi.org/10.1038/sdata.2018.161
https://www.ncbi.nlm.nih.gov/pubmed/30106392
https://doi.org/10.1038/s41591-020-0842-3
https://doi.org/10.1038/s41591-020-0942-0
https://www.ncbi.nlm.nih.gov/pubmed/32572267
https://doi.org/10.1016/j.neunet.2014.09.003
https://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.1016/j.jid.2018.01.028
https://doi.org/10.1016/j.ejca.2019.04.001
https://doi.org/10.1038/s41598-022-22644-9
https://www.ncbi.nlm.nih.gov/pubmed/36307467
https://doi.org/10.3390/s21175846
https://www.ncbi.nlm.nih.gov/pubmed/34502735
https://doi.org/10.1109/JBHI.2020.2991043


Diagnostics 2023, 13, 3506 26 of 30

33. Silva, J.; Varela, N.; Patiño-Saucedo, J.A.; Lezama, O.B.P. Convolutional neural network with multi-column characteristics
extraction for image classification. In Image Processing and Capsule Networks: ICIPCN 2020; Springer International Publishing:
Cham, Switzerland, 2021; pp. 20–30.

34. Wang, P.; Fan, E.; Wang, P. Comparative analysis of image classification algorithms based on traditional machine learning and
deep learning. Pattern Recognit. Lett. 2021, 141, 61–67. [CrossRef]

35. Sreedhar, B.; Be, M.S.; Kumar, M.S. A comparative study of melanoma skin cancer detection in traditional and current image
processing techniques. In Proceedings of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud) (I-SMAC), Palladam, India, 7–9 October 2020; IEEE: New York, NY, USA, 2020; pp. 654–658.

36. Prinyakupt, J.; Pluempitiwiriyawej, C. Segmentation of white blood cells and comparison of cell morphology by linear and naïve
Bayes classifiers. Biomed. Eng. Online 2015, 14, 63. [CrossRef]

37. Tan, T.Y.; Zhang, L.; Lim, C.P. Adaptive melanoma diagnosis using evolving clustering, ensemble and deep neural networks.
Knowl. -Based Syst. 2020, 187, 104807. [CrossRef]

38. Yoganathan, S.A.; Zhang, R. Segmentation of organs and tumor within brain magnetic resonance images using K-nearest neighbor
classification. J. Med. Phys. 2022, 47, 40.

39. Thamilselvan, P.; Sathiaseelan, J.G.R. Detection and classification of lung cancer MRI images by using enhanced k nearest
neighbor algorithm. Indian J. Sci. Technol. 2016, 9, 1–7. [CrossRef]

40. Song, Y.Y.; Ying, L.U. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130.
41. Gladence, L.M.; Karthi, M.; Anu, V.M. A statistical comparison of logistic regression and different Bayes classification methods

for machine learning. ARPN J. Eng. Appl. Sci. 2015, 10, 5947–5953.
42. Jaiswal, J.K.; Samikannu, R. Application of random forest algorithm on feature subset selection and classification and regression.

In Proceedings of the 2017 World Congress on Computing and Communication Technologies (WCCCT), Tiruchirappalli, India,
2–4 February 2017; IEEE: New York, NY, USA, 2017; pp. 65–68.

43. Seeja, R.D.; Suresh, A. Deep learning based skin lesion segmentation and classification of melanoma using support vector machine
(SVM). Asian Pac. J. Cancer Prev. APJCP 2019, 20, 1555.

44. Sheikh Abdullah, S.N.H.; Bohani, F.A.; Nayef, B.H.; Sahran, S.; Akash, O.A.; Hussain, R.I.; Ismail, F. Round randomized learning
vector quantization for brain tumor imaging. Comput. Math. Methods Med. 2016, 2016, 8603609. [CrossRef]

45. Ji, L.; Mao, R.; Wu, J.; Ge, C.; Xiao, F.; Xu, X.; Xie, L.; Gu, X. Deep Convolutional Neural Network for Nasopharyngeal Carcinoma
Discrimination on MRI by Comparison of Hierarchical and Simple Layered Convolutional Neural Networks. Diagnostics 2022,
12, 2478. [CrossRef]

46. Lv, Q.J.; Chen, H.Y.; Zhong, W.B.; Wang, Y.Y.; Song, J.Y.; Guo, S.D.; Qi, L.X.; Chen, Y.C. A multi-task group Bi-LSTM networks
application on electrocardiogram classification. IEEE J. Transl. Eng. Health Med. 2019, 8, 1900111. [CrossRef]

47. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front.
Neurosci. 2019, 13, 95. [CrossRef]

48. Fan, C.; Lin, H.; Qiu, Y. U-Patch GAN: A Medical Image Fusion Method Based on GAN. J. Digit. Imaging 2022, 36, 339–355.
[CrossRef] [PubMed]

49. Yin, X.X.; Sun, L.; Fu, Y.; Lu, R.; Zhang, Y. U-Net-Based medical image segmentation. J. Healthc. Eng. 2022, 2022, 4189781.
[CrossRef] [PubMed]

50. Popescu, D.; El-Khatib, M.; El-Khatib, H.; Ichim, L. New trends in melanoma detection using neural networks: A systematic
review. Sensors 2022, 22, 496. [CrossRef]

51. Li, Z.; Chen, J. Superpixel segmentation using linear spectral clustering. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1356–1363.

52. Alam, M.N.; Munia, T.T.K.; Tavakolian, K.; Vasefi, F.; MacKinnon, N.; Fazel-Rezai, R. Automatic detection and severity measure-
ment of eczema using image processing. In Proceedings of the 2016 38th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), Orlando, FL, USA, 17–20 August 2016; IEEE: New York, NY, USA, 2016; pp. 1365–1368.

53. Thanh, D.N.H.; Erkan, U.; Prasath, V.B.S.; Kuma, V.; Hien, N.N. A skin lesion segmentation method for dermoscopic images
based on adaptive thresholding with normalization of color models. In Proceedings of the 2019 6th International Conference on
Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey, 16–17 April 2019; IEEE: New York, NY, USA, 2019; pp. 116–120.

54. Chica, J.F.; Zaputt, S.; Encalada, J.; Salamea, C.; Montalvo, M. Objective assessment of skin repigmentation using a multilayer
perceptron. J. Med. Signals Sens. 2019, 9, 88. [CrossRef] [PubMed]

55. Nurhudatiana, A. A computer-aided diagnosis system for vitiligo assessment: A segmentation algorithm. In Proceedings of the
International Conference on Soft Computing, Intelligent Systems, and Information Technology, Bali, Indonesia, 11–14 March 2015;
Springer: Berlin, Heidelberg, 2015; pp. 323–331.

56. Dash, M.; Londhe, N.D.; Ghosh, S.; Shrivastava, V.K.; Sonawane, R.S. Swarm intelligence based clustering technique for automated
lesion detection and diagnosis of psoriasis. Comput. Biol. Chem. 2020, 86, 107247. [CrossRef]

57. Ronneberger, O.; Fischer, P.; Brox, T. Convolutional networks for biomedical image segmentation. In Proceedings of the Medical
Image Computing and Computer—Assisted Intervention, Singapore, 8–12 October 2022; pp. 234–241.

58. Deng, Z.; Fan, H.; Xie, F.; Cui, Y.; Liu, J. Segmentation of dermoscopy images based on fully convolutional neural network. In
Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE:
New York, NY, USA, 2017.

https://doi.org/10.1016/j.patrec.2020.07.042
https://doi.org/10.1186/s12938-015-0037-1
https://doi.org/10.1016/j.knosys.2019.06.015
https://doi.org/10.17485/ijst/2016/v9i43/104642
https://doi.org/10.1155/2016/8603609
https://doi.org/10.3390/diagnostics12102478
https://doi.org/10.1109/JTEHM.2019.2952610
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1007/s10278-022-00696-7
https://www.ncbi.nlm.nih.gov/pubmed/36038702
https://doi.org/10.1155/2022/4189781
https://www.ncbi.nlm.nih.gov/pubmed/35463660
https://doi.org/10.3390/s22020496
https://doi.org/10.4103/jmss.JMSS_52_18
https://www.ncbi.nlm.nih.gov/pubmed/31316902
https://doi.org/10.1016/j.compbiolchem.2020.107247


Diagnostics 2023, 13, 3506 27 of 30

59. Luo, W.; Meng, Y. Fast skin lesion segmentation via fully convolutional network with residual architecture and CRF. In Proceedings
of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018; IEEE: New York, NY,
USA, 2018.

60. Yuan, Y. Automatic skin lesion segmentation with fully convolutional-deconvolutional networks. arXiv 2017, arXiv:1703.05165.
61. Yuan, Y.; Chao, M.; Lo, Y.C. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance.

IEEE Trans. Med. Imaging 2017, 36, 1876–1886. [CrossRef]
62. Yuan, Y.; Lo, Y.C. Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks. IEEE J.

Biomed. Health Inform. 2017, 23, 519–526. [CrossRef]
63. Saood, A.; Hatem, I. COVID-19 lung CT image segmentation using deep learning methods: U-Net versus SegNet. BMC Med.

Imaging 2021, 21, 1–10. [CrossRef]
64. Pal, A.; Garain, U.; Chandra, A.; Chatterjee, R.; Senapati, S. Psoriasis skin biopsy image segmentation using Deep Convolutional

Neural Network. Comput. Methods Programs Biomed. 2018, 159, 59–69. [CrossRef] [PubMed]
65. Tschandl, P.; Sinz, C.; Kittler, H. Domain-specific classification-pretrained fully convolutional network encoders for skin lesion

segmentation. Comput. Biol. Med. 2019, 104, 111–116. [CrossRef]
66. Peng, Y.; Wang, N.; Wang, Y.; Wang, M. Segmentation of dermoscopy image using adversarial networks. Multimed. Tools Appl.

2019, 78, 10965–10981. [CrossRef]
67. Adegun, A.; Viriri, S. Deep learning model for skin lesion segmentation: Fully convolutional network. In Proceedings of the

International Conference on Image Analysis and Recognition, Taipei, Taiwan, 22–25 September 2019; Springer: Cham, Switzerland,
2019; pp. 232–242.

68. Thanh, D.N.H.; Thanh, L.T.; Erkan, U.; Khamparia, A.; Prasath, V.B.S. Dermoscopic image segmentation method based on
convolutional neural networks. Int. J. Comput. Appl. Technol. 2021, 66, 89–99. [CrossRef]

69. Zeng, G.; Zheng, G. Multi-scale fully convolutional DenseNets for automated skin lesion segmentation in dermoscopy images.
In Proceedings of the International Conference Image Analysis and Recognition, Póvoa de Varzim, Portugal, 27–29 June 2018;
Springer: Cham, Switzerland, 2018; pp. 513–521.

70. Nasr-Esfahani, E.; Rafiei, S.; Jafari, M.H.; Karimi, N.; Wrobel, J.S.; Samavi, S.; Soroushmehr, S.M.R. Dense pooling layers in fully
convolutional network for skin lesion segmentation. Comput. Med. Imaging Graph. 2019, 78, 101658. [CrossRef] [PubMed]

71. Zhao, C.; Shuai, R.; Ma, L.; Liu, W.; Wu, M. Segmentation of dermoscopy images based on deformable 3D convolution and
ResU-NeXt++. Med. Biol. Eng. Comput. 2021, 59, 1815–1832. [CrossRef] [PubMed]

72. Stofa, M.M.; Zulkifley, M.A.; Zainuri, M.A.A.M.; Ibrahim, A.A. U-Net with Atrous Spatial Pyramid Pooling for Skin Lesion
Segmentation. In Proceedings of the 6th International Conference on Electrical, Control and Computer Engineering: InECCE2021,
Kuantan, Malaysia, 23 August 2022; Springer: Singapore, 2022; pp. 1025–1033.

73. Yanagisawa, Y.; Shido, K.; Kojima, K.; Yamasaki, K. Convolutional neural network-based skin image segmentation model to
improve classification of skin diseases in conventional and non-standardized picture images. J. Dermatol. Sci. 2023, 109, 30–36.
[CrossRef] [PubMed]

74. Muñoz-López, C.; Ramírez-Cornejo, C.; Marchetti, M.A.; Han, S.S.; Del Barrio-Díaz, P.; Jaque, A.; Uribe, P.; Majerson, D.; Curi, M.;
Del Puerto, C.; et al. Performance of a deep neural network in teledermatology: A single-centre prospective diagnostic study.
J. Eur. Acad. Dermatol. Venereol. 2021, 35, 546–553. [CrossRef]

75. Reddy, D.A.; Roy, S.; Kumar, S.; Tripathi, R. Enhanced U-Net segmentation with ensemble convolutional neural network for
automated skin disease classification. Knowl. Inf. Syst 2023, 65, 4111–4156. [CrossRef]

76. Bian, Z.; Xia, S.; Xia, C.; Shao, M. Weakly supervised Vitiligo segmentation in skin image through saliency propagation. In
Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21
November 2019; IEEE: New York, NY, USA, 2019; pp. 931–934.

77. Low, M.; Huang, V.; Raina, P. Automating Vitiligo skin lesion segmentation using convolutional neural networks. In Proceedings
of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; IEEE: New
York, NY, USA, 2020; pp. 1–4.

78. Khatibi, T.; Rezaei, N.; Ataei Fashtami, L.; Totonchi, M. Proposing a novel unsupervised stack ensemble of deep and conventional
image segmentation (SEDCIS) method for localizing vitiligo lesions in skin images. for localizing vitiligo lesions in skin images.
Ski. Res. Technol. 2021, 27, 126–137. [CrossRef]

79. Yanling, L.I.; Kong, A.W.K.; Thng, S. Segmenting Vitiligo on Clinical Face Images Using CNN Trained on Synthetic and Internet
Images. IEEE J. Biomed. Health Inform. 2021, 25, 3082–3093.
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