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Abstract: Several artificial intelligence-based models have been presented for the detection of pe-
riodontal bone loss (PBL), mostly using convolutional neural networks, which are the state of the
art in deep learning. Given the emerging breakthrough of transformer networks in computer vi-
sion, we aimed to evaluate various models for automatized PBL detection. An image data set of
21,819 anonymized periapical radiographs from the upper/lower and anterior/posterior regions was
assessed by calibrated dentists according to PBL. Five vision transformer networks (ViT-base/ViT-
large from Google, BEiT-base/BEiT-large from Microsoft, DeiT-base from Facebook/Meta) were
utilized and evaluated. Accuracy (ACC), sensitivity (SE), specificity (SP), positive/negative predic-
tive value (PPV/NPV) and area under the ROC curve (AUC) were statistically determined. The
overall diagnostic ACC and AUC values ranged from 83.4 to 85.2% and 0.899 to 0.918 for all eval-
uated transformer networks, respectively. Differences in diagnostic performance were evident for
lower (ACC 94.1–96.7%; AUC 0.944–0.970) and upper anterior (86.7–90.2%; 0.948–0.958) and lower
(85.6–87.2%; 0.913–0.937) and upper posterior teeth (78.1–81.0%; 0.851–0.875). In this study, only
minor differences among the tested networks were detected for PBL detection. To increase the
diagnostic performance and to support the clinical use of such networks, further optimisations with
larger and manually annotated image data sets are needed.

Keywords: artificial intelligence; deep learning; machine learning; transformer; periapical radio-
graphs; periodontitis; periodontal bone loss; diagnostics

1. Introduction

Periodontitis is a chronic inflammatory disease of the supporting dental tissues and
affects a relevant proportion of the world’s population [1–4]. Furthermore, periodontitis
can also be associated with various risk factors such as smoking and stress, as well as
systemic diseases such as diabetes mellitus or pulmonary diseases. Clinically, periodontitis
is associated with periodontal bone loss (PBL), tooth loosening and tooth loss. All of these
factors can further impair functionality, aesthetics and quality of life [5,6]. Considering the
recommendations of the latest workshop on the classification of periodontal diseases [7,8],
the initial diagnosis is primarily based on clinical assessment, bleeding on probing, re-
peated measurements of clinical attachment loss and probing pocket depth. The early
manifestations of periodontitis are only clinically recognisable. Furthermore, staging based
on the radiographic assessment of PBL is considered possible only with the progression of
the disease. As a result, the importance of radiographs increases as the disease progresses,
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since the extent of alveolar bone changes can be visualized more accurately [9,10]. How-
ever, a reliable assessment of PBL remains susceptible to diagnostic subjectivity among
dentists [11,12]. Therefore, the use of image analysis tools based on artificial intelligence
(AI) methods could possibly enable the automated assessment of PBL on radiographs
and potentially improve diagnostic accuracy. Interestingly, several research groups have
developed AI-based algorithms and published promising results on panoramic [11,13–21]
and periapical radiographs [12,22–30]. Looking at the methodology of the studies pub-
lished so far, almost all research groups have used an image set of a limited size to train
different types of convolutional neural networks (CNNs). This has led to heterogeneous but
promising results [31,32]. In particular, more than half of the studies published to date have
reported a data set of less than 1000 X-ray images [12,14–19,21,26,29,30]. In addition, some
studies used different exclusion criteria for their data set, meaning that radiographs with
a specific tooth group or radiographs with caries or root canal treatment were excluded
(e.g., [23,28]). In addition, variability in the architecture of the CNNs used can be observed,
e.g., ResNet, U-Net and faster R-CNNs were trained for PBL detection [12,13,15,17–19,25].
Accurate manual annotation also contributed significantly to the reported results, as studies
reporting the annotation of radiologic features of PBL described a better diagnostic per-
formance, e.g., [13,25]. Moreover, none of the previously mentioned studies used recently
introduced transformer networks for computer vision tasks, which are the most recent
available technology for automatized image analysis and may possibly outperform current
CNNs in the future [33]. On the one hand, CNNs have proven their value in tasks such
as image classification and segmentation by efficiently processing large data sets. Among
the most significant advantages is the ability of CNNs to recognize local patterns, such as
edges or shapes. This proved to be particularly helpful for recognizing features in dental
X-rays, such as tooth decay, different tooth shapes, etc. On the other hand, the vision
transformer’s attention mechanism allows the model to learn the correlation of parts of
the image that may not be in direct proximity. In the case of PBL detection, these are
primarily the cementoenamel junction, alveolar bone and apex, as well as other anatomical
structures relevant for the evaluation. Notably, transformer networks usually require a
larger amount of training data compared to CNNs. Following this, we aimed to compare
the diagnostic performance of five different transformer networks for automatized PBL
detection on periapical radiographs. Specifically, it was hypothesized that the diagnostic
performance of the included transformer networks would be similar and that an overall
diagnostic accuracy of 90% would be achievable.

2. Materials and Methods
2.1. Study Design

The Ethics Committee of the Medical Faculty of Ludwig Maximilian University (LMU)
of Munich approved this study protocol (project number 020-798). The periapical radio-
graphs used in this study were anonymized and obtained as part of previous clinical
examinations. Consequently, we could not identify any of the patients and were there-
fore unable to obtain written informed consent. The reporting of this research followed
the Standard for Reporting of Diagnostic Accuracy Studies (STARD) Steering Commit-
tee recommendations [34] as well as the recommendations for reporting AI studies in
dentistry [35].

2.2. Periapical Radiographs

This study used anonymized periapical radiographs (Figure 1). All X-rays were taken
at the Department of Conservative Dentistry and Periodontology (LMU University Hospi-
tal) and different dental practices. To ensure a high-quality image sample, exclusion criteria
were previously defined. This involved excluding distorted radiographs, radiographs with
overlapping teeth, radiographs with artifacts, and radiographs with incompletely imaged
teeth for which an assessment of the periodontium was not possible. Furthermore, radio-
graphs with implants, with endodontic treatments or photographed radiographs, were
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also excluded. Further exclusion criteria were not defined. All periapical radiographs were
stored in .jpg format and processed without downsizing the original resolution. Altogether,
21,819 periapical radiographs, divided into upper/lower anterior and posterior teeth, were
selected for this study (Table 1). The majority of the radiographs were upper (N = 9461)
and lower posterior teeth (N = 8425), outnumbering upper (N = 1944) and lower anterior
teeth (N = 1989). Additionally, the radiographs were categorized according to PBL.
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Figure 1. Examples of periapical radiographs for all categories: healthy periodontium (Score 0),
mild radiographic periodontal bone loss (PBL) up to 15% of the root length (Score 1), moderate
radiographic PBL between 15% and 33% of the root length (Score 2), and severe radiographic PBL
extending to the mid–third of the root and beyond (Score 3).

Table 1. Overview of the included periapical radiographs (N = 21,819) in relation to the corresponding
regions and categories of periodontal bone loss.

Region of
Periapical

Radiograph

Healthy
Periodontium

(Score 0)

Mild PBL
(Score 1)

Moderate PBL
(Score 2)

Severe PBL
(Score 3) Total (N)

1st Quadrant 1701 (35.8%) 1826 (38.5%) 851 (18.0%) 367 (7.7%) 4745
2nd Quadrant 1231 (26.1%) 2080 (44.1%) 1093 (23.2%) 312 (6.6%) 4716
3rd Quadrant 1477 (34.7%) 2033 (47.7%) 593 (13.9%) 157 (3.7%) 4260
4th Quadrant 1282 (30.8%) 2027 (48.7%) 713 (17.1%) 143 (3.4%) 4165

Maxillary anteriors 653 (33.6%) 661 (34.0%) 433 (22.3%) 197 (10.1%) 1944
Mandibular anteriors 202 (10.2%) 676 (34.0%) 786 (39.5%) 325 (16.3%) 1989
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2.3. Categorisation of Periodontal Bone Loss (Reference Standard)

All radiographs were precategorised by a group of graduate dentists (P.H., T.M., A.W.
and L.M.) and later independently counterchecked by experienced examiners (H.D., U.W.
and J.K.). For each of the periapical radiographs, a diagnosis was made by differentiating
between healthy teeth and teeth affected by mild, moderate or severe PBL [7,8]. Clinical
data were not available prior to decision making. In detail, the following diagnostic
criteria were applied: 0—radiographic PBL not detectable; 1—mild radiographic PBL up
to 15% of the root length; 2—moderate radiographic PBL between 15% and 33% of the
root length; and 3—severe radiographic PBL extending to the mid-third of the root and
beyond (Figure 1). In the case of divergent opinions, each radiograph was discussed until
consensus was reached. Each dichotomized diagnostic decision (0 versus 1 to 3)—one per
image—served as a reference standard for the cyclic training and repeated evaluation of
the deep learning-based transformer network.

Before conducting this study, all participating dentists were trained during a 2-day
workshop by the principal investigator (J.K.). Following this workshop, the effectiveness
of training was determined during a calibration course. The inter- and intra-examiner
reproducibility for PBL were assessed on 150 periapical radiographs. The corresponding
Kappa values showed substantial reliability, ranging from 0.454 to 0.482 (inter-examiner).
The intra-examiner reliability in terms of Cohen’s Kappa amounted to 0.739 [36].

2.4. Training of the Deep Learning-Based Transformer Networks (Test Method)

A pipeline of well-established methods was used to train the transformer networks.
In principle, the entire image set of 21,819 periapical radiographs was divided into a
training set (N = 18,819) and a test set. The latter included 3000 randomly selected X-rays
from the overall image set and served as an independent test set that was not included
in the model training. Given the high number of periapical radiographs in our data set,
image augmentation and preprocessing were not necessary. Furthermore, all X-rays had a
standardized size.

The previously mentioned data set was used to train five different pre-trained trans-
former networks (Table 2) [33,37,38]. The learning performance was evaluated with the
independent test set. The used transformer networks were trained by using backprop-
agation to determine the gradient for learning. Furthermore, the model training was
accelerated by the use of Floating Point 16 and a university-based computer (i9 10850K
10 × 3.60 GHz, Intel Corp., Santa Clara, CA, USA) equipped with 64 GB RAM and a
professional graphic card (RTX A6000 48 GB (Nvidia, Santa Clara, CA, USA). The batch size
amounted to 16 randomly selected images. Each transformer was trained over 5 epochs
with cross entropy loss as an error function and an application of the Adam optimizer
(Betas 0.9 and 0.999, Epsilon × 10−8).

Table 2. Model characteristics of the used transformer networks.

ViT-Base
(Google)

ViT-Large
(Google)

BEiT-Base
(Microsoft)

BEiT-Large
(Microsoft)

DeiT-Base
(Facebook/Meta)

Neural network Vision transformer Bidirectional encoder representation from
image transformers

Data-efficient
image transformer

Epochs 5 5 5 5 5
Learning rate 0.00005 0.00005 0.00005 0.00005 0.00005

FLOS 7.280 × 1015 25.735 × 1015 7.277 × 1015 25.744 × 1015 7.280 × 1015

Samples per second 298.6 111.7 274.4 102.9 298.5
Parameter count 85.8 × 106 303.3 × 106 85.7 × 106 303.4 × 106 85.8 × 106

2.5. Statistical Analysis

The data were analysed using Python (version 3.8.5, http://www.python.org accessed
on 28 November 2023). The diagnostic ACC was determined by calculating the number of

http://www.python.org
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true negatives (TN), true positives (TP), false positives (FP) and false negatives (FN). In ad-
dition, the sensitivity (SE), specificity (SP), positive/negative predictive values (PPV/NPV)
and area under the receiver operating characteristic (ROC) curve were calculated [39].

3. Results

In the present study, we calculated the diagnostic performance for automatized PBL
detection on periapical radiographs for lower/upper and anterior/posterior teeth alto-
gether (Table 3) and separately (Table 4) by using five different transformer networks. In
general, when analysing the whole data set of periapical radiographs, the ACC ranged from
83.4% to 85.2%; the corresponding AUC values ranged from 0.899 to 0.918 (Figure 2). The
detailed data analysis revealed generally better performance data for mandibular teeth than
for maxillary teeth (Table 4). Here, the ACC ranged from 94.1% to 96.7% for mandibular
anteriors and from 85.6% to 87.2% for mandibular posteriors. The corresponding data for
maxillary anterior and posterior teeth varied between 86.7% and 90.2% as well as between
78.1% and 81.0%, respectively. Additionally, the AUC values tended to be similar or better
for mandibular teeth (Table 4). Furthermore, the SE values were consistently higher than
the SP values.

Table 3. Overview of the overall diagnostic performance of the five transformer neuronal networks
where the independent test set (N = 3000 radiographs) was evaluated by the AI-based algorithm
for the assessment of periodontal bone loss. Diagnostic accuracy (ACC), sensitivity (SE), specificity
(SP), negative predictive value (NPV), positive predictive value (PPV) and area under the receiver
operating characteristic curve (AUC) were calculated for all types of teeth.

All Apical
Radiographs

True Positive
(TP)

True Negative
(TN)

False Positive
(FP)

False
Negative (FN) Diagnostic Performance

N % N % N % N % ACC SE SP NPV PPV AUC

ViT-base 1884 62.8 673 22.4 230 7.7 213 7.1 85.2 89.8 74.5 76.0 89.1 0.918
ViT-large 1831 61.0 671 22.4 232 7.7 266 8.9 83.4 87.3 74.3 71.6 88.8 0.899
BEiT-base 1885 62.8 649 21.6 254 8.5 212 7.1 84.5 89.9 71.9 75.4 88.1 0.914
BEiT-large 1914 63.8 631 21.0 272 9.1 183 6.1 84.8 91.3 69.9 77.5 87.6 0.907
DeiT-base 1879 62.6 646 21.5 257 8.6 218 7.3 84.2 89.6 71.5 74.8 88.0 0.908
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Table 4. Overview of the diagnostic performance of the five transformer neuronal networks for mandibular and maxillary anterior and posterior teeth. Accuracy
(ACC), sensitivity (SE), specificity (SP), negative predictive value (NPV), positive predictive value (PPV) and area under the receiver operating characteristic curve
(AUC) were calculated.

True Positive
(TP)

True Negative
(TN)

False Positive
(FP)

False Negative
(FN) Diagnostic Performance

N % N % N % N % ACC SE SP NPV PPV AUC

Mandibular
anterior teeth

ViT-base 240 88.2 16 5.9 9 3.3 7 2.6 94.1 97.2 64.0 69.6 96.4 0.944

ViT-large 241 88.6 18 6.6 7 2.6 6 2.2 95.2 97.6 72.0 75.0 97.2 0.960

BEiT-base 242 89.0 21 7.7 4 1.5 5 1.8 96.7 98.0 84.0 80.8 98.4 0.963

BEiT-large 245 90.1 18 6.6 7 2.6 2 0.7 96.7 99.2 72.0 90.0 97.2 0.952

DeiT-base 242 89.0 15 5.5 10 3.7 5 1.8 94.5 98.0 60.0 75.0 96.0 0.970

Mandibular
posterior teeth

ViT-base 700 61.6 287 25.3 78 6.9 70 6.2 87.0 90.9 78.6 80.4 90.0 0.937

ViT-large 687 60.5 285 25.1 80 7.1 83 7.3 85.6 89.2 78.1 77.4 89.6 0.913

BEiT-base 704 62.0 277 24.4 88 7.8 66 5.8 86.4 91.4 75.9 80.8 88.9 0.933

BEiT-large 711 62.6 279 24.6 86 7.6 59 5.2 87.2 92.3 76.4 82.5 89.2 0.923

DeiT-base 694 61.1 281 24.8 84 7.4 76 6.7 85.9 90.1 77.0 78.7 89.2 0.927

Maxillary
anterior teeth

ViT-base 157 59.5 81 30.7 18 6.8 8 3.0 90.2 95.2 81.8 91.0 89.7 0.958

ViT-large 156 59.1 77 29.2 22 8.3 9 3.4 88.3 94.5 77.8 89.5 87.6 0.948

BEiT-base 158 59.8 73 27.7 26 9.8 7 2.7 87.5 95.8 73.7 91.3 85.9 0.954

BEiT-large 157 59.5 73 27.7 26 9.8 8 3.0 87.1 95.2 73.7 90.1 85.8 0.954

DeiT-base 154 58.3 75 28.4 24 9.1 11 4.2 86.7 93.3 75.8 87.2 86.5 0.954

Maxillary
posterior teeth

ViT-base 787 59.2 289 21.8 125 9.4 128 9.6 81.0 86.0 69.8 69.3 86.3 0.875

ViT-large 747 56.2 291 21.9 123 9.3 168 12.6 78.1 81.6 70.3 63.4 85.9 0.851

BEiT-base 781 58.8 278 20.9 136 10.2 134 10.1 79.7 85.4 67.1 67.5 85.2 0.865

BEiT-large 801 60.3 261 19.6 153 11.5 114 8.6 79.9 87.5 63.0 69.6 84.0 0.861

DeiT-base 789 59.4 275 20.7 139 10.4 126 9.5 80.1 86.2 66.4 68.6 85.0 0.860
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When comparing the metrics of the included transformer networks, only minor differ-
ences appeared in the results (Tables 3 and 4). However, the ACC and AUC values were
found to be high in all scenarios, and SE was higher than SP.

4. Discussion

The present study aimed to compare the diagnostic performance of five different
transformer networks for automatized PBL detection on periapical radiographs. Depending
on the applied network, the overall diagnostic ACC and AUC values ranged from 83.4% to
85.2% and 0.899 to 0.918, respectively (Table 3, Figure 2). On the one hand, the ACC values
must be evaluated as high; on the other hand, the hypothesized overall diagnostic ACC of
90% was not achieved. Therefore, the initially formulated hypothesis must be rejected.

When comparing the documented diagnostic performance data (Tables 3 and 4) with
data from the literature, the following conclusion can be drawn. In general, the majority
of comparable studies presented model performances in the same or lower order of mag-
nitude [11–15,17,20,21,23,26,28,40], whereas only a few studies registered above-average
values [25,41]. In detail, Lee et al. [25] reported an ACC for staging that ranged from 88%
to 99%. They further stated that the ACC for periodontitis case classification was 85%.
Specifically, 693 periapical radiographs were independently annotated by examiners prior
to training the model, indicating regions of interest such as the alveolar bone, presence of
teeth, cementoenamel junctions and presence of restorations. In addition, a further 644
periapical radiographs were used to assess the ACC of the model. In another study on
staging, Widyaningrum et al. [41] stated that the detection rate was 95%, with the best
performance shown for stage 4 periodontitis. Although the data set consisted of only 100
panoramic radiographs, two investigators annotated the previously mentioned radiographs
before training the CNN. Accurate annotations were made by marking the alveolar ridge
and the alveolar bone surrounding the teeth. In addition, the examiners added a number
indicating the stage of periodontitis. Therefore, the few studies with better diagnostic
performance seem remarkable compared to other studies with results of a lower magnitude.
Here, other dental detection tasks should also be mentioned in comparison, where a higher
ACC—typically approximately 90%—was usually registered with a similar methodology,
e.g., in the detection of caries or periapical lesions on radiographs (e.g., [42–44]) and the
detection of clinical pathologies or restorations on intraoral photographs (e.g., [45–49]). This
may indicate that automatized PBL detection is more difficult to accomplish, which is sup-
ported by the fact that PBL characteristics are usually spread over the whole radiographic
image and can have varying extents.

Our study revealed differences in the performance of the model in relation to the
analysed group of teeth. In principle, automatized PBL detection performed better for
mandibular teeth than for maxillary teeth, and better for anterior teeth compared to pos-
terior teeth (Table 4). Only a few studies have considered this aspect thus far, e.g., by
the exclusion of periapical radiographs with upper anterior and posterior teeth or by the
inclusion of anterior teeth only [23,26]. To avoid the influence of data inconsistencies on the
results of the trained CNN, Tsoromokos et al. [26] only considered periapical radiographs of
the mandible and reported a data set with 446 radiographs. In addition, Alotaibi et al. [23]
considered 1724 periapical radiographs of maxillary and mandibular anterior teeth only
and excluded radiographs of teeth that had been restored with full crowns or root canal
treatments, as well as radiographs of teeth that had undergone apical surgery with root
resection. In this context, the study by Lee et al. [28] should also be mentioned, which
included periapical radiographs of posterior teeth to identify periodontally compromised
premolars and molars. Further exclusion criteria were root canal treatment and teeth
with fully restorative crowns as well as moderate to severe caries and teeth with a shape
deviating from the usual anatomical structure. When considering the data shown in Table 4,
it must be concluded that the partial exclusion of periapical radiographs may bias the
model’s performance and limit the generalisability of the data shown. As is reasonable for
this finding, the anatomical structures in the upper jaw in relation to the intraoral projec-
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tion technique must be considered. Interestingly, this issue can be obviously downsized
when using panoramic X-rays [15]. Nevertheless, a well-balanced inclusion of periapical
radiographs from different groups of teeth may be relevant and should be implemented in
future studies.

In this study, five well-established open-source transformer networks were trained:
ViT-base and ViT-large from Google, BEiT-base and BEiT-large from Microsoft, and DeiT-
base from Facebook/Meta [33,37,38]. The main differences between the transformer net-
works are in their size, training strategy and fine-tuning approach. “Base” and “large”
models differ in size and computational complexity, whereby “large” models have more
parameters. During training, ViTs process images as a sequence of patches and use an
attention mechanism to learn the overall correlations within images. DeiT can achieve a
high performance even with limited training data. Here, a smaller model learns to imitate a
larger, already pre-trained model and benefits from a large data set without directly using it.
In contrast, BEiT is trained in a two-stage process: pre-training on a large data set to capture
general visual features, followed by fine-tuning for specific tasks. Transformer networks
have rarely been applied for computer vision tasks in dentistry and not specifically for the
detection of PBL. So far, only three studies using transformer networks were published;
however, none of them focused on PBL assessment in periapical radiographs [50–52].
Nevertheless, there have been studies in which CNNs were used for PBL detection on
periapical and panoramic radiographs (e.g., [11,14,15,17,21–26,40]). Here, the majority of
investigations used only a low to moderate number of radiographs for model development,
and most studies on periapical radiographs included a maximum of a few thousand im-
ages [13,22,23,25,27,28]. In contrast, Kim et al. [20] annotated the PBL in an extensive set of
12,179 panoramic radiographs, which may have potentially enhanced the internal study
strength. The reported model-dependent AUC values ranged from 0.92 to 0.95 [20], which
were slightly higher than the results from our study setup (Table 2). Therefore, it can be
argued that the chosen study setup produced comparable data in the moment, which in
part might be attributed to the use of transformer networks. Interestingly, we observed sim-
ilar performance data with each of the included transformer networks. There was a minor
tendency for less-complex transformer networks, e.g., Google’s vision transformer/base, to
perform better than their more complex counterparts (Tables 2 and 3). However, further
improvements might be possible, especially by employing exact annotations in a large
image set. Such features could enable precise object segmentation [20].

This study has several strengths and limitations. From a methodological point of view,
this study used a large and well-balanced set of periapical radiographs (N = 21,819) in
which all X-rays were diagnosed by dental professionals following the latest recommen-
dations for PBL assessment [7,8]. Another unique feature seems to be the comparison
of five transformer networks for the detection of PBL on periapical radiographs, as no
other studies with the same methodology could be identified. In addition, the following
limitations must be taken into account. In this study, we used categorial diagnostic scoring
per image only. In detail, this means that the exact areas of PBL on periapical radiographs
remained unmarked, which can be interpreted as a limitation. The exact annotation must
be understood as a crucial feature to localize PBL precisely on X-rays. The exact annotation
of the pathological structures would require the detection, classification and segmentation
of PBL on each radiographic image. In particular, the marking of pathological segments
must be understood as a time-consuming procedure that needs to be addressed in future
projects. Another limitation is that only periapical radiographs were examined in this study
and that panoramic radiographs have not been considered so far. However, in view of
the fact that both types of radiographs are commonly used to assess PBL, but the format,
size and radiographic anatomy differ, a separate analysis was justified. In addition, no
clinical information was available for the anonymized radiographs in this study. Another
limitation might be that we did not include any other transformer networks or CNNs in
this study.
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5. Conclusions

From the results of this study, it can be concluded that it was possible to achieve good
diagnostic performance for automatized PBL detection when using a large set of periapical
radiographs and several transformer networks. However, it can be hypothesized that the
model performance can be improved by using exact annotations.
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