Smart Endoscopy Is Greener Endoscopy: Leveraging Artificial Intelligence and Blockchain Technologies to Drive Sustainability in Digestive Health Care
Abstract
:1. Introduction
2. Improved Efficiency of Gastrointestinal Examinations
3. Blockchain Technology and the Sustainability of Digestive Health Care
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Artificial Intelligence (AI) in Healthcare Market Size, Growth Report Analysis 2031. Available online: https://www.marketsandmarkets.com/Market-Reports/artificial-intelligence-healthcare-market-54679303.html (accessed on 31 August 2023).
- Lång, K.; Josefsson, V.; Larsson, A.-M.; Larsson, S.; Högberg, C.; Sartor, H.; Hofvind, S.; Andersson, I.; Rosso, A. Artificial Intelligence-Supported Screen Reading versus Standard Double Reading in the Mammography Screening with Artificial Intelligence Trial (MASAI): A Clinical Safety Analysis of a Randomised, Controlled, Non-Inferiority, Single-Blinded, Screening Accuracy Study. Lancet Oncol. 2023, 24, 936–944. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A Survey on Deep Learning in Medical Image Analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef]
- Giger, M.L. Machine Learning in Medical Imaging. J. Am. Coll. Radiol. 2018, 15, 512–520. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Oren, O.; Gersh, B.J.; Bhatt, D.L. Artificial Intelligence in Medical Imaging: Switching from Radiographic Pathological Data to Clinically Meaningful Endpoints. Lancet Digit. Health 2020, 2, e486–e488. [Google Scholar] [CrossRef]
- Yu, H.; Yang, L.T.; Zhang, Q.; Armstrong, D.; Deen, M.J. Convolutional Neural Networks for Medical Image Analysis: State-of-the-Art, Comparisons, Improvement and Perspectives. Neurocomputing 2021, 444, 92–110. [Google Scholar] [CrossRef]
- Mall, P.K.; Singh, P.K.; Srivastav, S.; Narayan, V.; Paprzycki, M.; Jaworska, T.; Ganzha, M. A Comprehensive Review of Deep Neural Networks for Medical Image Processing: Recent Developments and Future Opportunities. Healthc. Anal. 2023, 4, 100216. [Google Scholar] [CrossRef]
- Yang, Y.J.; Bang, C.S. Application of Artificial Intelligence in Gastroenterology. World J. Gastroenterol. 2019, 25, 1666–1683. [Google Scholar] [CrossRef]
- Tontini, G.E.; Rimondi, A.; Vernero, M.; Neumann, H.; Vecchi, M.; Bezzio, C.; Cavallaro, F. Artificial Intelligence in Gastrointestinal Endoscopy for Inflammatory Bowel Disease: A Systematic Review and New Horizons. Ther. Adv. Gastroenterol. 2021, 14, 17562848211017730. [Google Scholar] [CrossRef] [PubMed]
- Pannala, R.; Krishnan, K.; Melson, J.; Parsi, M.A.; Schulman, A.R.; Sullivan, S.; Trikudanathan, G.; Trindade, A.J.; Watson, R.R.; Maple, J.T.; et al. Artificial Intelligence in Gastrointestinal Endoscopy. VideoGIE Off. Video J. Am. Soc. Gastrointest. Endosc. 2020, 5, 598–613. [Google Scholar] [CrossRef]
- Tonozuka, R.; Mukai, S.; Itoi, T. The Role of Artificial Intelligence in Endoscopic Ultrasound for Pancreatic Disorders. Diagnostics 2020, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Afonso, J.; Martins, M.; Ferreira, J.; Mascarenhas, M. Artificial Intelligence: Machine Learning, Deep Learning and Applications in GI Endoscopy. In Artificial Intelligence in Capsule Endoscopy: A Gamechanger for a Groundbreaking Technique; Mascarenhas, M., Cardoso, H., Macedo, G., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 1–10. [Google Scholar] [CrossRef]
- Mascarenhas Saraiva, M.; Ribeiro, T.; Ferreira, J.P.S.; Boas, F.V.; Afonso, J.; Santos, A.L.; Parente, M.P.L.; Jorge, R.N.; Pereira, P.; Macedo, G. Artificial Intelligence for Automatic Diagnosis of Biliary Stricture Malignancy Status in Single-Operator Cholangioscopy: A Pilot Study. Gastrointest. Endosc. 2022, 95, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas Saraiva, M.; Ribeiro, T.; Afonso, J.; Andrade, P.; Cardoso, P.; Ferreira, J.; Cardoso, H.; Macedo, G. Deep Learning and Device-Assisted Enteroscopy: Automatic Detection of Gastrointestinal Angioectasia. Medicina 2021, 57, 1378. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas Saraiva, M.; Pouca, M.V.; Ribeiro, T.; Afonso, J.; Cardoso, H.; Sousa, P.; Ferreira, J.; Macedo, G.; Junior, I.F. Artificial Intelligence and Anorectal Manometry: Automatic Detection and Differentiation of Anorectal Motility Patterns—A Proof-of-Concept Study. Clin. Transl. Gastroenterol. 2022, 14, e00555. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, T.; Mascarenhas, M.; Afonso, J.; Cardoso, H.; Andrade, P.; Lopes, S.; Ferreira, J.; Mascarenhas Saraiva, M.; Macedo, G. Artificial Intelligence and Colon Capsule Endoscopy: Automatic Detection of Ulcers and Erosions Using a Convolutional Neural Network. J. Gastroenterol. Hepatol. 2022. (Online Version of Record before inclusion in an issue). [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.S.; de Mascarenhas Saraiva, M.J.d.Q.e.C.; Afonso, J.P.L.; Ribeiro, T.F.C.; Cardoso, H.M.C.; Ribeiro Andrade, A.P.; de Mascarenhas Saraiva, M.N.G.; Parente, M.P.L.; Natal Jorge, R.; Lopes, S.I.O.; et al. Identification of Ulcers and Erosions by the Novel PillcamTM Crohn’s Capsule Using a Convolutional Neural Network: A Multicentre Pilot Study. J. Crohn’s Colitis 2022, 16, 169–172. [Google Scholar] [CrossRef]
- Ribeiro, T.; Fernández-Urien, I.; Cardoso, H. Chapter 15—Colon Capsule Endoscopy and Artificial Intelligence: A Perfect Match for Panendoscopy. In Artificial Intelligence in Capsule Endoscopy: A Gamechanger for a Groundbreaking Technique; Mascarenhas, M., Cardoso, H., Macedo, G., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 255–269. ISBN 978-0-323-99647-1. [Google Scholar]
- Mascarenhas, M.; Ribeiro, T.; Afonso, J.; Ferreira, J.P.S.; Cardoso, H.; Andrade, P.; Parente, M.P.L.; Jorge, R.N.; Mascarenhas Saraiva, M.; Macedo, G. Deep Learning and Colon Capsule Endoscopy: Automatic Detection of Blood and Colonic Mucosal Lesions Using a Convolutional Neural Network. Endosc. Int. Open 2022, 10, E171–E177. [Google Scholar] [CrossRef]
- Mascarenhas, M. Artificial Intelligence and Capsule Endoscopy: Unravelling the Future. Ann. Gastroenterol. 2021, 34, 300–309. [Google Scholar] [CrossRef]
- Vuik, F.E.R.; Moen, S.; Nieuwenburg, S.A.V.; Schreuders, E.H.; Kuipers, E.J.; Spaander, M.C.W. Applicability of Colon Capsule Endoscopy as Pan-Endoscopy: From Bowel Preparation, Transit, and Rating Times to Completion Rate and Patient Acceptance. Endosc. Int. Open 2021, 09, E1852–E1859. [Google Scholar] [CrossRef]
- Richie, C. Environmentally Sustainable Development and Use of Artificial Intelligence in Health Care. Bioethics 2022, 36, 547–555. [Google Scholar] [CrossRef]
- Ad Hoc Committee on Artificial Intelligence (CAHAI). Possible Elements of a Legal Framework on Artificial Intelligence, Based on the Council of Europe’s Standards on Human Rights, Democracy and the Rule of Law; Council of Europe: Strasbourg, France, 2021. [Google Scholar]
- European Commission. European Commission Proposal For a Regulation of The European Parliament and of The Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts, COM/2021/206 Final, 2021/0106(COD); European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Mascarenhas, M.; Afonso, J.; Ribeiro, T.; Andrade, P.; Cardoso, H.; Macedo, G. The Promise of Artificial Intelligence in Digestive Healthcare and the Bioethics Challenges It Presents. Medicina 2023, 59, 790. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Di Ruggiero, E.; Upshur, R.; Willison, D.J.; Malhotra, N.; Cai, J.C.; Malhotra, N.; Lui, V.; Gibson, J. Artificial Intelligence for Good Health: A Scoping Review of the Ethics Literature. BMC Med. Ethics 2021, 22, 14. [Google Scholar] [CrossRef] [PubMed]
- Directorate-General for Parliamentary Research Services of the European Parliament; Fox-Skelly, J.; Bird, E.; Jenner, N.; Winfield, A.; Weitkamp, E.; Larbey, R. The Ethics of Artificial Intelligence: Issues and Initiatives; European Parliament: Brussels, Belgium, 2020. [Google Scholar]
- Ligozat, A.-L.; Lefevre, J.; Bugeau, A.; Combaz, J. Unraveling the Hidden Environmental Impacts of AI Solutions for Environment Life Cycle Assessment of AI Solutions. Sustainability 2022, 14, 5172. [Google Scholar] [CrossRef]
- Ligozat, A.-L.; Luccioni, S. A Practical Guide to Quantifying Carbon Emissions for Machine Learning Researchers and Practitioners. Technical Report, Bigscience Project, LISN and MILA. 2021. Available online: https://hal.archives-ouvertes.fr/hal-03376391/document (accessed on 2 September 2023).
- Luccioni, A.S.; Hernandez-Garcia, A. Counting Carbon: A Survey of Factors Influencing the Emissions of Machine Learning. arXiv 2023, arXiv:2302.08476. [Google Scholar]
- Van Wynsberghe, A. Sustainable AI: AI for Sustainability and the Sustainability of AI. AI Ethics 2021, 1, 213–218. [Google Scholar] [CrossRef]
- Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. arXiv 2019, arXiv:1907.10597. [Google Scholar] [CrossRef]
- Wu, C.-J.; Raghavendra, R.; Gupta, U.; Acun, B.; Ardalani, N.; Maeng, K.; Chang, G.; Behram, F.; Huang, J.; Bai, C.; et al. Sustainable AI: Environmental Implications, Challenges and Opportunities. In Proceedings of the Fifth Conference on Machine Learning and Systems (MLSYS 2022), Santa Clara, CA, USA, 29 August–1 September 2022. [Google Scholar]
- Eckelman, M.J.; Sherman, J. Environmental Impacts of the U.S. Health Care System and Effects on Public Health. PLoS ONE 2016, 11, e0157014. [Google Scholar] [CrossRef]
- Pichler, P.-P.; Jaccard, I.S.; Weisz, U.; Weisz, H. International Comparison of Health Care Carbon Footprints. Environ. Res. Lett. 2019, 14, 064004. [Google Scholar] [CrossRef]
- Gordon, I.O.; Sherman, J.D.; Leapman, M.; Overcash, M.; Thiel, C.L. Life Cycle Greenhouse Gas Emissions of Gastrointestinal Biopsies in a Surgical Pathology Laboratory. Am. J. Clin. Pathol. 2021, 156, 540–549. [Google Scholar] [CrossRef]
- Yamazaki, K.; Vo-Ho, V.-K.; Bulsara, D.; Le, N. Spiking Neural Networks and Their Applications: A Review. Brain Sci. 2022, 12, 863. [Google Scholar] [CrossRef]
- Patel, K.; Hunsberger, E.; Batir, S.; Eliasmith, C. A Spiking Neural Network for Image Segmentation. arXiv 2021, arXiv:2106.08921. [Google Scholar]
- Zhang, H.; Fan, X.; Zhang, Y. Energy-Efficient Spiking Segmenter for Frame and Event-Based Images. Biomimetics 2023, 8, 356. [Google Scholar] [CrossRef] [PubMed]
- Puebla, J.; Kim, J.; Kondou, K.; Otani, Y. Spintronic Devices for Energy-Efficient Data Storage and Energy Harvesting. Commun. Mater. 2020, 1, 24. [Google Scholar] [CrossRef]
- Yakout, S.M. Spintronics: Future Technology for New Data Storage and Communication Devices. J. Supercond. Nov. Magn. 2020, 33, 2557–2580. [Google Scholar] [CrossRef]
- EURAMET—Driving Excellence in Spintronics Research. Innovation News Network, 6 July 2020. Available online: https://www.innovationnewsnetwork.com/euramet-driving-excellence-in-spintronics-research/6005/ (accessed on 28 August 2023).
- Wang, A.; Banerjee, S.; Barth, B.A.; Bhat, Y.M.; Chauhan, S.; Gottlieb, K.T.; Konda, V.; Maple, J.T.; Murad, F.; Pfau, P.R.; et al. Wireless Capsule Endoscopy. Gastrointest. Endosc. 2013, 78, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Akpunonu, B.; Hummell, J.; Akpunonu, J.D.; Ud Din, S. Capsule Endoscopy in Gastrointestinal Disease: Evaluation, Diagnosis, and Treatment. Cleve. Clin. J. Med. 2022, 89, 200–211. [Google Scholar] [CrossRef]
- Tai, F.W.D.; Ellul, P.; Elosua, A.; Fernandez-Urien, I.; Tontini, G.E.; Elli, L.; Eliakim, R.; Kopylov, U.; Koo, S.; Parker, C.; et al. Panenteric Capsule Endoscopy Identifies Proximal Small Bowel Disease Guiding Upstaging and Treatment Intensification in Crohn’s Disease: A European Multicentre Observational Cohort Study. United Eur. Gastroenterol. J. 2021, 9, 248–255. [Google Scholar] [CrossRef]
- Tontini, G.E.; Rizzello, F.; Cavallaro, F.; Bonitta, G.; Gelli, D.; Pastorelli, L.; Salice, M.; Vecchi, M.; Gionchetti, P.; Calabrese, C. Usefulness of Panoramic 344°-Viewing in Crohn’s Disease Capsule Endoscopy: A Proof of Concept Pilot Study with the Novel PillCamTM Crohn’s System. BMC Gastroenterol. 2020, 20, 97. [Google Scholar] [CrossRef]
- Eliakim, R.; Spada, C.; Lapidus, A.; Eyal, I.; Pecere, S.; Fernández-Urién, I.; Lahat, A.; Costamagna, G.; Schwartz, A.; Ron, Y.; et al. Evaluation of a New Pan-Enteric Video Capsule Endoscopy System in Patients with Suspected or Established Inflammatory Bowel Disease—Feasibility Study. Endosc. Int. Open 2018, 6, E1235–E1246. [Google Scholar] [CrossRef]
- Eliakim, R. The Impact of Panenteric Capsule Endoscopy on the Management of Crohn’s Disease. Ther. Adv. Gastroenterol. 2017, 10, 737–744. [Google Scholar] [CrossRef]
- Enns, R.A.; Hookey, L.; Armstrong, D.; Bernstein, C.N.; Heitman, S.J.; Teshima, C.; Leontiadis, G.I.; Tse, F.; Sadowski, D. Clinical Practice Guidelines for the Use of Video Capsule Endoscopy. Gastroenterology 2017, 152, 497–514. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Xie, J.; Mui, P.; Leighton, J.A. Achieving Real-Time Capsule Endoscopy (CE) Video Visualization through Panoramic Imaging. In Proceedings of the SPIE Electronic Imaging 2013, Burlingame, CA, USA, 3–7 February 2013; p. 86560. [Google Scholar]
- Ogata, H.; Kumai, K.; Imaeda, H.; Aiura, K.; Hisamatsu, T.; Okamoto, S.; Iwao, Y.; Sugino, Y.; Kitajima, M.; Hibi, T. Clinical Impact of a Newly Developed Capsule Endoscope: Usefulness of a Real-Time Image Viewer for Gastric Transit Abnormality. J. Gastroenterol. 2008, 43, 186–192. [Google Scholar] [CrossRef]
- Delvaux, M.; Gay, G. Real-Time Viewing of Capsule Endoscopy Recordings: Principle and Clinical Potential. Tech. Gastrointest. Endosc. 2006, 8, 160–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Huang, X. Development and Application of Magnetically Controlled Capsule Endoscopy in Detecting Gastric Lesions. Gastroenterol. Res. Pract. 2021, 2021, 2716559. [Google Scholar] [CrossRef]
- Kim, S.H.; Lim, Y.J. Artificial Intelligence in Capsule Endoscopy: A Practical Guide to Its Past and Future Challenges. Diagnostics 2021, 11, 1722. [Google Scholar] [CrossRef] [PubMed]
- Moen, S.; Vuik, F.E.R.; Kuipers, E.J.; Spaander, M.C.W. Artificial Intelligence in Colon Capsule Endoscopy—A Systematic Review. Diagnostics 2022, 12, 1994. [Google Scholar] [CrossRef]
- Mascarenhas, M.; Cardoso, H.; Macedo, G. Artificial Intelligence in Capsule Endoscopy: A Gamechanger for a Groundbreaking Technique; Academic Press: Cambridge, MA, USA, 2023; ISBN 978-0-323-99647-1. [Google Scholar]
- Aoki, T.; Yamada, A.; Aoyama, K.; Saito, H.; Fujisawa, G.; Odawara, N.; Kondo, R.; Tsuboi, A.; Ishibashi, R.; Nakada, A.; et al. Clinical Usefulness of a Deep Learning-based System as the First Screening on Small-bowel Capsule Endoscopy Reading. Dig. Endosc. 2020, 32, 585–591. [Google Scholar] [CrossRef]
- Ding, Z.; Shi, H.; Zhang, H.; Meng, L.; Fan, M.; Han, C.; Zhang, K.; Ming, F.; Xie, X.; Liu, H.; et al. Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model. Gastroenterology 2019, 157, 1044–1054.e5. [Google Scholar] [CrossRef]
- Bjørsum-Meyer, T.; Koulaouzidis, A.; Baatrup, G. Comment on “Artificial Intelligence in Gastroenterology: A State-of-the-Art Review”. World J. Gastroenterol. 2022, 28, 1722–1724. [Google Scholar] [CrossRef]
- Nakazawa, K.; Nouda, S.; Kakimoto, K.; Kinoshita, N.; Tanaka, Y.; Tawa, H.; Koshiba, R.; Naka, Y.; Hirata, Y.; Ota, K.; et al. The Differential Diagnosis of Colorectal Polyps Using Colon Capsule Endoscopy. Intern. Med. 2021, 60, 1805–1812. [Google Scholar] [CrossRef]
- Yamada, K.; Nakamura, M.; Yamamura, T.; Maeda, K.; Sawada, T.; Mizutani, Y.; Ishikawa, E.; Ishikawa, T.; Kakushima, N.; Furukawa, K.; et al. Diagnostic Yield of Colon Capsule Endoscopy for Crohn’s Disease Lesions in the Whole Gastrointestinal Tract. BMC Gastroenterol. 2021, 21, 75. [Google Scholar] [CrossRef]
- Yamada, A.; Niikura, R.; Otani, K.; Aoki, T.; Koike, K. Automatic Detection of Colorectal Neoplasia in Wireless Colon Capsule Endoscopic Images Using a Deep Convolutional Neural Network. Endoscopy 2021, 53, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.; Afonso, J.; Ribeiro, T.; Cardoso, H.; Andrade, P.; Ferreira, J.P.S.; Saraiva, M.M.; Macedo, G. Performance of a Deep Learning System for Automatic Diagnosis of Protruding Lesions in Colon Capsule Endoscopy. Diagnostics 2022, 12, 1445. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas Saraiva, M.; Ferreira, J.P.S.; Cardoso, H.; Afonso, J.; Ribeiro, T.; Andrade, P.; Parente, M.P.L.; Jorge, R.N.; Macedo, G. Artificial Intelligence and Colon Capsule Endoscopy: Automatic Detection of Blood in Colon Capsule Endoscopy Using a Convolutional Neural Network. Endosc. Int. Open 2021, 9, E1264–E1268. [Google Scholar] [CrossRef] [PubMed]
- Maugin, F.; Lesage, A.-C.; Hoyeau, N.; Fléjou, J.-F.; Zuber, K.; Atienza, P.; Etienney, I. Early Detection of Anal High-Grade Squamous Intraepithelial Lesion: Do We Have an Impact on Progression to Invasive Anal Carcinoma? J. Low. Genit. Tract Dis. 2020, 24, 82–86. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.B.; Gaertner, W.B.; Glasgow, S.C.; Herzig, D.O.; Feingold, D.; Steele, S.R. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for Anal Squamous Cell Cancers (Revised 2018). Dis. Colon Rectum 2018, 61, 755–774. [Google Scholar] [CrossRef]
- Ribeiro, T.; Mascarenhas Saraiva, M.J.; Afonso, J.; Cardoso, P.; Mendes, F.; Martins, M.; Andrade, A.P.; Cardoso, H.; Mascarenhas Saraiva, M.; Ferreira, J.; et al. Design of a Convolutional Neural Network as a Deep Learning Tool for the Automatic Classification of Small-Bowel Cleansing in Capsule Endoscopy. Medicina 2023, 59, 810. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.J.; Hwang, Y.; Lim, Y.J. A Current and Newly Proposed Artificial Intelligence Algorithm for Reading Small Bowel Capsule Endoscopy. Diagnostics 2021, 11, 1183. [Google Scholar] [CrossRef]
- Buijs, M.M.; Ramezani, M.H.; Herp, J.; Kroijer, R.; Kobaek-Larsen, M.; Baatrup, G.; Nadimi, E.S. Assessment of Bowel Cleansing Quality in Colon Capsule Endoscopy Using Machine Learning: A Pilot Study. Endosc. Int. Open 2018, 6, E1044–E1050. [Google Scholar] [CrossRef]
- Wolf, R.M.; Abramoff, M.D.; Channa, R.; Tava, C.; Clarida, W.; Lehmann, H.P. Potential Reduction in Healthcare Carbon Footprint by Autonomous Artificial Intelligence. NPJ Digit. Med. 2022, 5, 62. [Google Scholar] [CrossRef]
- Lee, S.; Kim, H.-S. Prospect of Artificial Intelligence Based on Electronic Medical Record. J. Lipid Atheroscler. 2021, 10, 282–290. [Google Scholar] [CrossRef]
- Samaras, A.; Bekiaridou, A.; Papazoglou, A.S.; Moysidis, D.V.; Tsoumakas, G.; Bamidis, P.; Tsigkas, G.; Lazaros, G.; Kassimis, G.; Fragakis, N.; et al. Artificial Intelligence-Based Mining of Electronic Health Record Data to Accelerate the Digital Transformation of the National Cardiovascular Ecosystem: Design Protocol of the CardioMining Study. BMJ Open 2023, 13, e068698. [Google Scholar] [CrossRef] [PubMed]
- Loeb, G.E. A New Approach to Medical Diagnostic Decision Support. J. Biomed. Inform. 2021, 116, 103723. [Google Scholar] [CrossRef] [PubMed]
- Finocchiaro, M.; Cortegoso Valdivia, P.; Hernansanz, A.; Marino, N.; Amram, D.; Casals, A.; Menciassi, A.; Marlicz, W.; Ciuti, G.; Koulaouzidis, A. Training Simulators for Gastrointestinal Endoscopy: Current and Future Perspectives. Cancers 2021, 13, 1427. [Google Scholar] [CrossRef] [PubMed]
- Pottle, J. Virtual Reality and the Transformation of Medical Education. Future Healthc. J. 2019, 6, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Lacoste, A.; Luccioni, A.; Schmidt, V.; Dandres, T. Quantifying the Carbon Emissions of Machine Learning. arXiv 2019, arXiv:1910.09700. [Google Scholar]
- Glover, W.J.; Li, Z.; Pachamanova, D. The AI-Enhanced Future of Health Care Administrative Task Management. NEJM Catal. 2022, 3, 2. [Google Scholar] [CrossRef]
- Frąckiewicz, M. The Role of AI in Healthcare Administration and Workflow Optimization. TS2 SPACE, 4 July 2023. Available online: https://ts2.space/en/the-role-of-ai-in-healthcare-administration-and-workflow-optimization/#gsc.tab=0 (accessed on 28 August 2023).
- Halhoul Merabet, G.; Essaaidi, M.; Ben Haddou, M.; Qolomany, B.; Qadir, J.; Anan, M.; Al-Fuqaha, A.; Abid, M.R.; Benhaddou, D. Intelligent Building Control Systems for Thermal Comfort and Energy-Efficiency: A Systematic Review of Artificial Intelligence-Assisted Techniques. Renew. Sustain. Energy Rev. 2021, 144, 110969. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.-T. Artificial Intelligence Enabled Energy-Efficient Heating, Ventilation and Air Conditioning System: Design, Analysis and Necessary Hardware Upgrades. Appl. Therm. Eng. 2023, 235, 121253. [Google Scholar] [CrossRef]
- Tagde, P.; Tagde, S.; Bhattacharya, T.; Tagde, P.; Chopra, H.; Akter, R.; Kaushik, D.; Rahman, M.H. Blockchain and Artificial Intelligence Technology in E-Health. Environ. Sci. Pollut. Res. 2021, 28, 52810–52831. [Google Scholar] [CrossRef]
- Khezr, S.; Moniruzzaman, M.; Yassine, A.; Benlamri, R. Blockchain Technology in Healthcare: A Comprehensive Review and Directions for Future Research. Appl. Sci. 2019, 9, 1736. [Google Scholar] [CrossRef]
- Wang, M.; Wang, B.; Abareshi, A. Blockchain Technology and Its Role in Enhancing Supply Chain Integration Capability and Reducing Carbon Emission: A Conceptual Framework. Sustainability 2020, 12, 10550. [Google Scholar] [CrossRef]
- Le, H.T.; Quoc, K.L.; Nguyen, T.A.; Dang, K.T.; Vo, H.K.; Luong, H.H.; Le Van, H.; Gia, K.H.; Cao Phu, L.V.; Nguyen Truong Quoc, D.; et al. Medical-Waste Chain: A Medical Waste Collection, Classification and Treatment Management by Blockchain Technology. Computers 2022, 11, 113. [Google Scholar] [CrossRef]
- Taherdoost, H. Smart Contracts in Blockchain Technology: A Critical Review. Information 2023, 14, 117. [Google Scholar] [CrossRef]
- Vilkov, A.; Tian, G. Blockchain’s Scope and Purpose in Carbon Markets: A Systematic Literature Review. Sustainability 2023, 15, 8495. [Google Scholar] [CrossRef]
- Hoy, M.B. An Introduction to the Blockchain and Its Implications for Libraries and Medicine. Med. Ref. Serv. Q. 2017, 36, 273–279. [Google Scholar] [CrossRef]
- Panigrahi, A.; Nayak, A.K.; Paul, R. HealthCare EHR: A Blockchain-Based Decentralized Application. Int. J. Inf. Syst. Supply Chain Manag. 2022, 15, 1–15. [Google Scholar] [CrossRef]
- Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Ellahham, S.; Omar, M. The Role of Blockchain Technology in Telehealth and Telemedicine. Int. J. Med. Inform. 2021, 148, 104399. [Google Scholar] [CrossRef]
- Wang, W.; Wang, L.; Zhang, P.; Xu, S.; Fu, K.; Song, L.; Hu, S. A Privacy Protection Scheme for Telemedicine Diagnosis Based on Double Blockchain. J. Inf. Secur. Appl. 2021, 61, 102845. [Google Scholar] [CrossRef]
- Koshechkin, K.; Lebedev, G.; Radzievsky, G.; Seepold, R.; Martinez, N.M. Blockchain Technology Projects to Provide Telemedical Services: Systematic Review. J. Med. Internet Res. 2021, 23, e17475. [Google Scholar] [CrossRef]
- Kordestani, H.; Barkaoui, K.; Zahran, W. HapiChain: A Blockchain-Based Framework for Patient-Centric Telemedicine. In Proceedings of the 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), Vancouver, BC, Canada, 12–14 August 2020; pp. 1–6. [Google Scholar]
- Vidal-Alaball, J.; Franch-Parella, J.; Lopez Seguí, F.; Garcia Cuyàs, F.; Mendioroz Peña, J. Impact of a Telemedicine Program on the Reduction in the Emission of Atmospheric Pollutants and Journeys by Road. Int. J. Environ. Res. Public Health 2019, 16, 4366. [Google Scholar] [CrossRef] [PubMed]
- Yellowlees, P.M.; Chorba, K.; Burke Parish, M.; Wynn-Jones, H.; Nafiz, N. Telemedicine Can Make Healthcare Greener. Telemed. J. e-Health Off. J. Am. Telemed. Assoc. 2010, 16, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Barreiro, J.; Alvarez-Sabucedo, L.; Garcia-Soidan, J.-L.; Santos-Gago, J.M. Creation of a Holistic Platform for Health Boosting Using a Blockchain-Based Approach: Development Study. Interact. J. Med. Res. 2023, 12, e44135. [Google Scholar] [CrossRef] [PubMed]
- How Healthcare Tokens Are Transforming Healthcare Management?—PatientMD Blogs. Available online: https://patientmd.com/blogs/how-healthcare-tokens-are-transforming-healthcare-management-qz0rii4Z (accessed on 1 September 2023).
Feature | Benefits |
---|---|
Non-invasive procedure | As a non-invasive procedure, CE eliminates the need for sedation or anesthesia, reducing the associated energy consumption and carbon emissions. |
Simplified examination requiring less equipment | CE eliminates the need for complex, bulky and specialized equipment (e.g., endoscopes, light sources and video processors). Using a small ingestible capsule with an embedded camera, CE significantly reduces the energy consumption, maintenance and disposal of traditional endoscopy material, thereby minimising the environmental impact of the procedure. |
Fewer resources consumed | CE avoids the use of consumables typically required in conventional endoscopy procedures, like biopsy forceps and cleaning brushes. Lower demands on resources translates into less material waste and energy used in manufacturing, as well as fewer demands for sterilization, leading to a smaller carbon footprint. |
Procedure time | CE is generally quicker than traditional endoscopy and patients typically recover faster, minimising waiting times and the resource use associated with keeping patients in dedicated endoscopy units for longer periods. |
Improved patient compliance | CE is more patient-friendly, which enhances compliance with screening protocols, avoiding unnecessary examinations that further tighten the carbon footprint. |
Targeted examination | CE may target specific areas of the GI tract, avoiding unnecessary full-length examinations, reducing procedure time and resource consumption, as well as the associated carbon emissions. |
Enhanced diagnostic accuracy | CE produces high-resolution images, improving diagnostic accuracy and reducing missed findings, unnecessary interventions and the need for further confirmatory procedures, enhancing resource use. |
Remote viewing and consultations | CE images and videos can be viewed and analyzed remotely by specialists, reducing transport-related GHG emissions by eliminating the need to transport patients or their records, favoring more efficient consultations that save time, energy and resources. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascarenhas, M.; Ribeiro, T.; Afonso, J.; Mendes, F.; Cardoso, P.; Martins, M.; Ferreira, J.; Macedo, G. Smart Endoscopy Is Greener Endoscopy: Leveraging Artificial Intelligence and Blockchain Technologies to Drive Sustainability in Digestive Health Care. Diagnostics 2023, 13, 3625. https://doi.org/10.3390/diagnostics13243625
Mascarenhas M, Ribeiro T, Afonso J, Mendes F, Cardoso P, Martins M, Ferreira J, Macedo G. Smart Endoscopy Is Greener Endoscopy: Leveraging Artificial Intelligence and Blockchain Technologies to Drive Sustainability in Digestive Health Care. Diagnostics. 2023; 13(24):3625. https://doi.org/10.3390/diagnostics13243625
Chicago/Turabian StyleMascarenhas, Miguel, Tiago Ribeiro, João Afonso, Francisco Mendes, Pedro Cardoso, Miguel Martins, João Ferreira, and Guilherme Macedo. 2023. "Smart Endoscopy Is Greener Endoscopy: Leveraging Artificial Intelligence and Blockchain Technologies to Drive Sustainability in Digestive Health Care" Diagnostics 13, no. 24: 3625. https://doi.org/10.3390/diagnostics13243625
APA StyleMascarenhas, M., Ribeiro, T., Afonso, J., Mendes, F., Cardoso, P., Martins, M., Ferreira, J., & Macedo, G. (2023). Smart Endoscopy Is Greener Endoscopy: Leveraging Artificial Intelligence and Blockchain Technologies to Drive Sustainability in Digestive Health Care. Diagnostics, 13(24), 3625. https://doi.org/10.3390/diagnostics13243625