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Abstract: Metabolic syndrome is experiencing a concerning and escalating rise in prevalence to-
day. The link between metabolic syndrome and periodontal disease is a highly relevant area of
research. Some studies have suggested a bidirectional relationship between metabolic syndrome and
periodontal disease, where one condition may exacerbate the other. Furthermore, the existence of
periodontal disease among these individuals significantly impacts overall health management. This
research focuses on the relationship between periodontal disease and metabolic syndrome, while also
incorporating data on general health status and overall well-being. We aimed to develop advanced
machine learning models that efficiently identify key predictors of metabolic syndrome, a significant
emphasis being placed on thoroughly explaining the predictions generated by the models. We studied
a group of 296 patients, hospitalized in SCJU Sibiu, aged between 45–79 years, of which 57% had
metabolic syndrome. The patients underwent dental consultations and subsequently responded
to a dedicated questionnaire, along with a standard EuroQol 5-Dimensions 5-Levels (EQ-5D-5L)
questionnaire. The following data were recorded: DMFT (Decayed, Missing due to caries, and
Filled Teeth), CPI (Community Periodontal Index), periodontal pockets depth, loss of epithelial
insertion, bleeding after probing, frequency of tooth brushing, regular dental control, cardiovascular
risk, carotid atherosclerosis, and EQ-5D-5L score. We used Automated Machine Learning (AutoML)
frameworks to build predictive models in order to determine which of these risk factors exhibits the
most robust association with metabolic syndrome. To gain confidence in the results provided by the
machine learning models provided by the AutoML pipelines, we used SHapley Additive exPlanations
(SHAP) values for the interpretability of these models, from a global and local perspective. The
obtained results confirm that the severity of periodontal disease, high cardiovascular risk, and low
EQ-5D-5L score have the greatest impact in the occurrence of metabolic syndrome.

Keywords: periodontal disease; metabolic syndrome; AutoML; SHAP; predictive model

1. Introduction

Periodontal disease is a chronic inflammatory condition that affects the tissues sur-
rounding the teeth. Recent studies recognize periodontal disease as a pressing public health
concern, primarily due to their frequent connection with metabolic disorders. Treating
these conditions entails substantial healthcare costs and can also lead to a diminished
quality of life for affected individuals [1].

The initial clinical sign of periodontal disease is typically seen in the form of gingivitis,
which is marked by swollen gums, bleeding when brushing teeth, and mild discomfort.
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Without intervention, this condition frequently advances into deeper gum tissues and
inflammation of the periodontium, leading to periodontitis [2].

Numerous studies conducted over the past few decades have consistently highlighted
a frequent association between systemic diseases such as diabetes, obesity, and cardiovas-
cular conditions [3–5], establishing a clinical relationship between metabolic syndrome and
periodontal disease [6,7].

Metabolic syndrome encompasses a cluster of risk factors associated with cardiovascu-
lar disease and type 2 diabetes, occurring concurrently at a frequency higher than expected
by random chance [8].

The National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP
III) provided the most used definition of metabolic syndrome [9]. According to this
definition, an individual must exhibit at least three of the following risk factors: (a) increased
abdominal circumference, (b) reduced levels of high-density lipoprotein (HDL) cholesterol
in the plasma, (c) elevated plasma triglyceride levels, (d) hypertension, and (e) increased
glucose levels [10].

Inadequate oral hygiene within an area affected by gingivitis can result in the pro-
liferation of bacteria and the development of a pathogenic subgingival biofilm primarily
composed of anaerobic bacteria, including Porphyromonas gingivalis and Treponema
forsythia [11,12].

Published studies have provided confirmation that the presence of periodontal disease
in individuals with diabetes, obesity, and cardiovascular conditions heightens the risk of
thrombosis in vital organs such as the heart, brain, lungs, or kidneys [13–15].

The bacteria found within the pathogenic subgingival biofilm trigger an inflammatory
response, leading to the release of pro-inflammatory biomarkers. Some of these biomarkers
enter the saliva, while others enter the bloodstream, resulting in a persistent, low-level
inflammatory condition in the body [13,16].

Periodontitis elevates the levels of inflammatory cytokines like interleukin-6 (IL-6),
interleukin-1 (IL-1) [17,18], and tumor necrosis factor alpha (TNF-α) [19]. The C-reactive
protein (CRP) is synthesized by the liver in response to these inflammatory cytokines.
Results from [20] confirm an elevation of CRP levels in periodontitis patients, and this is a
known predictor of type 2 diabetes and cardiovascular disease risk [18,20]. Given that CRP
is now considered a biomarker of systemic inflammation and that metabolic syndrome
is associated with systemic inflammation [21], researchers have aimed to assess how
periodontitis might impact the onset, development, or progression of metabolic syndrome.

The meta-analysis from [22], dedicated to the link between periodontal disease and
the risk of metabolic syndrome, included 39 studies with crude odds ratios and 35 studies
with adjusted odds ratios (calculated individually). The pooled crude and adjusted odds
ratios were calculated as weighted average of the individual odds ratios from the respective
studies. The results demonstrated an association between periodontitis and metabolic
syndrome with a pooled crude odds ratio of 1.99 (95% confidence interval: 1.75–2.25) and a
pooled adjusted odds ratio of 1.46 (95% confidence interval: 1.31–1.61).

A cross-sectional study detailed in [23] concludes that increased gingival index and
high depth of periodontal pockets were associated with increased triglycerides levels and
low HDL cholesterol.

As consequences of periodontal disease, hyperactivation of neutrophils and expression
of proinflammatory cytokines (adipokines, IL-1-beta, TNF-α) leads to insulin resistance [24].
As a result, the body endeavors to counteract heightened insulin resistance by augmenting
insulin secretion, which is proved by elevated insulin levels (hyperinsulinemia) observed
in individuals with periodontitis [25]. Due to its role as an anabolic hormone, insulin
facilitates glucose uptake and fat storage. Therefore, the presence of hyperinsulinemia
contributes to the promotion of obesity [26], hypertension, and hyperglycemia [27,28].

Specialist dentists can quantify periodontal inflammation using various procedures,
including measuring the depth of periodontal pockets, evaluating spontaneous bleeding,
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assessing epithelial insertion loss, and utilizing dental and periodontal hygiene indices
recommended by the World Health Organization (WHO) [29].

Numerous recent studies suggest that the combination of periodontal disease with
other risk factors such as obesity, smoking, arterial hypertension, type 2 diabetes, hyper-
cholesterolemia, and a sedentary lifestyle can potentially double the risk of thrombotic
cardiovascular accidents [1,15,16].

This research delves into the association between periodontal disease and metabolic
syndrome, integrating information about general health status and overall well-being. Our
objective was to create highly optimized machine learning models capable of identify-
ing significant predictors of metabolic syndrome, with a notable emphasis on providing
comprehensive explanations for the generated predictions.

Machine learning (ML) methods have the capability to address the limitations of
traditional regression models [30] and have been successfully applied by recent studies
in domains which span different medical specialties and involves a complex interplay of
biological, environmental, and lifestyle factors.

In the machine learning approach, the effort is shifted from a deep understanding of the
application domain to the construction, optimization, and validation of models. Techniques
like bootstrap aggregating, boosting, averaging, model stacking, or cascading combine
many simpler models into one complex model to obtain better predictive performance.

The advantages of complex models are obvious in the accuracy of the results obtained,
but there are also disadvantages that must be addressed. Complex models can appear to
function as “black boxes”. Typically, the term “black-box” model is used for models with
a complex structure that is difficult for humans to understand. It can be difficult, if not
impossible, to explain how thousands of variables affect a model’s prediction.

The structure of a complex model, such as, for example, deep ensemble model [31],
may be opaque and, consequently, it can be difficult to decide whether the model is
consistent with the application domain. An analysis of real problems with complex black-
box models can be found in O’Neil [32].

As black-box Machine Learning (ML) models are more commonly utilized for making
crucial predictions in critical contexts, there is a growing demand for transparency from
various stakeholders in the field of AI [33]. In [34] it is mentioned that proliferation of
“black-box” algorithms presents many challenges for companies and governments seeking
to comply with the General Data Protection Regulation (GDPR), from the perspective of
the “Right to Explanation”, i.e., the right to be provided with an explanation for an output
of an automated algorithm.

Generally, people are hesitant to embrace techniques that lack direct interpretabil-
ity, manageability, and reliability [33]. In order to address these problems, Explainable
Artificial Intelligence (XAI) proposes a set of techniques, methods, and tools that aim to
make the outputs and decisions of artificial intelligence (AI) systems understandable and
interpretable by humans. XAI is necessary for addressing the challenges associated with
deploying complex AI systems in real-world applications. It helps improve transparency,
trust, and accountability while also enabling better collaboration between humans and
AI systems.

Explanations that underpin a model’s output are vital, particularly in fields like
medical diagnoses. In such contexts, experts need more comprehensive information from
the model beyond a basic binary prediction to assist in validating and supporting their
diagnosis. If experts can understand how a model arrived at a particular decision, they are
more likely to trust the system.

In this research, we used the SHapley Additive exPlanations (SHAP) framework [35]
to provide explanations for the output of machine learning models. A differentiation can be
made between interpretability and explainability, but same as in [36] we will refrain from
doing this in order to prevent unnecessary use of technical language for medical experts.
SHAP values offer a way to interpret and understand the output of complex machine
learning models, making them more transparent and trustworthy. The framework helps
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identify the importance of each feature in the model’s decision-making process. This is
crucial for understanding which factors have the most influence on the predictions. In
applications like healthcare or medical diagnosis, where model predictions have significant
consequences, the SHAP framework can offer valuable insights to support decision-making
by providing a clear rationale for each prediction. The SHAP framework plays a crucial
role in making machine learning models more interpretable and facilitating the responsible
and ethical use of AI systems [37].

We proposed the use of the EuroQol 5-Dimensions 5-Levels (EQ-5D-5L) score as the
feature variable. The EQ-5D-5L is a widely used generic preference-based Health-Related
Quality of Life (HRQoL) questionnaire [38]. The EQ-5D-5L is an updated version of the
EQ-5D-3L questionnaire, with the aim of enhancing its sensitivity and mitigating ceiling
effects in comparison to the EQ-5D-3L. Both are tools designed to assess an individual’s
health status and overall well-being. More precisely, the state of health of a person is
evaluated in five dimensions: mobility, self-care, usual activities, pain/discomfort, and
anxiety/depression. In the case of the EQ-5D-3L questionnaire, for each dimension, re-
spondents choose from three levels of response: no problems, some problems, and extreme
problems. The key difference between EQ-5D-3L and EQ-5D-5L is the number of response
options available for each dimension. The EQ-5D-5L provides a more detailed and nuanced
assessment of an individual’s health status compared to the EQ-5D-3L. Thus, for each
dimension, respondents choose from five levels of severity: no problems, slight problems,
moderate problems, severe problems, or extreme problems. By assigning digits to each
level, a 5-digit number can represent the patient’s health state. To create a unified measure
of health, the scores from these five dimensions were transformed into a single utility index
using the R language and the eq5d package [39].

To our knowledge, this is the first study to build and optimize predictive models with
AutoML for the purpose of predicting the risk of metabolic syndrome. In our research, we
used two AutoML frameworks known for their efficiency in generating optimized models
within a brief timeframe, namely H2O and Auto-sklearn, respectively.

H2O [40], a distributed machine learning platform, is specifically designed to scale
efficiently, particularly with large data sets. By harnessing in-memory data compression,
H2O can handle vast amounts of data, even with a modest cluster, making it highly versatile.
The platform is adaptable, capable of operating on a local desktop with a small cluster or
effortlessly scaling across multiple nodes using technologies such as Spark, an Amazon
Elastic Compute Cloud (EC2) cluster, or Hadoop.

Auto-sklearn [41,42] stands out as a robust AutoML framework, constructed on the
foundation of the scikit-learn [43] machine learning framework. Modified versions of Auto-
sklearn 1.0 demonstrated exceptional performance by clinching the leading positions in
both the inaugural and subsequent ChaLearn AutoML challenges. These challenges rigor-
ously assessed AutoML systems within stringent time and memory limitations, demanding
predictions to be generated in less than 20 min.

The advantage of building models with AutoML is that the hyperparameters of the
models are optimized very efficiently, in a short time, with the possibility of imposing
some time restrictions for the duration of the execution. Furthermore, the algorithms that
yield the most accurate predictions on the given data set are automatically identified. The
objective of the ML models was to differentiate between patients who were diagnosed
with metabolic syndrome and those who were not, and to identify key predictors of
metabolic syndrome.

The primary contributions of this study can be outlined as follows:

(1) Several predictive models were built using two state-of-the-art AutoML frameworks:
H2O AutoML and Auto-sklearn.

(2) The best two models were selected, evaluated, and validated, comparing the predic-
tion results through performance metrics.

(3) A SHAP wrapper specifically designed for Auto-sklearn models was implemented to
obtain their corresponding SHAP values.
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(4) SHAP was used to analyze machine learning models, to explain the predictions, and
to highlight the most important predictive variables.

The aim of this observational study was to investigate the degree to which the gen-
eral state of health and factors affecting oral health, particularly disruptive ones, are
associated with metabolic syndrome, with a null hypothesis (H0) stating that a higher
periodontitis stage [44] does not increase the incidence of metabolic syndrome. The sig-
nificance of establishing these connections lies in the potential of implementation of a
multidisciplinary treatment paradigm and suggests some procedures or techniques that
could prevent/interrupt critical pathological links to provide positive results and enhance
overall health.

Our best interpretable risk prediction models for metabolic syndrome have proven
valuable in uncovering risk factors, identifying high-risk individuals, and serving as a
methodological reference for the prevention and control of metabolic syndrome.

The rest of the paper is organized as follows: In Section 2, we provide a summary of
related research in the field of prediction of metabolic syndrome/periodontal disease with
ML models. Section 3 illustrates the proposed methodology, the collected data, and the
performance metrics used in the evaluation of the prediction models. Section 4 presents
the best ML models built and their hyperparameter values at the end of the optimization
process. The values of the performance metrics of the prediction models are also presented.
A substantial part of this section has been devoted to SHAP’s explanations of machine
learning models. Finally, Sections 5 and 6 conclude the study and offer insights into
potential future directions.

2. Related Work

Table 1 provides a summary of the related research and refers to previous studies on
predictions involving metabolic syndrome and/or periodontal disease, using ML models
where they appear as the target variable or feature variable.

Table 1. Previous studies on predictions involving metabolic syndrome and/or periodontal disease.

Paper Data Set Classifiers * Metabolic
Syndrome

Periodontal
Disease

Explainability of
the Prediction

[45]
18,553 patients from the Temple

University Kornberg School of Dentistry
predoctoral clinics

XGBoost - target yes

[46] 1333 Taiwanese adult patients DT target - no

[47] Metabolic data set from Kaggle
repository, 12,012 records

SVM, KNN, DT,
RF, AdaBoost, GB,

SGB, CatBoost,
XGBoost

target - yes

[48] 67,730 patients, Nanfang Hospital, China XGBoost target - yes

[49] Tlalpan 2020 cohort study data set,
Mexico City, 2289 subjects RF, C4.5, DNN target - no

[50]

Internal validation cohort,
6793 participants

External validation cohort,
7681 participants

ANN, CART, SVM target - no

[51] KoGES cohort study, 3064 participants,
Korea

KNN, Naïve Bayes,
RF, DT, MLP, SVM target - no

[52] 532 subjects, Toulouse University
Hospital Centre, France MLP - target yes
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Table 1. Cont.

Paper Data Set Classifiers * Metabolic
Syndrome

Periodontal
Disease

Explainability of
the Prediction

[53]

Internal validation, 3453 participants,
Taiwan

External validation, 3685 participants,
United States

AdaBoost, ANN,
DT, GP, KNN, SVC,

LDA, RF, Naïve
Bayes

- target no

[54] 173,209 adults aged 40 years or older,
South Korea

LR, DT, RF,
XGBoost, TN target - yes

[55] 2258 individuals GBM, XGBoost, RF feature target yes

[56] 6421 Japanese individuals MLR target feature no

[57] DOME study, 132,529 subjects LR, XGBoost feature feature no

[58] 2401 samples From the NHANES
database

LR, MLP, KNN,
SVM, RF, XGBoost,

Naïve Bayes
target - no

[59]
103 patients,

Department of Internal Medicine,
University of Catania, Italy

LR target feature no

[60] 1011 participants, Brazil LR target feature no

* XGBoost = eXtreme Gradient Boosting, DT = Decision Tree, SVM = Support Vector Machine, KNN = K-Nearest
Neighbors, RF = Random Forest, AdaBoost = Adaptive Boosting, GB = Gradient Boosting, SGB = Stochastic
Gradient Boosting, CatBoost = Categorical Boosting, DNN = Deep Neural Network, ANN = Artificial Neural
Networks, CART = Classification and Regression Tree, MLP = Multilayer Perceptron, GP = Gaussian Process,
SVC = Support Vector Classification, LDA = Linear Discriminant Analysis, LR = Logistic Regression, TN = TabNet,
GBM = Gradient Boosting Modeling, MLR = Multivariate Logistic Regression.

The study presented in [45] focuses on the development and testing of a prediction
model for periodontal disease. Leveraging machine learning techniques and extensive
electronic dental record data, the authors aimed to enhance accuracy in predicting peri-
odontal disease. The research explores factors and patterns associated with periodontal
conditions and aims to identify ways for more effective early detection and management of
periodontal diseases.

In the retrospective cohort study published in [46], Yu et al. explore the use of machine
learning models, specifically employing a Decision Tree Algorithm, for predicting metabolic
syndrome. The study delves into the application of computational approaches to predict
the likelihood of metabolic syndrome based on relevant data. The findings aim to enhance
the understanding of metabolic syndrome prediction and potentially contribute to more
personalized and proactive interventions in clinical settings.

The study conducted by Sghaireen et al., published in [47], employs a machine learning
approach for diagnosing metabolic syndrome. Specifically, the authors utilize an explain-
able data-augmentation-based classification method. By integrating machine learning
techniques into the diagnostic process, the research aims to enhance the accuracy and
interpretability of metabolic syndrome diagnoses. The results provide insights into the
potential of explainable data augmentation in improving the performance and transparency
of classification models for metabolic syndrome.

In [48] is presented a machine learning-aided risk prediction model for metabolic syn-
drome, drawing insights from a comprehensive 3-year study. The authors employ machine
learning techniques to predict the risk of metabolic syndrome, with the aim of offering
valuable information for the development of proactive and personalized interventions in
the context of metabolic syndrome.

Gutiérrez-Esparza et al. present a study in [49] where machine and deep learning
methodologies are applied for the prediction of metabolic syndrome without the need
for blood screening. The research explores innovative approaches to predict metabolic
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syndrome using computational techniques, potentially offering a non-invasive alternative
to traditional blood tests.

In a retrospective cohort study published in [50], Zhang et al. employ machine
learning techniques to predict the 4-year risk of metabolic syndrome in adults. The research
focuses on leveraging computational methods for risk assessment over an extended period,
offering insights into the potential of machine learning in predicting the development of
metabolic syndrome.

In [51], the authors explore the development of metabolic syndrome prediction models
by incorporating machine learning techniques and considering Sasang constitution types.
The research investigates the integration of traditional medicine concepts, specifically
Sasang constitution types, with modern computational methods for predicting metabolic
syndrome. The findings provide insights into the potential synergy between machine
learning and personalized medicine in predicting metabolic syndrome.

In their observational study published in [52], Monsarrat et al. introduce a systemic
periodontal risk score developed through an innovative machine learning strategy. The
research focuses on leveraging advanced computational methods to establish a comprehen-
sive risk assessment for systemic health based on periodontal factors.

The research presented in [53] aims to develop and validate predictive models for
periodontitis through a comprehensive evaluation of different machine learning techniques.
By systematically comparing the performance of these algorithms, the study contributes
valuable insights into the selection and optimization of models for predicting periodontitis.

The study [54] focuses on the development of a model that utilizes machine learning
techniques to predict the risk of metabolic syndrome, emphasizing its potential in preven-
tive healthcare. The findings highlight the role of machine learning in developing proactive
strategies for maintaining metabolic health.

In a nested cross-sectional study published in [55], Pietropaoli et al. investigate the
association between components of metabolic syndrome and gingival bleeding, with a
specific focus on gender differences, especially in women. The research reveals a women-
specific correlation between metabolic syndrome components and gingival bleeding. The
findings contribute to a nuanced understanding of the relationship between systemic health
and oral conditions, emphasizing gender-specific considerations in the context of metabolic
syndrome and oral health.

A closer work to the one presented here is [56], where the authors investigate the
relationship between periodontal status and metabolic syndrome in middle-aged Japanese
individuals. The research explores potential associations between the two, providing
insight on how periodontal health may relate to the presence of metabolic syndrome. The
findings contribute to the understanding of the interplay between oral health and systemic
conditions, particularly in the context of metabolic syndrome among the middle-aged
Japanese population.

The authors of [57] utilize machine learning and statistical analyses to examine the
interconnections among obstructive sleep apnea, metabolic dysfunction, and periodontitis.
The research, based on the Dental, Oral, Medical Epidemiological (DOME) Big Data Study,
employs advanced computational methods to explore complex relationships between these
health conditions. The findings emphasize the potential of big data and machine learning
in uncovering intricate health patterns.

In [58], the authors present a study where seven machine learning models are em-
ployed to predict the occurrence of metabolic syndrome. The research focuses on the
application of computational approaches to forecast the likelihood of metabolic syndrome.
By leveraging machine learning, the study contributes to the field of predictive medicine,
offering insights into potential risk factors and facilitating proactive interventions for
individuals at risk of developing metabolic syndrome.

Two other works closely related to the topic of our research are [59,60].
In their study [59], Nibali et al. investigate the relationship between left ventricular

geometry and periodontitis in patients with metabolic syndrome. The research explores
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potential associations between periodontal health and cardiac parameters in individuals
with metabolic syndrome. The findings contribute to the understanding of the systemic
impact of periodontitis in the context of metabolic syndrome, particularly concerning left
ventricular geometry. The study highlights the intricate links between oral health and
cardiovascular parameters in individuals with metabolic syndrome.

In [60] is investigated the association between periodontitis and its severity levels with
the triglyceride/high-density lipoprotein cholesterol (TG/HDL-C) ratio. The study explores
potential connections between periodontal health and the TG/HDL-C ratio, providing
insights into the systemic impact of periodontitis on metabolic parameters. The findings
underscore the relevance of oral health in relation to lipid metabolism and cardiovascular
risk factors, emphasizing the association between periodontal status and the TG/HDL-
C ratio.

Compared to a previous study [56], which is based on multivariate logistic regression
to achieve relatively similar objectives using only two predictors (periodontal probing
depth and clinical attachment level), we have expanded the set of feature variables, and we
built optimized ML models to predict the risk of metabolic syndrome in individuals with
periodontal disease. Conventional regression techniques used in [56,59,60] are straight-
forward to apply but face challenges when handling multifactor effects and nonlinear
relationships in data mapping. Complex ML models obtained with our proposed methodol-
ogy have the capacity to learn intricate patterns and representations from the input features
and can capture non-linear relationships in the data, which may be missed by linear models
like logistic regression.

We noticed that no previous research had been conducted in employment of the
AutoML technology for obtaining highly optimized ML models. Our approach can leverage
pre-trained models on large data sets for transfer learning (technique implicitly used by
AutoML frameworks). This is especially useful when we have small data sets. In addition,
another advantage is the automatic selection of the best algorithm and its fast training,
problems that papers [53,58] addressed through comprehensive evaluation of different
machine learning algorithms. The respective approach requires a lot of time, high expertise,
and there is no guarantee of obtaining the best solution.

Our suggested approach, based on AutoML, provides the opportunity to completely
automate the maintenance of prediction models, ensuring their high accuracy by automati-
cally regenerating or retraining as needed.

To increase the transparency and acceptance of our ML models and to strengthen
confidence in the results obtained, we made use of permutation explainer implemented
in the SHAP framework. The same framework was used to explain the predictions in
papers [45,47,48,52].

3. Materials and Methods
3.1. Efficient Model Development with AutoML Frameworks

Machine learning (ML) has made impressive strides in recent years. However, the con-
ventional process of developing ML models is resource-intensive, demanding substantial
domain expertise and time to create and evaluate numerous models for comparison [61].

Automated machine learning, also referred to as automated ML or AutoML, is the
process of automating the repetitive and time-consuming tasks involved in developing
machine learning models. AutoML offers techniques and workflows that enable the
creation of ML models at a large scale, with increased efficiency and productivity, all while
maintaining high model quality.

The automated machine learning (AutoML) approach typically involves several key
steps to provide an optimized model ready for deployment:

1. Model Selection: Automatically selecting an appropriate machine learning model
or algorithm based on the problem type (e.g., classification, regression) and data
set characteristics.
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2. Feature Selection: Choosing a subset of relevant features or variables from a larger
set of available features, to improve the overall efficiency of the machine learning
pipeline (improve model interpretability and reduce computational complexity).

3. Hyperparameter Tuning: Optimizing the hyperparameters of the selected model(s)
to improve their performance.

4. Model Training: Training the selected model(s) on the training data set using the
optimized hyperparameters.

5. Validation: Evaluating model performance on the validation data set to ensure that it
meets predefined criteria, such as accuracy or F1 score. If the model does not meet the
criteria, it may return to hyperparameter tuning or model selection steps.

An AutoML pipeline is a series of automated and interconnected processes designed
to streamline the end-to-end machine learning workflow. The primary goal of an AutoML
pipeline is to automate the machine learning process. A generic AutoML pipeline is shown
in Figure 1.

Figure 1. Architecture of a generic AutoML pipeline.

In this paper, we propose to create predictive models with two state-of-the-art AutoML
frameworks: H2O AutoML [62] and Auto-sklearn [63].

H2O is a distributed machine learning platform designed to handle extensive data sets
efficiently. It offers application programming interfaces (APIs) for popular programming
languages such as R, Python, and Java, making it accessible and versatile for a wide range
of data science and machine learning tasks.

H2O’s AutoML framework offers a set of classes and functions designed to streamline
various modeling tasks with just a few lines of code. This tool is particularly useful for
automating the entire machine learning workflow, encompassing the automatic training
and fine-tuning of multiple models within a predefined time limit specified by the user [40].
After training the base models, the H2O’s Stacked Ensemble algorithm is used to train two
Stacked Ensemble models. By default, H2O uses a Super Learner algorithm [64] to train
the metalearner in the Stacked Ensemble, using the k-fold cross-validated predictions from
the base learners.

In the following sections, we will leverage H2O AutoML to automatically select
and fine-tune models. Subsequently, the best-performing model, often referred to as the
“leader”, will be utilized for making predictions.

Auto-sklearn is a robust automated machine learning (AutoML) framework that uti-
lizes scikit-learn as its underlying machine learning framework [43]. This framework
streamlines the process of automating machine learning tasks while leveraging the capabil-
ities and versatility of scikit-learn for model development and evaluation.

Auto-sklearn uses the random-forest-based Bayesian optimization method SMAC
(Sequential Model-based Algorithm Configuration) [65] to solve the Combined Algorithm
Selection and Hyperparameter optimization (CASH) problem [41,42].

After building predictive models, two equally important steps follow: model valida-
tion and model explanation.

3.2. Model-Agnostic Explainability with SHAP Method

Model explanation involves the use of specific tools to inspect the structure of the
model, highlight the importance of features, and interpret the predictions of ML models.
For this purpose, in this paper we used the SHAP (SHapley Additive exPlanations) frame-
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work, proposed by Lundberg and Lee [35] as a unified approach, designed to provide a
comprehensive explanation of the results produced by any machine learning model.

In the process of explaining a machine learning model, Shapley values can be thought
of as a measure of the importance of each individual input feature’s contribution to the
model’s predicted values. They help to understand how each feature influences the model’s
output and provide valuable insight into its decision-making process. In the following, we
present the concepts and procedure underlying the calculation of SHAP values.

One way to explain a prediction is to attribute the model prediction to each feature,
considering the interactions and dependencies between features.

In game theory, a coalitional game involves a set of players who can form coalitions
(groups) and receive certain payoffs. The Shapley value is a solution concept that allocates
a fair share of the total payoff to each player based on their marginal contributions when
joining different coalitions.

In the context of machine learning, each feature of an instance is treated as a “player”
in a game, and the model prediction is the total payoff. Shapley values help determine how
to fairly distribute this total payoff among the individual features.

The Shapley value for a feature measures the average marginal contribution of that
feature across all possible combinations of features and offers a transparent and inter-
pretable way to understand the impact of the feature on a specific prediction, considering
the interactions and dependencies with other features.

Shapley values provide insights into the relative importance of different features in
making a particular prediction, promoting transparency and understanding in complex
machine learning models.

A cooperative game is defined as a function v : 2d → R that for each coalition (subset)
S ⊆ D return a value v(S) ∈ R, where D = {1, . . . , d) represents a set of players [66]. We
can consider that v(S) represents the profit generated by the coalition S of players. The
payoff of each player i ∈ S is equal to his contribution to the realization of the profit and
will be denoted by φi(v). For a fairly assessment of these individual contributions, the
following goals are imposed [67]:

1. (Efficiency) The contributions should add up to the difference between the profit
generated by all players and the profit obtained without any player:

d

∑
i=1

φi(v) = v(D)− v(∅).

2. (Symmetry) If two players are interchangeable (the impact in the generated profit is
the same), it follows that their individual contributions are identical, or as follows:
v(S ∪ {i}) = v(S ∪ {j}) f or all S⇒ φi(v) = φj(v) .

3. (Dummy) If a player has no impact in generating profit, then his contribution is zero,
or as follows: v(S ∪ {i}) = v(S) f or all S⇒ φi(v) = 0 .

4. (Monotonicity) If the marginal contribution to the profit generated in game v by
player i by joining any coalition S is greater than that obtained in game v′, then
the contribution of the player i in v is greater than in v′, or as follows:
v(S ∪ {i})− v(S) ≥ v′(S ∪ {i}) − v′(S) f or all S⇒ φi(v) ≥ φi(v′) .

5. (Linearity) If the game v is viewed as a linear combination of games v1, v2, . . . , vk, or
v = c1v1 + c2v2 + . . . + ckvk, then the contribution of each player i in the game v is
expressed as follows: φi(v) = c1φi(v1) + c2φi(v2) + . . . + ckφi(vk), i ∈ D.

In [68], it has been shown that for any cooperative game v, the values φi(v) (the
Shapley values of v) calculated with the formula

φi(v) =
1
d ∑

S⊆D\{i}

(
d− 1
|S|

)−1

[v(S ∪ {i})− v(S)] = ∑
S⊆D\{i}

|S| ! (d−|S|−1)!
d!

[v(S ∪ {i})− v(S)], i ∈ D

are the only values that satisfy properties 1–5.
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The primary obstacle in utilizing Shapley values lies in achieving computational effi-
ciency during their calculation. To compute the precise φj Shapley value, it is necessary
to assess all potential combinations (sets) of feature values both with and without the j-th
feature. However, as the number of features grows, the exact solution becomes challeng-
ing due to the exponential increase in possible coalitions. This exponential increase in
complexity poses a significant challenge, making it impractical to calculate Shapley values
efficiently, especially when dealing with a large number of features.

SHAP, introduced in [35], is an interpretability method that explains individual pre-
dictions by assigning attribution scores to each feature using approximate Shapley values.
Next, we will focus on KernelSHAP, a kernel-based estimation approach for Shapley values,
which can be used for any ML model [35].

In the field of supervised learning, we consider a scenario where a model denoted
by f is used to predict the outcome variable Y, given as input X, where X is a set or
individual features (X1, X2, . . ., Xd). In the following, uppercase symbols (e.g., X) are
employed to represent random variables, while lowercase symbols (e.g., x) are used to
denote specific values.

For a subset S ⊆ D, the restricted model fS is defined as follows [67]:

fS(xS) = E[ f (X)|XS = xS]

There are two special cases: S = ∅ and S = D. These correspond to the mean
prediction f∅(x∅) = E[ f (x)] and the full model prediction fD(x) = f (x), respectively.

Each subset S (of features) can be associated with a binary vector z ∈ {0, 1}d such as
S = {i : zi = 1} (1 = feature present in coalition, 0 = feature absent) [66]. If we denote by
m < d the maximum coalition size, z′ ∈ {0, 1}m represents a coalition vector of selected
features M = {s1, s2, . . . , sm} ⊂ D.

SHAP aims to explain the prediction of a specific instance x = (x1, x2, . . . , xd) by de-
termining the contribution of each feature to that prediction. SHAP defines the explanation
as follows:

e(z′) = φ0 +
m

∑
j=1

φjz′ j (1)

where e is the explanation model, φ0 = E[ f (X)] and φj is the Shapley value for the
feature j. Coalition vectors maps to the original inputs through a mapping function
hx : {0, 1}m → Rd defined as follows:

hx(z′) = z = (z1, z2, . . . , zd) where zi =


xi, i f i ∈ D\M
xi, i f i = sk ∈ M and z′k = 1
random value o f f eature Xsk , i f i = sk ∈ M and z′k = 0

This implies that hx treats the absence of a feature value by substituting it with a
random value from the existing data for that feature.

KernelSHAP is a linear regression-based approximation method, described by the
following procedure [69]:

1. Generate K sample coalitions: z′k ∈ {0, 1}m, 1 ≤ k ≤ K. These compose the data set
for the regression model.

2. Get prediction for each z′k, by mapping it into the original feature space and then
applying the model f : f (hx(z′k))

3. Compute the weight for each z′k with the SHAP kernel, defined by the following
formula: πx(z′k) = m−1(

m
|z′k|

)
|z′k |(m−|z′k |)

, where |z′k| is the number of present features

in the coalition.
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4. Train the linear regression model (1) by minimizing the following loss function:

L( f , e, πx) = ∑
z′∈Z

[ f (hx(z′))− e(z′)]2πx(z′)

where Z = {z′1, z′2, . . . , z′K} is the training data.
5. Return approximate Shapley values φj (coefficients of the linear regression model).

SHAP values are a powerful tool for understanding and interpreting the output of
machine learning models, offering insights into the contribution of each feature to individ-
ual predictions. For example, they provide a nuanced understanding of the importance of
each feature in making predictions and the SHAP framework considers that features with
large absolute Shapley values are important. For a feature Xj, its importance is computed
with formula

Ij =
1
n

n

∑
i=1

∣∣∣φ(i)
j

∣∣∣
where n is the number of records in the data set.

The variable importance plot, presented in Section 4.2.1, offers a visual representation
of feature importance. It lists feature variables in descending order of mean SHAP values,
providing a graphic illustration of their significance.

Because our approach relies on AutoML, where the prediction algorithm is auto-
matically selected, it is crucial that the calculation of SHAP values is conducted using a
model-agnostic method, such as KernelSHAP.

The SHAP framework [70] includes a universal SHAP explainer for any ML algorithm,
provided by the KernelExplainer class, which implements the procedure described above.

We used the model-agnostic KernelExplainer class with a wrapper for H2O models,
developed by [71]. In order to have the same approach for Auto-sklearn, we implemented
a wrapper for this framework as well, the code being presented in Table 2.

Table 2. Implementing a SHAP wrapper for Auto-sklearn models.

SHAP Wrapper for Auto-Sklearn Models

Class

class SKLProbWrapper:
def __init__(self, skl_model, feature_names):

self.skl_model = skl_model
self.feature_names = feature_names

def predict_binary_prob(self, X):
if isinstance(X, pd.Series):

X = X.values.reshape(1,−1)
self.dataframe= pd.DataFrame(X, columns=self.feature_names)
self.predictions = self.skl_model.predict_proba(self.dataframe.values)
return self.predictions.astype(‘float64’)[:,−1] #probability of True class

Use case
skl_wrapper = SKLProbWrapper(model, dframe.columns)
skl_explainer = shap.KernelExplainer(skl_wrapper.predict_binary_prob, dframe)
shap_values = skl_explainer(dframe)

Thus, in this unitary approach, the function of model’s predictions represents the
probability of predicting the True class (the existence of metabolic syndrome) for each
instance in the data set.

3.3. Study Design

The study was conducted from May 2018 to December 2019 and involved patients
hospitalized in the Cardiology and Diabetes clinical departments of the Sibiu County
Emergency Clinical Hospital. It received approval under reference number 10948/2018
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from the Ethics Committee. Our study exclusively enrolled patients who read and signed
the informed consent form.

The study group comprised 296 participants, ranging in age from 45 to 79 years, with
an average age of 66.1. Among these participants, 172 were female, with an average age of
65.7, and 124 were male, with an average age of 66.5.

The medical data of the hospitalized patients were retrieved from the clinical ob-
servation sheets, while information regarding their dental health was acquired through
dental consultations conducted at the Dental Clinic of the Sibiu County Emergency Clin-
ical Hospital. From the collected data, 168 patients could be categorized based on the
criteria established in the existing literature [29] as falling within the clinical spectrum of
metabolic syndrome.

The patients were examined sitting on the dental chair, illuminated by a sciatica lamp,
and the examination was performed by a single doctor, to ensure the consistency of the
results and to avoid their variation.

During the examination, a plane mirror and the CPI (Community Periodontal Index)
periodontal probe with the abutment tip were used, according to the guidelines provided
by the World Health Organization (WHO) [29], which recommends the use of a CPI probe
with a 0.5-mm ball tip.

We recorded the following clinical data: the depth of the gingival groove, measured in
millimeters, at three locations on the vestibular surface and three additional locations on
the oral surface of the teeth designated as per the Ramfjord index, including teeth 16, 11,
26, 36, 41, and 46. In cases where teeth were missing, measurements were conducted on
homologous teeth within the same sextant [29].

We recorded Clinical Attachment Loss (CAL) as the distance between the attachment
level and the enamel-cement junction. Additionally, we noted instances of spontaneous
bleeding from the gingival sulcus. The presence of bacterial plaque and tartar was also
measured in millimeters. Information regarding dental caries, fillings, and teeth extracted
due to dental caries-related complications was recorded in relation to each tooth’s condition.
We utilized the collected data to compute the following indices: the Community Periodontal
Index (CPI) and the DMFT index (Decay Missing Filling Tooth).

After the dental consultation, the patients were questioned in the following respects:
the number of teeth brushing performed daily, the preventive dental control, weekly
physical activities more than 30 min/day minimum of three times a week. The patients
also responded to a standard EQ-5D-5L questionnaire.

To investigate the risk factors contributing to the clinical development of metabolic
syndrome, our approach involves constructing predictive models that incorporate various
independent variables representing lifestyle characteristics.

3.4. Data Set

The data set, consisting of the 296 subjects under analysis, was split into two dis-
tinct subsets: the training set, which constituted 70% of the data, and the test set, which
comprised the remaining 30%.

The ML model incorporates the following variables:

• Dependent variable (target): Metabolic syndrome.
• Independent variables (feature variables): DMFT (Decayed, Missing due to caries,

and Filled Teeth), CPI (Community Periodontal Index), Periodontal pockets depth,
Gingival bleeding, Daily tooth brushing, Dental control, Gingival attachment loss, CV
(Cardiovascular) risk, Carotid atherosclerosis, and EQ-5D-5L score.

In the data preprocessing stage, certain categorical variables (listed in Table 3) were
assigned numerical values.
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Table 3. The assignment of numerical values to categorical variables.

Feature Variable Recorded Values Assigned Numerical Values Count
(Total = 296)

Percentage
%

Gingival bleeding no 0 104 35.14
yes 1 192 64.86

Periodontal pockets depth

- 0 96 32.43
≤3.5 1 68 22.97
>3.5 2 96 32.43
>5 3 36 12.17

Carotid atherosclerosis no 0 158 53.38
yes 1 138 46.62

Dental control no 0 248 83.78
yes 1 48 16.22

Daily tooth brushing irregular/occasional 0 84 28.38
1 per day 1 136 45.94
2 per day 2 76 25.68

Figure 2 provides a graphical overview of the data set. The histograms show the
frequencies of the ML model variables. In addition to the histogram, in some charts a
smoothed curve representing the estimated probability density function of the data using
Kernel Density Estimation is overlaid.

Figure 2. Graphical overview of the data set.
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3.5. Performance Evaluation

The validation of the model involves assessing its performance, with a primary focus
on the accuracy of the predictions it generates. This evaluation helps determine how well
the model is able to make correct predictions and is a crucial step in ensuring the model’s
reliability and effectiveness.

The classification models were evaluated using various performance metrics based on
Confusion Matrix. In case of binary classification, the Confusion Matrix is represented as in
Figure 3, and the interpretation of its elements can be found in Table 4.

Figure 3. Confusion Matrix for a binary classification data set.

Table 4. Definition of the confusion matrix elements.

TN (True Negative): the value of correct predictions of negatives out of actual negative cases.
TP (True Positive): the value of correct predictions of positives out of actual positive cases.

FP (False Positive): the value of incorrect positive predictions.
FN (False Negative): the value of incorrect negative predictions.

The values of the elements in the confusion matrix were utilized to compute the
following classification metrics (Table 5), which are used to evaluate how well a model
performs in categorizing data into different classes or categories.

Table 5. Performance measures in machine learning classification models.

Accuracy = TN+TP
TN+FP+TP+FN Precision = TP

TP+FP
Recall = TP

TP+FN F1 Score = 2 ∗ Precision∗Recall
Precision+Recall

Speci f icity = TN
TN+FP Balanced accuracy =

Recall+Speci f icity
2

Accuracy represents the proportion of correctly classified instances out of the total
number of instances. Precision measures the accuracy of positive predictions (it is the ratio
of true positive predictions to the total positive predictions). The Recall metric measures
the model’s ability to correctly identify positive instances (it is the ratio of true positive
predictions to the total actual positive instances). The F1 score is the harmonic mean
of precision and recall. It balances precision and recall and is especially useful when
dealing with imbalanced data sets. The Specificity metric (or true negative rate) measures
the model’s ability to correctly identify negative instances (it is the proportion of true
negatives out of all actual negatives instances). Balanced accuracy is calculated as the
arithmetic mean of Recall (true positive rate) and Specificity (true negative rate). It provides
a more comprehensive evaluation of a classification model’s performance, particularly
when dealing with imbalanced data sets.

4. Results
4.1. Prediction Models

Two AutoML frameworks (H2O AutoML and Auto-sklearn) were utilized to automat-
ically search for the best prediction models tailored to our data set. For the generation and
optimization of the models, the execution time was set to 15 min.
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The best models provided by each of the two frameworks are shown in Table 6, and
the values of the performance metrics of the respective prediction models are presented in
Table 7.

Table 6. The best models built with AutoML frameworks.

AutoML Framework Algorithm Model Parameters and Hyperparameters

H2O AutoML XGBoost

number_of_trees: 47, max_depth: 10, min_rows: 5,
min_child_weight: 5, learn_rate: 0.3, eta: 0.3,
sample_rate: 0.6, normalize_type: tree, distribution:
bernoulli, grow_policy: depthwise, dmatrix_type:
dense, booster: gbtree

H2O AutoML DRF

number_of_trees: 32, number_of_internal_trees: 32,
model_size_in_bytes: 5639, min_depth: 4,
max_depth: 7, mean_depth: 5.75, min_leaves: 7,
max_leaves: 15, mean_leaves: 9.375

H2O AutoML GBM

number_of_trees: 628, number_of_internal_trees:
628, model_size_in_bytes: 115250, min_depth: 1,
max_depth: 7, mean_depth: 4.915605, min_leaves: 2,
max_leaves: 15, mean_leaves: 9.91242

Auto-sklearn RF

bootstrap: True, criterion: ‘gini’, max_depth: ‘None’,
max_features: 0.5, max_leaf_nodes: ‘None’,
min_impurity_decrease: 0, min_samples_leaf: 1,
min_samples_split: 2, min_weight_fraction_leaf: 0

Auto-sklearn MLP

activation_function: relu, alpha:
0.02847755502162456, beta_1: 0.9, beta_2: 0.999,
early_stopping: train, epsilon: 10−8,
hidden_layer_depth: 2, learning_rate_init:
0.000421568792103947, num_nodes_per_layer: 123,
shuffle: True, solver: adam

Auto-sklearn ExtraTrees

bootstrap: False, criterion: entropy, max_features:
0.993803313878608, max_leaf_nodes: None,
min_impurity_decrease: 0, min_samples_leaf: 2,
min_samples_split: 20, min_weight_fraction_leaf: 0,

Table 7. The values of the performance metrics of the prediction models.

AutoML
Framework Model Precision Recall Accuracy Specificity Balanced

Accuracy F1 Incorrect
Classifications

H2O
XGBoost 1 1 1 1 1 1 0

DRF 1 0.885 0.932 1 0.942 0.939 FN = 6
GBM 1 0.769 0.864 1 0.885 0.870 FN = 12

Auto-sklearn
RF 0.929 1 0.955 0.889 0.944 0.963 FP = 4

MLP 0.897 1 0.932 0.833 0.917 0.945 FP = 6
ExtraTrees 0.867 1 0.909 0.778 0.889 0.929 FP = 8

The Distributed Random Forest (DRF) model averages multiple decision trees, each
created on different random samples of rows and columns. It is capable of handling
non-linear relationships and offers insights into the significance of each predictor within
the model. These characteristics collectively make it one of the most robust algorithms,
particularly suitable for dealing with noisy or complex data sets.

Random Forest (RF) builds a set of decision trees that work as an ensemble. Each tree
is developed from a sample from the training data. When developing individual trees,
an arbitrary subset of attributes is used (hence the term “random”), from which the best
attribute is selected for splitting. The final model is based on the majority vote of the set of
individually grown trees that are part of the forest.
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Gradient Boosting Machine (GBM) is a forward learning ensemble method that lever-
ages the concept of boosting to build an ensemble of decision trees. Its fundamental
principle is to achieve accurate predictions by iteratively refining approximations. The
learning process is sequential, where each tree is constructed to correct the errors or residu-
als of the previous ones. This is achieved by assigning higher weights to the misclassified
or poorly predicted instances.

XGBoost (eXtreme Gradient Boosting) is an advanced and highly efficient implemen-
tation of a gradient boosting algorithm. One of the key strengths of XGBoost is its effective
regularization techniques, which help control overfitting and contribute to its superior
performance. The algorithm is robust when it comes to handling irregularities in data
(it can handle missing values, outliers, and noisy data effectively). It leverages parallel
computation, meaning that it can train multiple decision trees concurrently to find the final
prediction. The XGBoost model requires parameter tuning to improve and fully exploit its
advantages over other algorithms, and we used the H2O framework for this purpose.

The MLP (Multi-layer Perceptron) classifier is a type of neural network that trains
iteratively. In each iteration, it computes the partial derivatives of the loss function with
respect to the model parameters, which are then used to update these parameters. This
iterative process allows the model to learn and improve its predictions. It incorporates a
regularization term in the loss function to prevent overfitting. The Auto-sklearn model is
optimizing the log-loss function, which is a common evaluation metric for binary classifi-
cation models. It measures the performance of a model by quantifying the dissimilarity
between predicted probabilities and actual class labels.

The ExtraTrees classifier is a machine learning algorithm that serves as a meta-
estimator. It operates by fitting multiple randomized decision trees, often referred to
as “extra-trees”, on different sub-samples of the data set. The primary goal of using
this ensemble approach is to improve predictive accuracy while also mitigating the risk
of overfitting.

All models were evaluated using the performance metrics presented in Table 5. The
results, shown in Table 7, were achieved by evaluating the machine learning models using
the test data set as input, and allowed us to assess how well the models generalize to
unseen data and make predictions in a real-world context.

It is observed that the classification errors of the H2O models (apart from XGBoost)
are of the FN (False Negative) type. In the case of Auto-sklearm models, all models present
some FP (False Positive) classification errors.

For the interpretability of the prediction models, we will restrict the analysis to the
best models provided by each of the two frameworks, namely XGBoost (H2O) and RF
(Auto-sklearn).

Figure 4 illustrates that the best H2O model achieved perfect classification, correctly
identifying all cases. In contrast, the best Auto-sklearn model, while generally effective,
made incorrect classifications for 4 cases (FP). This suggests that the H2O model had a
higher overall accuracy in classifying the data, whereas the Auto-sklearn model had a
slightly lower accuracy with a few misclassifications.

Figure 4. Confusion matrices representing predictions vs. actuals on test data for each of the two
prediction models (a) H2O AutoML (XGBoost); (b) Auto-sklearn (RF).
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In our case, we can say that we have a winning model, but in general different
models may excel in specific metrics, highlighting the importance of considering multiple
evaluation criteria when selecting the most suitable model for predictive analytics.

4.2. Explainability of Prediction Models Using SHAP Framework

The primary challenge in comprehending many machine learning models is their
“black box” nature [72]. In numerous applications, understanding the reasons behind a
model’s specific prediction can be just as critical as the accuracy of the prediction itself.
After training a model, it becomes essential to understand the effects and interactions of
the attributes that contribute to the classification process.

The KernelExplainer class from the SHAP framework, which implements the Kernel
SHAP method, was used to interpret the predictions, assigning to each feature variable
of each instance the SHAP value (importance value) for a given metabolic syndrome
score prediction.

SHAP values offer two significant advantages:

• Global interpretability—the SHAP values provide a comprehensive view of how each
predictor contributes to the target variable, offering insights into both positive and
negative influences. This allows understanding the overall impact of each feature on
the model’s predictions. Local interpretability—each observation is assigned its own
set of SHAP values. Thus, one can explain why a case receives its prediction and the
contributions of the predictors.

• SHAP does not have direct support for H2O models.

4.2.1. Global Interpretability

Collective SHAP values offer insights into how much each predictor contributes,
whether positively or negatively, to the target variable.

For preliminary data exploration, we created a correlation matrix for the model
variables (based on Pearson Correlation Coefficient). For reasons of space, the set of
feature variables was divided into two equal parts, and the target variable was kept in
both matrices.

Looking at the correlation matrices from Figure 5, it seems that Metabolic syndrome
has the following characteristics:

• a strong positive correlation with Periodontal pockets (depth) and CV risk;
• a moderate positive correlation with CPI, (gingival) Bleeding, and Gingival attach-

ment loss;
• a moderate negative correlation with EQ-5D-5L score, (daily) Tooth brushing, and

Dental control.

Metabolic syndrome is not significant linearly correlated with either DMFT or Carotid
atherosclerosis.

In the following, for each feature, the average SHAP value for all observations was
calculated. Specifically, the average of the absolute values was considered because positive
and negative values must be avoided to offset each other.

Features that have made substantial positive or negative contributions to the model’s
predictions will indeed have large mean SHAP values. These large mean SHAP values
indicate that these features have had a significant and influential role in shaping the model’s
outputs. In essence, they are the features that the model relies on most heavily when making
its predictions, whether positively or negatively.

In the variable importance plot, presented in Figure 6, feature variables are listed
in descending order of the mean SHAP values, with the most significant variables at the
top. These top variables contribute more to the model’s performance than the ones at the
bottom, indicating their high predictive power. This visualization helps identify which
features have the most substantial impact on the model’s predictions, aiding in feature
selection, model understanding, and decision-making.



Diagnostics 2023, 13, 3631 19 of 31

Figure 5. Correlation matrix for the model variables.

Figure 6. Variable importance plot: (a) H2O AutoML (XGBoost); (b) Auto-sklearn (RF).

From the graphical representation, it is evident that periodontal pockets have the
most substantial influence on the occurrence of metabolic syndrome. Following that, in
descending order of importance are CV risk, EQ-5D-5L score, CPI, and DMFT. The other,
less important feature variables have a different impact in the two prediction models
(except for Bleeding).

A different perspective on the DMFT variable can be seen in Figures 5 and 6, respec-
tively. Although DMFT is not significantly linearly correlated with metabolic syndrome, it
has an important role in the prediction model. The explanation is that the SHAP values
provide the contribution of a feature to a prediction, which can be significant, even if there
is no linear correlation between the feature and the target variable.

This ranking of variables by their influence on the outcome can provide valuable
insights into the factors that most strongly contribute to the presence of metabolic syndrome.

The summary plot (beeswarm) depicted in Figure 7 provides a visual representation of
how these risk factors collectively contribute to the determination of metabolic syndrome,
indicating their relative importance in the overall picture. This illustration helps convey
how these factors interact and influence the syndrome’s occurrence, offering a clearer
understanding of their combined impact.
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Figure 7. Summary (beeswarm) plot: (a) H2O AutoML (XGBoost); (b) Auto-sklearn (RF).

Each point on the chart represents a SHAP value associated with a particular prediction
and a specific feature.

The summary plot visualizes all SHAP values and is designed to display an information-
dense summary of how the features variables impact the model’s output. It is one of the
most important SHAP charts which can be used to highlight important relationships of the
predictors with the target variable, considering the following aspects:

• Feature importance: Variables are ranked in descending order, based on their signifi-
cance or importance, just like in the variable importance plot.

• Impact: In the beeswarm chart, the x-axis represents the SHAP values, computed for
each feature of each record in the data set. If a SHAP value is on the right side of the
plot, it corresponds to a positive impact on the prediction, leading the model to predict
1 (metabolic syndrome). Conversely, if a SHAP value is on the left side of the plot, it
corresponds to a lower prediction or outcome which causes the model to predict 0
(absence of metabolic syndrome).

• Value: colors are used to indicate whether a feature variable’s value is relatively high
(shade close to red) or low (shade close to blue) for a specific observation.

• Correlation: The summary plot shows the positive and negative relationships of the
predictors with the target variable. The position of the point along the horizontal
axis shows how the feature’s value for that observation affects the prediction (higher
or lower). Thus, a high depth of periodontal pockets has a positive association with
metabolic syndrome. The “high” comes from the red color (which corresponds to
high values of the variable), and the “positive” impact is shown on the x-axis (the
SHAP value is on the right side of the plot). Similarly, we will say the “EQ-5D-5L”
is negatively correlated with metabolic syndrome (target variable). From the charts
represented in Figure 7, it can be concluded that high values (red dots) of the variables
CV risk, CPI, DMFT, Carotid atherosclerosis, Gingival attachment loss, and (gingival)
Bleeding are associated with positive SHAP values, so they correspond to an increased
probability of occurrence of metabolic syndrome. High values of the variables (daily)
Tooth brushing, Dental control, and EQ-5D-5L (represented in the charts by red dots)
correspond to small (negative) SHAP values when compared to the low values of these
feature variables. This suggests that as these variables increase (e.g., higher levels of
tooth brushing, better dental control, or higher EQ-5D-5L scores), the probability of
the occurrence of metabolic syndrome decreases.

The heatmap plot presented in Figure 8 contains important information. The black
horizontal bars on the right rank the variables from most important to least important, the
order being the same as in the beeswarm chart. The color of the line above each instance
is used to represent the SHAP value of a particular feature for that instance. The color
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scale ranges from low (blue color) to high (red color). The heatmap plot highlights patterns
between SHAP values and instance groups; therefore, the order of the instances is important
for finding patterns. We opted for an ordering based on the sum of SHAP values over all
features.

Figure 8. Heatmap plot: (a) H2O AutoML (XGBoost); (b) Auto-sklearn (RF).

The f(x) curve on the top of the heatmap charts shown in Figure 8 represents the
model’s predictions. Thus, for each instance x, f(x) represents the probability of predicting
the True class (the existence of metabolic syndrome) for x.

Analyzing the heatmap plots, it can be seen that the observations were arranged so
that the colors clustered together.

In the context of global interpretability (relations of predictors with the target variable),
the SHAP values of the most important features (Periodontal pockets, CV risk, EQ-5D-5L
score, CPI, and DMFT) have the greatest impact in the predictions made for both ML
models (H2O and Auto-sklearn).

It can be seen from Figure 8 that for small SHAP values (blue color) we have
f(x) = 0 (False), which implies the absence of metabolic syndrome, and for high SHAP
values (red color) of these features we have f(x) = 1 (True), so those instances are associated
with metabolic syndrome.

It should be noted that a high SHAP value is not necessarily correlated with a high
value of the respective feature variable.

We used a jointplot data visualization tool to build graphical representations (depicted
in Figure 9) that show the relationship between Metabolic syndrome and EQ-5D-5L score
variables, along with their univariate distributions.

Figure 9. Joint plots for Metabolic syndrome and EQ-5D-5L score variables. (a) Kernel density estimate
plot; (b) regression plot.
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The jointplot with a kernel density estimate (KDE) (Figure 9a) displays in the main
panel a scatter plot of the two variables against each other (each point on the scatter
plot represents a data point with values for both variables), but instead of just showing
individual points, KDE jointplot overlays contour lines to represent the estimated density
of points in different regions, providing a smooth representation of the joint distribution.
This is particularly useful for identifying patterns and concentrations in the data. The top
and right panels display smoothed histograms (kernel density plots) for each variable,
which provide a smooth representation of the distribution of each variable, capturing the
overall shape and characteristics.

The jointplot with a regression (Figure 9b) provides a visualization of the relationship
between two numerical variables, along with a linear regression line and additional statisti-
cal information. This type of jointplot adds a linear regression line to the scatter plot, which
represents the best-fitting line through the data points and is useful for understanding the
overall trend or direction of the linear relationship between the variables. The shaded area
around the regression line represents the confidence interval for the regression estimate.
This interval indicates the range within which the true regression line is likely to fall. The
top and right panels display histograms representing the marginal distributions of each
variable, which provide insights into the individual characteristics of each variable. The
negative slope of the regression line from Figure 9b suggests a negative correlation between
EQ-5D-5L and Metabolic syndrome: low values of EQ-5D-5L score are associated with the
increased value for Metabolic Syndrome (1); thus, the occurrence of metabolic syndrome is
very likely for low values of EQ-5D-5L score.

From Figure 9 it can be seen that low EQ-5D-5L values (<0.85) are associated with
the presence of metabolic syndrome (Metabolic syndrome = 1). In the beeswarm chart
(Figure 7), these low values correspond to high SHAP values, represented in the heatmap
plot (Figure 8) with red color. In conclusion, in the heatmap plot, for the EQ-5D-5L score
feature variable, large sharp values correspond to small values of the respective variable.
This conclusion is clearly found in the layered violin chart below. In this chart, represented
in Figure 10, the variation of the feature values at each SHAP value is clearer. From the
graphic representation, it is found that small values of the EQ-5D-5L score feature variable
(represented by blue color) correspond to relatively high SHAP values (located to the right
on the x-axis).

Figure 10. Layered violin plot (a) H2O AutoML (XGBoost); (b) Auto-sklearn (RF).

4.2.2. Local Interpretability

Local explainability aims to provide insights into the underlying factors that influence a
particular prediction. It focuses on explaining the decision-making process for an individual
instance within a model.

Given that each instance in the data set is associated with its own set of SHAP values,
it becomes possible to explain why a specific instance receives a particular prediction and
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the individual contributions of the predictors in that context. This greatly increases the
transparency of the predictive model and significantly increases the confidence in the
predictions made.

The waterfall graph provides a comprehensive understanding of the stepwise process
leading to the prediction results. It allows for a visual representation of how various factors
and predictors contribute incrementally to the final prediction.

Figure 11 provides an example of a healthy subject predicted to have a probability of
0.31 of metabolic syndrome according to the H2O model and a probability of 0.25 according
to the Auto-sklearn model.

Figure 11. Waterfall plot for a healthy subject without metabolic syndrome. (a) H2O AutoML
(XGBoost), predicted probability = 0.31; (b) Auto-sklearn (RF), predicted probability = 0.25.

On the x-axis, the E[f(x)] represents the average predicted values across the testing
data set. The bars are in descending order of absolute importance of the impact of features
on the y-axis axis on the predicted value. A red bar indicates that the feature has a positive
contribution to the predicted value. Conversely, a bar of a different color indicates that
the feature has a negative contribution to the predicted value. The label on a bar indicates
the deviation from the baseline model prediction value assigned to that parameter. For
instance, in the case of the H2O model, the “Periodontal pockets = 1” feature made a
marginal negative contribution of −0.17 to the deviation of the prediction from the base
value of 0.635.

Both models interpret a high EQ-5D-5L score and low values of CPI and Periodontal
pockets as low risks of metabolic syndrome, while high values of DMFT and CPI are
interpreted as increased risks of metabolic syndrome.

Further information regarding the actual values of the predictors for the specific case
under analysis can be found in Figure 12, which displays the SHAP force graph. This graph
is designed to offer insight into the relative significance of each feature’s contribution to the
deviations in the prediction results. On the x-axis of the force plot, both the base value and
the predicted value (f(x)) for the associated instance are indicated. The red bars situated on
the left side of the value representing the model output correspond to the features that have
made a positive contribution to the prediction’s deviation from the base value. Conversely,
all bars located to the right of the value representing the model output denote features that
contributed negatively to the prediction’s deviation from the base value.

Both models interpret the absence of bleeding and a relatively low value of gingival
attachment loss as low risks of metabolic syndrome.

It can also be noted that for local interpretability, the importance of the predictors for
particular cases may differ from the global importance of the feature variables (represented
in Figure 6).
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Figures 13 and 14 provide an example of a subject diagnosed with metabolic syndrome,
estimated to have a probability of 0.93 of metabolic syndrome according to the H2O model
and a probability of 0.99 according to the Auto-sklearn model.

Figure 12. SHAP force plot for a healthy subject, without metabolic syndrome. (a) H2O AutoML
(XGBoost), predicted probability = 0.31; (b) Auto-sklearn (RF), predicted probability = 0.25.

Figure 13. Waterfall plot for a patient diagnosed with metabolic syndrome. (a) H2O AutoML
(XGBoost), predicted probability = 0.93; (b) Auto-sklearn (RF), predicted probability = 0.99.

Figure 14. SHAP force plot for a patient diagnosed with metabolic syndrome. (a) H2O AutoML
(XGBoost), predicted probability = 0.93; (b) Auto-sklearn (RF), predicted probability = 0.99.

Table 8 shows the average values of the prediction variables. Analyzing the prediction
made for the patient with metabolic syndrome, it is found that lack of dental hygiene,
the presence of bleeding, and carotid atherosclerosis have made a positive contribution
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to the predicted value (True). Above average values of the variables CPI, Periodontal
pockets, and Gingival attachment loss increase the risk of metabolic syndrome. Both models
interpret a relatively low (below average) value of EQ-5D-5L score with an increased risk
of metabolic syndrome. In addition, a below-average DMFT value contributed negatively
to the prediction (it is interpreted as low risk of metabolic syndrome).

Table 8. The mean values of the feature variables.

Feature Mean Value

DMFT 21.954

CPI 2.682

Periodontal pockets 1.5

Bleeding 0.636 *

Tooth brushing 0.818

Dental control 0.136 *

Gingival attachment loss 2.454

CV risk 7.636

Carotid atherosclerosis 0.477 *

EQ-5D-5L score 0.935
* Binary variable.

It is worth noting the different treatment of the feature variable CV risk in the two ML
models, in the analyzed case. The Auto-sklearn model considers that the CV risk predictor
of value 2 has a positive contribution to the predicted value (True), while the H2O model
considers that its contribution is negative.

However, this is not the cause for the four cases of erroneous classification (FP) by the
Auto-sklearn (RF) model. For the respective cases, f(x) = 0.58 and CV risk = 9 still has a
positive contribution to the predicted value, just like in the H2O model.

From Figure 15, it can be seen that both ML models exhibit the same pattern of the
contribution of the CV risk feature variable in the predictions made. A CV risk value above
14 contributes positively to the deviation of the prediction from the base value and can
be interpreted as an increased risk of metabolic syndrome. For a value lower than 14, the
CV risk feature variable may have a positive or negative contribution to the prediction’s
deviation from the base value, depending on the collective impact of the other predictors.

Figure 15. Contribution of the CV risk feature variable in the predictions made. f(x) represents the
probability of predicting the True class (the existence of metabolic syndrome) for instance x. The red
color indicates a positive contribution to the prediction of metabolic syndrome. (a) H2O AutoML
(XGBoost); (b) Auto-sklearn (RF).
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5. Discussion

Contemporary society, characterized by consumerism, has brought about profound
changes in the lifestyles of a significant portion of the population, often without affording
the human body adequate time to adapt to these new conditions. These transformations
have led to a global surge in both cardiovascular and metabolic diseases, often with a
frequent co-occurrence [73].

Unfortunately, the precise factors responsible for triggering and maintaining at the
neuro-endocrine level of specific patterns of physiopathological and behavioral responses,
which in turn lead to significant cardiovascular and metabolic changes from an early age,
remain somewhat elusive [4,74].

Many authors emphasize the significant role of stress in triggering the onset of
metabolic syndrome. This could disrupt the intricate neural mechanisms responsible
for maintaining the delicate equilibrium between the sympathetic and parasympathetic
nervous systems. These disruptions, along the hypothalamus-pituitary-adrenal gland path-
way, may lead to the release of glucocorticoid hormones. The hormonal changes can trigger
a cascade of events that lead to tissue resistance to insulin, ultimately contributing to the
development of metabolic syndrome, cardiovascular diseases, proinflammatory alterations,
and prothrombotic changes, resulting in increased morbidity [75,76].

A recent study [5], carried out on large samples of people, incriminates, in addition to
the stress factor and reduced physical activity, the modern diet and a sedentary lifestyle in
the occurrence of cardiometabolic diseases.

The application of artificial intelligence in healthcare, specifically through machine
learning methods, has the potential to reveal hidden patterns and relationships by using
highly optimized prediction models. In this study, six machine learning models were eval-
uated using medical data collected from 296 patients. The objective of the ML models was
to differentiate with high accuracy between patients who were diagnosed with metabolic
syndrome and those who were not, and to identify key predictors of metabolic syndrome.

To the best of our knowledge, this is the first study that employs AutoML frameworks
for fine-tuning machine learning models to identify metabolic syndrome in subjects with
periodontal disease. The main contribution of this paper, however, is to explain the outputs
of machine learning models and highlight the most important predictors of metabolic
syndrome using the SHAP analysis.

The findings show that H2O XGBoost outperforms other ML models, with a classifica-
tion accuracy of 100%. Furthermore, we found that Periodontal pockets depth, CV risk,
EQ-5D-5L score, CPI, and DMFT are the top five key predictors of metabolic syndrome.
Other feature variables (Gingival bleeding, Daily tooth brushing, Gingival attachment loss)
have notable, but lower, importance in the analyzed predictive models.

Concerning the frequent link between periodontal disease and metabolic syndrome,
our findings, which indicate that the most robust associations are observed in relation to
the severity of periodontal disease quantified by the depth of periodontal pockets, are
consistent with results from other research studies [6,7]. Thus, the results obtained in the
present study reject the null hypothesis (H0) stating that a higher periodontitis stage does
not increase the incidence of metabolic syndrome. Our findings show that stages III and
IV of periodontitis (periodontal pockets depth ≥ 6 mm) induce an increased incidence of
metabolic syndrome, while for stage I (periodontal pockets depth ≤ 4 mm) a low incidence
of metabolic syndrome is found.

The significant connections identified between health status, periodontal diseases, and
the occurrence of metabolic syndrome, emphasized also in our research, may play a crucial
role in disrupting the body’s homeostasis [77]. Metabolic syndrome increases the risk of
type 2 diabetes, cardiovascular disease, and stroke. The presence of both cardiovascular
disease and periodontal disease in an individual are associated with a lower quality of
life [78]. From the perspective of personalized medicine, the assessment of these numerous
interactions is vital in the development of tailored preventive and therapeutic strategies
for individuals.
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There are some limitations of our study. Firstly, because this is an observational
retrospective study, it could not determine the exact order of onset of medical problems.
Therefore, additional prospective studies are necessary to investigate the causal relation-
ship between periodontal disease and metabolic syndrome. Secondly, the research was
conducted at a single facility, namely Sibiu County Emergency Clinical Hospital. In future
studies, it is advisable to carry out extensive external validation by utilizing data from
multiple healthcare centers.

Another limitation of this study is the relatively small sample size. Consequently,
further research with more substantial sample sizes is necessary to externally validate the
applicability of our machine learning models.

Machine learning models are trained using historical data, and when applied in real-
world scenarios, they can become outdated and experience a decline in accuracy over
time. This phenomenon is known as drift and is caused by changes in the environment in
which the model operates. To address this problem, as a future direction of development,
we propose to create a framework that fully exploits the method of building ML models
proposed in this study. An AutoML interface streamlines and automates the machine
learning workflow and includes as pipeline stages automatic training and tuning of a wide
selection of candidate models. The result of the AutoML run is a ranked list of optimized
models that can be saved for later use in a production environment. Thus, the process of
updating ML models can be automated. Regarding the interpretability of prediction models,
the most appropriate option would be a universal SHAP explainer for any ML algorithm.
The drawback of the KernelExplainer, used in this paper to compute the SHAP values, is its
long running time. To treat this shortcoming, in our solution, the construction of fine-tuned
machine learning models and the computation of SHAP values will be encapsulated within
a task scheduled for execution at the designated time intervals or executed on demand.
Through the data visualization component, the framework will provide support for the
analysis of the predictions made and gaining insights into the prediction mechanisms of
the machine learning models.

SHAP typically targets a technical audience (e.g., data scientists) for its explanations.
However, translating graphical analyses into easily understandable terms poses a challenge,
particularly when conveying information to non-technical individuals like medical experts
or decision-makers. We intend to explore the potential integration of linguistic summa-
rization into the proposed framework. This approach, as outlined in [79], facilitates the
translation of model output explanations generated by SHAP into statements expressed in
natural language. The goal is to enhance compatibility with the language used by medical
experts, thereby making the explanations more accessible to this audience.

Furthermore, future prospective studies conducted over extended timeframes are
essential to quantify the broader implications of preserving dental and periodontal health
on overall body health.

6. Conclusions

In order to predict risk of metabolic syndrome in people with periodontal disease,
in this study we created and evaluated six machine learning models. Our conclusion is
that the H2O XGBoost model was the best performer, making correct predictions in all
cases. Machine-learning-based prediction models can support healthcare professionals in
clinical decision-making by helping them assess whether patients are at risk for metabolic
syndrome. By using SHAP values and appropriate visualizations, information about how
features in the data set influence the model output can be effectively analyzed, providing
valuable insights and aiding model interpretation and decision making.

Our findings indicate an association between chronic periodontitis and metabolic syn-
drome, and they further suggest that the severity of chronic periodontitis has a high positive
contribution to the occurrence of metabolic syndrome. ML models interpret a poor health
status associated with a low EQ-5D-5L score as increased risks of metabolic syndrome.
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Patients often underestimate the significance of maintaining good oral hygiene, schedul-
ing regular dental check-ups, and taking preventive measures to manage periodontal dis-
ease. Consequently, there is a pressing need to reevaluate the interdisciplinary collaboration
between specialized medical practitioners caring for individuals within high-risk groups
and the attending dentists.
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28. Velioğlu, E.M.; Aydındoğan, S.; Hakkı, S.S. Metabolic Syndrome and Periodontal Disease. Curr. Oral Health 2023, 10, 43–51.

[CrossRef]
29. World Health Organization. Oral Health Surveys. Basic Methods, 5th ed.; WHO Press: Geneva, Switzerland, 2013; pp. 35–56.
30. Huck, N. Large data sets and machine learning: Applications to statistical arbitrage. Eur. J. Oper. Res. 2019, 278, 330–342.

[CrossRef]
31. Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. Eng. Appl. Artif. Intell. 2022,

115, 105151. [CrossRef]
32. O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy; Crown Publishing Group: New

York, NY, USA, 2016; 272p.
33. Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins,

R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf.
Fusion 2020, 58, 82–115. [CrossRef]

34. Goodman, B.; Flaxman, S. European Union Regulations on Algorithmic Decision-Making and a “Right to Explanation”. AI Mag.
2017, 38, 50–57. [CrossRef]

35. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (NIPS′17), Long Beach, CA, USA, 4–9 December 2017; Curran Associates
Inc.: Red Hook, NY, USA, 2017; pp. 4768–4777.

36. Zhong, X.; Gallagher, B.; Liu, S.; Kailkhura, B.; Hiszpanski, A.; Han, T.Y.J. Explainable machine learning in materials science.
Npj Comput. Mater. 2022, 8, 204. [CrossRef]

37. Vishwarupe, V.; Joshi, P.M.; Mathias, N.; Maheshwari, S.; Mhaisalkar, S.; Pawar, V. Explainable AI and Interpretable Machine
Learning: A Case Study in Perspective. Procedia Comput. Sci. 2022, 204, 869–876. [CrossRef]

38. Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and preliminary testing
of the new five-level version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [CrossRef] [PubMed]

39. eq5d: Methods for Analysing EQ-5D Data and Calculating EQ-5D Index Scores. Available online: https://rdrr.io/cran/eq5d/
(accessed on 6 September 2023).

https://doi.org/10.1111/jcpe.13029
https://www.ncbi.nlm.nih.gov/pubmed/30362614
https://www.ncbi.nlm.nih.gov/pubmed/30570012
https://doi.org/10.1182/blood-2017-04-569111
https://www.ncbi.nlm.nih.gov/pubmed/29483100
https://doi.org/10.1128/iai.58.8.2621-2627.1990
https://www.ncbi.nlm.nih.gov/pubmed/2196229
https://doi.org/10.1902/jop.2006.050061
https://www.ncbi.nlm.nih.gov/pubmed/16512753
https://doi.org/10.1902/jop.2003.74.12.1741
https://doi.org/10.4103/ccd.ccd_97_18
https://doi.org/10.4103/0972-124X.94600
https://doi.org/10.1016/S0140-6736(05)66378-7
https://www.ncbi.nlm.nih.gov/pubmed/15836891
https://doi.org/10.3389/fendo.2020.00336
https://www.ncbi.nlm.nih.gov/pubmed/32582028
https://doi.org/10.1186/s12903-021-01661-6
https://www.ncbi.nlm.nih.gov/pubmed/34187434
https://doi.org/10.2337/dc12-0072
https://www.ncbi.nlm.nih.gov/pubmed/22837370
https://doi.org/10.1136/gutjnl-2015-309897
https://www.ncbi.nlm.nih.gov/pubmed/26838600
https://doi.org/10.1111/prd.12326
https://www.ncbi.nlm.nih.gov/pubmed/32385882
https://doi.org/10.1111/idj.12264
https://www.ncbi.nlm.nih.gov/pubmed/27861820
https://doi.org/10.1007/s40496-023-00334-3
https://doi.org/10.1016/j.ejor.2019.04.013
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1609/aimag.v38i3.2741
https://doi.org/10.1038/s41524-022-00884-7
https://doi.org/10.1016/j.procs.2022.08.105
https://doi.org/10.1007/s11136-011-9903-x
https://www.ncbi.nlm.nih.gov/pubmed/21479777
https://rdrr.io/cran/eq5d/


Diagnostics 2023, 13, 3631 30 of 31

40. LeDell, E.; Poirier, S. H2O AutoML: Scalable Automatic Machine Learning. In Proceedings of the 7th ICML Workshop on
Automated Machine Learning, Vienna, Austria, 17–18 July 2020. Available online: https://www.automl.org/wp-content/
uploads/2020/07/AutoML_2020_paper_61.pdf (accessed on 6 March 2022).

41. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Efficient and robust automated machine learning.
In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 7–12 December
2015; Volume 2, pp. 2755–2763.

42. Feurer, M.; Eggensperger, K.; Falkner, S.; Lindauer, M.; Hutter, F. Auto-Sklearn 2.0: Hands-Free AutoML via Meta-Learning. arXiv
2022, arXiv:2007.04074. Available online: https://arxiv.org/abs/2007.04074 (accessed on 3 March 2022).

43. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

44. Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification
and case definition. J. Periodontol. 2018, 89 (Suppl. S1), S159–S172. [CrossRef]

45. Patel, J.S.; Su, C.; Tellez, M.; Albandar, J.M.; Rao, R.; Iyer, V.; Shi, E.; Wu, H. Developing and testing a prediction model for
periodontal disease using machine learning and big electronic dental record data. Front. Artif. Intell. 2022, 5, 979525. [CrossRef]

46. Yu, C.; Lin, Y.; Lin, C.; Wang, S.; Lin, S.; Lin, S.; Wu, J.; Chang, S. Predicting Metabolic Syndrome with Machine Learning Models
Using a Decision Tree Algorithm: Retrospective Cohort Study. JMIR Med. Inform. 2020, 8, e17110. [CrossRef]

47. Sghaireen, M.G.; Al-Smadi, Y.; Al-Qerem, A.; Srivastava, K.C.; Ganji, K.K.; Alam, M.K.; Nashwan, S.; Khader, Y. Machine Learning
Approach for Metabolic Syndrome Diagnosis Using Explainable Data-Augmentation-Based Classification. Diagnostics 2022,
12, 3117. [CrossRef] [PubMed]

48. Yang, H.; Yu, B.; OuYang, P.; Li, X.; Lai, X.; Zhang, G.; Zhang, H. Machine learning-aided risk prediction for metabolic syndrome
based on 3 years study. Sci. Rep. 2022, 12, 2248. [CrossRef] [PubMed]

49. Gutiérrez-Esparza, G.O.; Ramírez-delReal, T.A.; Martínez-García, M.; Infante Vázquez, O.; Vallejo, M.; Hernández-Torruco,
J. Machine and Deep Learning Applied to Predict Metabolic Syndrome without a Blood Screening. Appl. Sci. 2021, 11, 4334.
[CrossRef]

50. Zhang, H.; Chen, D.; Shao, J.; Zou, P.; Cui, N.; Tang, L.; Wang, X.; Wang, D.; Wu, J.; Ye, Z. Machine Learning-Based Prediction for
4-Year Risk of Metabolic Syndrome in Adults: A Retrospective Cohort Study. Risk Manag. Healthc. Policy 2021, 14, 4361–4368.
[CrossRef] [PubMed]

51. Park, J.E.; Mun, S.; Lee, S. Metabolic Syndrome Prediction Models Using Machine Learning and Sasang Constitution Type. Evid.
Based Complement. Altern. Med. 2021, 2021, 8315047. [CrossRef] [PubMed]

52. Monsarrat, P.; Bernard, D.; Marty, M.; Cecchin-Albertoni, C.; Doumard, E.; Gez, L.; Aligon, J.; Vergnes, J.N.; Casteilla, L.; Kemoun,
P. Systemic Periodontal Risk Score Using an Innovative Machine Learning Strategy: An Observational Study. J. Pers. Med. 2022,
12, 217. [CrossRef] [PubMed]

53. Bashir, N.Z.; Rahman, Z.; Chen, S.L. Systematic comparison of machine learning algorithms to develop and validate predictive
models for periodontitis. J. Clin. Periodontol. 2022, 49, 958–969. [CrossRef] [PubMed]

54. Shin, H.; Shim, S.; Oh, S. Machine learning-based predictive model for prevention of metabolic syndrome. PLoS ONE 2023,
18, e0286635. [CrossRef]

55. Pietropaoli, D.; Altamura, S.; Ortu, E.; Guerrini, L.; Pizarro, T.T.; Ferri, C.; Del Pinto, R. Association between metabolic syndrome
components and gingival bleeding is women-specific: A nested cross-sectional study. J. Transl. Med. 2023, 21, 252. [CrossRef]

56. Fukui, N.; Shimazaki, Y.; Shinagawa, T.; Yamashita, Y. Periodontal status and metabolic syndrome in middle-aged Japanese.
J. Periodontol. 2012, 83, 1363–1371. [CrossRef]

57. Ytzhaik, N.; Zur, D.; Goldstein, C.; Almoznino, G. Obstructive Sleep Apnea, Metabolic Dysfunction, and Periodontitis—Machine
Learning and Statistical Analyses of the Dental, Oral, Medical Epidemiological (DOME) Big Data Study. Metabolites 2023, 13, 595.
[CrossRef] [PubMed]

58. Trigka, M.; Dritsas, E. Predicting the Occurrence of Metabolic Syndrome Using Machine Learning Models. Computation 2023,
11, 170. [CrossRef]

59. Nibali, L.; Donos, N.; Terranova, V.; Di Pino, A.; Di Marca, S.; Ferrara, V.; Pisano, M.; Scicali, R.; Rabuazzo, A.M.; Purrello, F.; et al.
Left ventricular geometry and periodontitis in patients with the metabolic syndrome. Clin. Oral Investig. 2019, 23, 2695–2703.
[CrossRef] [PubMed]

60. Gomes-Filho, I.S.; Santos, P.N.P.; Cruz, S.S.; Figueiredo, A.C.M.G.; Trindade, S.C.; Ladeia, A.M.; Cerqueira, E.M.M.; Passos-
Soares, J.S.; Coelho, J.M.F.; Hintz, A.M.; et al. Periodontitis and its higher levels of severity are associated with the triglyceride/high
density lipoprotein cholesterol ratio. J. Periodontol. 2021, 92, 1509–1521. [CrossRef] [PubMed]

61. Hutter, F.; Kotthoff, L.; Vanschoren, J. Automated Machine Learning: Methods, Systems, Challenges; Springer: Cham, Switzerland,
2019.

62. H2O AutoML. Available online: https://github.com/h2oai/h2o-3/tree/master (accessed on 26 November 2023).
63. Auto-Sklearn. Available online: https://automl.github.io/auto-sklearn/master (accessed on 26 November 2023).
64. Van der Laan, M.J.; Polley, E.C.; Hubbard, A.E. Super learner. Stat. Appl. Genet. Mol. Biol. 2007, 6, 25. [CrossRef] [PubMed]
65. Hutter, F.; Hoos, H.; Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Proceedings

of the 5th International Conference on Learning and Intelligent Optimization (LION’11), Rome, Italy, 17–21 January 2011;
pp. 507–523.

https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://www.automl.org/wp-content/uploads/2020/07/AutoML_2020_paper_61.pdf
https://arxiv.org/abs/2007.04074
https://doi.org/10.1002/JPER.18-0006
https://doi.org/10.3389/frai.2022.979525
https://doi.org/10.2196/17110
https://doi.org/10.3390/diagnostics12123117
https://www.ncbi.nlm.nih.gov/pubmed/36553124
https://doi.org/10.1038/s41598-022-06235-2
https://www.ncbi.nlm.nih.gov/pubmed/35145200
https://doi.org/10.3390/app11104334
https://doi.org/10.2147/RMHP.S328180
https://www.ncbi.nlm.nih.gov/pubmed/34707419
https://doi.org/10.1155/2021/8315047
https://www.ncbi.nlm.nih.gov/pubmed/33628316
https://doi.org/10.3390/jpm12020217
https://www.ncbi.nlm.nih.gov/pubmed/35207705
https://doi.org/10.1111/jcpe.13692
https://www.ncbi.nlm.nih.gov/pubmed/35781722
https://doi.org/10.1371/journal.pone.0286635
https://doi.org/10.1186/s12967-023-04072-z
https://doi.org/10.1902/jop.2012.110605
https://doi.org/10.3390/metabo13050595
https://www.ncbi.nlm.nih.gov/pubmed/37233636
https://doi.org/10.3390/computation11090170
https://doi.org/10.1007/s00784-018-2667-8
https://www.ncbi.nlm.nih.gov/pubmed/30350134
https://doi.org/10.1002/JPER.21-0004
https://www.ncbi.nlm.nih.gov/pubmed/33689171
https://github.com/h2oai/h2o-3/tree/master
https://automl.github.io/auto-sklearn/master
https://doi.org/10.2202/1544-6115.1309
https://www.ncbi.nlm.nih.gov/pubmed/17910531


Diagnostics 2023, 13, 3631 31 of 31

66. Covert, I.; Lee, S. Improving KernelSHAP: Practical Shapley Value Estimation Using Linear Regression. In Proceedings of the
24th International Conference on Artificial Intelligence and Statistics, Virtual, 13–15 April 2021; pp. 3457–3465.

67. Covert, I.C.; Lundberg, S.; Lee, S. Understanding global feature contributions with additive importance measures. In Proceedings
of the 34th International Conference on Neural Information Processing Systems (NIPS′20), Vancouver BC Canada, 6–12 December
2020; Curran Associates Inc.: Red Hook, NY, USA, 2020; pp. 17212–17223.

68. Shapley, L.S. A value for n-person games. In Contributions to the Theory of Games; Princeton University Press: Princeton, NJ, USA,
1953; Volume 2, pp. 307–317. [CrossRef]

69. Molnar, C. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. 2023. Available online:
https://christophm.github.io/interpretable-ml-book/ (accessed on 26 November 2023).

70. SHAP Framework. Available online: https://github.com/shap/shap (accessed on 26 November 2023).
71. Leary, S.P. Shapley-Value (ML Interpretability) Using H2O AutoML. Available online: https://github.com/SeanPLeary/shapley-

values-h2o-example (accessed on 10 October 2023).
72. Zhang, S.; Wang, J.; Pei, L.; Liu, K.; Gao, Y.; Fang, H.; Zhang, R.; Zhao, L.; Sun, S.; Wu, J.; et al. Interpretability Analysis of One-Year

Mortality Prediction for Stroke Patients Based on Deep Neural Network. IEEE J. Biomed. Health Inform. 2022, 26, 1903–1910.
[CrossRef] [PubMed]

73. Tonetti, M.S.; Jepsen, S.; Jin, L.; Otomo-Corgel, J. Impact of the global burden of periodontal diseases on health, nutrition and
wellbeing of mankind: A call for global action. J. Clin. Periodontol. 2017, 44, 456–462. [CrossRef] [PubMed]

74. Spectre, G.; Östenson, C.G.; Li, N.; Hjemdahl, P. Postprandial Platelet Activation Is Related to Postprandial Plasma Insulin Rather
Than Glucose in Patients with Type 2 Diabetes. Diabetes 2012, 61, 2380–2384. [CrossRef]

75. Kivimäki, M.; Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 2018,
15, 215–229. [CrossRef]

76. Kivimäki, M.; Bartolomuci, A.; Kawarkhi, I. The multiple roles of life stress in metabolic disorders. Nat. Rev. Endocrinol. 2023,
19, 10–27. [CrossRef]

77. Lăzureanu, P.C.; Popescu, F.; Tudor, A.; Stef, L.; Negru, A.G.; Mihăilă, R. Saliva pH and Flow Rate in Patients with Periodontal
Disease and Associated Cardiovascular Disease. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e931362. [CrossRef]

78. Lazureanu, P.C.; Popescu, F.G.; Stef, L.; Focsa, M.; Vaida, M.A.; Mihăilă, R. The Influence of Periodontal Disease on Oral Health
Quality of Life in Patients with Cardiovascular Disease: A Cross-Sectional Observational Single-Center Study. Medicina 2022,
58, 584. [CrossRef]

79. Kaczmarek-Majer, K.; Casalino, G.; Castellano, G.; Dominiak, M.; Hryniewicz, O.; Kamińska, O.; Vessio, G.; Díaz-Rodríguez, N.
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