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Abstract: Background: The similarity of gallbladder cancer and benign gallbladder lesions brings
challenges to diagnosing gallbladder cancer (GBC). This study investigated whether a convolutional
neural network (CNN) could adequately differentiate GBC from benign gallbladder diseases, and
whether information from adjacent liver parenchyma could improve its performance. Methods: Con-
secutive patients referred to our hospital with suspicious gallbladder lesions with histopathological
diagnosis confirmation and available contrast-enhanced portal venous phase CT scans were retro-
spectively selected. A CT-based CNN was trained once on gallbladder only and once on gallbladder
including a 2 cm adjacent liver parenchyma. The best-performing classifier was combined with the
diagnostic results based on radiological visual analysis. Results: A total of 127 patients were included
in the study: 83 patients with benign gallbladder lesions and 44 with gallbladder cancer. The CNN
trained on the gallbladder including adjacent liver parenchyma achieved the best performance with
an AUC of 0.81 (95% CI 0.71–0.92), being >10% better than the CNN trained on only the gallbladder
(p = 0.09). Combining the CNN with radiological visual interpretation did not improve the differ-
entiation between GBC and benign gallbladder diseases. Conclusions: The CT-based CNN shows
promising ability to differentiate gallbladder cancer from benign gallbladder lesions. In addition,
the liver parenchyma adjacent to the gallbladder seems to provide additional information, thereby
improving the CNN’s performance for gallbladder lesion characterization. However, these findings
should be confirmed in larger multicenter studies.

Keywords: gallbladder; deep learning; artificial intelligence; cancer

1. Introduction

The diagnosis of gallbladder cancer (GBC) remains a challenge in clinical practice
because of its similarity to benign gallbladder disease. Therefore, GBC is often diagnosed
at a relatively late stage, resulting in a poor prognosis with a five-year overall survival rate
being up to only 13% [1–4]. However, when GBC is detected at an early stage, radical resec-
tion can be an option (especially in patients with T1b/T2 tumors), increasing the survival
rate to 53% [4]. Besides, adequate characterization of gallbladder lesions is also important
to correctly select patients that should be treated at specialized hepatobiliary hospitals.

A recent study evaluating radiologists’ performance in differentiating gallbladder
lesions based on CT images achieved a high sensitivity of 90%. However, the specificity
was merely 60% [5]. Another recent study adopted the quantitative approach of radiomic
analysis to evaluate gallbladder lesions [6]. Various machine-learning models were built
based on extracted radiomic features to differentiate GBC and benign gallbladder lesions.
The specificity of the radiomic analysis achieved 80%, but the sensitivity was merely
64% [6]. In addition, when including both the gallbladder and adjacent liver parenchyma
in the radiomic analysis, the diagnostic performance did not significantly improve. The
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best results were obtained when combining CT-based radiomics with visual radiological
assessment [6].

Convolutional neural networks (CNNs) have shown their strong ability in medical
image classification during recent years. Compared with machine learning models using
extracted radiomic features as input, CNNs use all CT image information as input and
exploit useful information from the image for a specific task during model training. The
use of all available CT information can possibly improve the differentiation between GBC
and benign gallbladder disease.

The primary aim of this study was to determine whether a CNN can adequately
differentiate GBC from benign gallbladder diseases on CT scans. The secondary aim was
to investigate whether a CNN can exploit information from adjacent liver parenchyma to
improve the performance of CT-based gallbladder lesion characterization.

2. Materials and Methods
2.1. Study Population

All patients referred to our hospital (which is a tertiary referral center) between
January 2007 and October 2020 with suspicion of GBC or because of an incidentally found
GBC after cholecystectomy were included in the study. Exclusion criteria were the absence
of a contrast-enhanced portal venous phase CT scan (for incidentally found GBC, the CT
had to be performed prior to a cholecystectomy) and lacking a histopathological diagnosis
confirmation. Reasons for suspicion of GBC and subsequent referral to our hospital were a
polyp with a diameter > 10 mm, a focal or diffuse wall thickening without obvious signs
of benign disease, a mass lesion, or a porcelain gallbladder that has been considered to
increase the risk of GBC [1]. Although the CT systems were of multivendor origin, scan
parameters were harmonized between our hospital and the surrounding referring hospitals
(more specifically automatic tube current modulation and tube voltage selection, slice
thickness of 1 mm, and a delay of 75 s after IV injection of 90–100 mL of contrast medium
at a flow rate of 3.6–4.0 mL/s followed by 32 mL of saline solution). All patients were
identified in a prospectively maintained surgical institutional database or by searching
multidisciplinary team meeting lists and analyzed retrospectively. Approval from the
institutional review board was obtained, and the need for written informed consent was
waived. The current study population was also part of two previous studies which were
focused on different research questions [5,6].

Collected data included: patient age, gender, date and type of surgery, date of CT, and
histopathology results. In each case of GBC suspicion, an open radical cholecystectomy was
performed combined with frozen section biopsy of the gallbladder. If the frozen section
biopsy was positive and without signs of disseminated disease, a lymph node dissection of
the hepatoduodenal ligament and a wedge resection of the gallbladder bed were performed.
A similar approach was used for patients referred with an incidentally found GBC after
previous cholecystectomy in the referring hospital and after excluding disseminated disease
on a postoperative CT scan. Each resection and biopsy specimen underwent routine
histopathological examination performed by a specialized hepatobiliary pathologist.

2.2. Image Processing and Deep Learning Models

The workflow of deep learning for gallbladder disease characterization is shown in
Figure 1.

The 3D portal venous phase CT scans were pre-processed before being fed to the
deep learning model. To improve contrast among abdominal organs, the CT scans were
processed by a soft window centering at 50 HU with a width of 400 HU. To normalize the
CT scans throughout the entire dataset, the images were resampled to the same spacing of
1.0, 1.0, and 2.0 by a linear interpolator. Using the software ITK-SNAP, the gallbladder on
the CT scans was manually delineated by an abdominal radiologist who was blinded to
the final diagnosis. Examples of the CT scans with segmented GBC and benign gallbladder
disease can be found in Figures 2 and 3.



Diagnostics 2023, 13, 704 3 of 10Diagnostics 2023, 13, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 1. Workflow of the convolutional neural network for gallbladder cancer and benign 
gallbladder disease differentiation. 

The 3D portal venous phase CT scans were pre-processed before being fed to the 
deep learning model. To improve contrast among abdominal organs, the CT scans were 
processed by a soft window centering at 50 HU with a width of 400 HU. To normalize the 
CT scans throughout the entire dataset, the images were resampled to the same spacing 
of 1.0, 1.0, and 2.0 by a linear interpolator. Using the software ITK-SNAP, the gallbladder 
on the CT scans was manually delineated by an abdominal radiologist who was blinded 
to the final diagnosis. Examples of the CT scans with segmented GBC and benign 
gallbladder disease can be found in Figures 2 and 3. 

 
(A) 

 
(B) 

Figure 1. Workflow of the convolutional neural network for gallbladder cancer and benign gallblad-
der disease differentiation.

The processed and segmented CT scans served as input for a CNN, a type of deep
learning algorithm that is well-suited for image analysis tasks, such as image classification,
and thereby, predicting disease probabilities (i.e., differentiation between GBC and benign
gallbladder disease on CT scans) [7]. The CNN used in the current study consisted of
six convolutional blocks and three linear layers. Each convolutional block included a
transposed convolutional layer, an activation function, and a batch normalization layer.
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Figure 2. Axial CT slice (A) with an example of gallbladder cancer (histopathologically proven
adenocarcinoma, encircled in (B)) and subsequent segmented gallbladder (C).
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Figure 3. Axial CT slice (A) with an example of benign gallbladder disease (adenomyomatosis,
encircled in (B)) and subsequent segmented gallbladder (C).

Because GBC is a rare disease, an imbalance existed in the dataset between GBC
and benign gallbladder disease. To improve the learning efficiency of the deep learning
algorithm and to avoid overfitting the imbalance of the dataset, a class weight of 2.0 was
assigned to the GBC images during model training.

The CNN was trained and validated using 80% of the images randomly selected
from the dataset. The remaining 20% of the CT scans were used as a test set to evaluate
the performance of the trained CNN. The test set remained unseen to the model during
training. The model training was terminated according to the performance on a validation
set that accounted for 10% of the training set. The CNN was developed based on the deep
learning framework PyTorch [8] and the performance of the model was quantified by the
open-source library scikit-learn 0.23.2 with Python 3.7.9 [9].

2.3. Deep Learning Model Based on Gallbladder and Liver Parenchyma

In a previous study, the suspicion of invasion of adjacent liver parenchyma was
observed to be positively related to GBC [5]. Therefore, in addition to using only the
gallbladder on CT images when training the deep learning model, a separate analysis was
performed to investigate whether the combination of the gallbladder and adjacent liver
parenchyma could increase the performance of the deep learning model when differenti-
ating between GBC and benign gallbladder disease. The segmentation of a 2 cm rim of
liver parenchyma adjacent to the gallbladder was automatically generated and adjusted
by an experienced abdominal radiologist if necessary. The adjacent liver parenchyma was
combined with the segmented gallbladder as training data for the deep learning model.
Figure 4 shows examples of input CT images with segmentation of both the gallbladder
and 2 cm of adjacent liver parenchyma. The deep learning model based on the combination
of the gallbladder and adjacent liver parenchyma was trained and tested by the same
methodology as described for the model solely based on the gallbladder.

2.4. Combining Convolutional Neural Network Prediction with Radiological Visual Interpretation

In a previous study, the best results for differentiation between GBC and benign
gallbladder disease were observed when combining CT-based radiomic analysis with
radiological visual interpretation [6]. To determine whether the results of the CNN could
also improve the radiological visual interpretation, an additional analysis was performed
combining the CNN prediction with radiological visual interpretation.
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Figure 4. Axial CT slices with examples of segmented gallbladder including 2 cm of adjacent liver
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The radiological visual interpretation was given in a five-point scale format by two
radiologists after consensus reading [5]. Subsequently, the assigned points were converted
into the probability of GBC (definitely benign = 0.0, probably benign = 0.25, equivocal = 0.5,
probably GBC = 0.75, and definitely GBC = 1.0). The converted probability of radiological
visual interpretation and the probability predicted by the CNN were summed up with an
equal weight of 0.5 as the combined probability score. In a case of a combined probability
score > 0.5, the patient was considered positive for GBC.

3. Results
3.1. Study Population

A total of 127 patients fulfilled our inclusion criteria and were therefore included
in the study. The patient cohort had a median age of 66 (interquartile range: 58–73).
Eighty patients were female (63%), and forty-seven were male (37%). Detailed information
regarding surgical treatment and histopathological examination results can be found in
Table 1.
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Table 1. Histopathology results and treatment data.

Characteristic Total Study Population N = 127

Benign gallbladder disease

Acute cholecystitis 1 (1%)
Chronic cholecystitis 49 (39%)

Xanthogranulomatous cholecystitis 6 (5%)
Adenoma 4 (3%)

Adenomyomatosis 15 (12%)
Porcelain gallbladder 2 (2%)
Other benign entities 6 (5%)

Gallbladder cancer

Adenocarcinoma 37 (29%)
Adenosquamous carcinoma 3 (2%)

High-grade dysplasia 2 (2%)
Other types of malignancy 2 (2%)

Incidentally found gallbladder cancer 9 (7%)

Types of (surgical) treatment

Open cholecystectomy 42 (33%)
Laparoscopic cholecystectomy 13 (10%)

Cholecystectomy combined with resection of liver
segment 4/5 5 (4%)

Cholecystectomy combined with a wedge resection of the
liver parenchyma 41 (32%)

Cholecystectomy combined with extensive surgery * 4 (3%)
Cholecystectomy combined with lymphadenectomy 6 (5%)

Open-closure procedure 10 (8%)
Biopsy without any further operation 6 (5%)

* e.g., ≥3 liver segments, and/or pancreaticoduodenectomy.

3.2. Convolutional Neural Network Results

Training the CNN solely on the gallbladder on CT scans yielded an accuracy rate
of 0.77 (95% CI 0.70–0.85) and an area under the receiver operating characteristic (ROC)
curve (AUC) of 0.71 (95% CI 0.58–0.88) in the randomly split test set for GBC and benign
gallbladder disease differentiation. By adding the adjacent liver parenchyma to the gall-
bladder on the CT scan, the AUC increased by >10% to 0.81 (95% CI 0.71–0.92; p = 0.09).
The sensitivity also increased from 56% to 67% (95% CI 50–86%) with merely a 6% drop in
specificity (p = 0.15). More detailed results are summarized in Table 2, and the ROC curves
are provided in Figure 5.

Adding the radiological visual assessment to the results of the CNN trained solely
on the gallbladder, as well as to a combination of the gallbladder and adjacent liver
parenchyma, did not improve the diagnostic performance (Table 2).

Table 2. Result of the convolutional neural network for differentiation between gallbladder cancer
and benign gallbladder disease.

AUC Accuracy Sensitivity Specificity

CNN based on segmented gallbladder 0.71
[0.58, 0.88]

0.77
[0.70, 0.85]

0.56
[0.33, 0.80]

0.88
[0.83, 1.00]

CNN based on segmented gallbladder including 2
cm of adjacent liver parenchyma

0.81
[0.71, 0.92]

0.77
[0.70, 0.85]

0.67
[0.50, 0.86]

0.82
[0.75, 0.92]

CNN (only gallbladder) combined with
radiological diagnosis

0.75
[0.65, 0.89]

0.73
[0.65, 0.85]

0.56
[0.40, 0.71]

0.82
[0.75, 0.93]

CNN (gallbladder including adjacent liver)
combined with radiological diagnosis

0.71
[0.58, 0.86]

0.77
[0.70, 0.85]

0.67
[0.50, 0.86]

0.82
[0.75, 0.93]

Abbreviations: CNN = convolutional neural network and AUC = area under the ROC curve. Values between
brackets concern 95% confidence intervals.
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4. Discussion

In the current study, the hypotheses that a CNN can differentiate between GBC and
benign gallbladder diseases and that a CNN can exploit valuable information from adjacent
liver parenchyma to improve the performance of GBC diagnosis were tested. In our study
population, consisting of 127 patients with 44 patients having GBC and 83 patients benign
gallbladder disease, the CNN trained using CT scans including both the gallbladder and a
rim of adjacent liver parenchyma yielded the best performance in differentiating between
GBC and benign gallbladder disease. More specifically, an AUC of 0.81 and an accuracy
rate of 77% were obtained.

To our knowledge, this is the first study using a CNN for differentiation between GBC
and benign gallbladder disease. Compared with radiomic analysis, a CNN uses all available
CT image information from the segmented part as input. This theoretically could provide
more information compared with radiomic analysis which uses only specific extracted
radiomic features from the segmented area. This concept can be further underlined by the
fact that the accuracy rate of the CNN was 3% better than that of the radiomic analysis in
the same study population reported recently by our group [6]. However, the current study
comprises a relatively small patient group, and therefore, should be considered a feasibility
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study serving as the first step towards a large multicenter study of the applicability of deep
learning techniques in gallbladder lesion characterization.

In a recent study conducted by our research group, a radiomic analysis for GBC and
benign gallbladder disease differentiation was performed based on features extracted from
the gallbladder and adjacent liver parenchyma. However, the diagnostic performance was
not significantly improved compared with a radiomic analysis solely based on features
derived from the gallbladder. A possible explanation could be that the parenchymal
invasion of GBC into adjacent liver tissue might be too small to be reflected as a difference
in textural features [6]. However, a CNN is considered to have a stronger ability to exploit
information from CT scans. Perhaps this could explain that in the current study, the AUC
of the CNN improved by 11% when including both the gallbladder and adjacent liver
parenchyma CT scans as inputs into the CNN.

We recently reported that when combining radiological visual interpretation with
radiomic analysis of CT scans of patients with gallbladder lesions, the best diagnostic per-
formance was achieved for differentiating between GBC and benign gallbladder disease [6].
However, the combined results of radiological visual interpretation and CNN prediction
did not improve diagnostic performance in the current study. Perhaps this could be related
to the relatively small study population in the current study, and this should be the subject
of future research. In addition, when using larger datasets in future studies, gallbladder
segmentation could be automated and quantified by deep learning algorithms.

Due to the rarity of gallbladder cancer in daily clinical practice and the single-center
study design, the CNN was trained and tested on a small population. The scale of the
dataset could influence the generalization ability and limit the performance of the CNN.
The utilization of a dataset that is both larger and more heterogeneous in nature has been
demonstrated to result in improved sensitivity and specificity of CNN models. The signifi-
cance of the improvement in AUC and sensitivity by adding adjacent liver parenchyma
to the model should also be further validated by a more extensive dataset. As a result,
the current study should be considered the first step towards a large multicenter study
focusing on the ability of deep learning techniques to better characterize gallbladder dis-
eases. Therefore, not only could patient care and long-term survival outcomes be improved,
but also more efficient use of scarce highly specialized hepatobiliary health care resources
might be obtained.

5. Conclusions

A CT-based CNN shows promising ability to differentiate gallbladder cancer from
benign gallbladder lesions. In addition, the CT-based CNN shows stronger ability to exploit
information from the surrounding liver parenchyma for gallbladder lesion characterization
compared with a previously reported CT-based radiomic analysis. Our results could serve
as the first step towards large multicenter studies further improving artificial intelligence
techniques to adequately characterize gallbladder diseases.
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