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Abstract: CT body composition analysis has been shown to play an important role in predicting
health and has the potential to improve patient outcomes if implemented clinically. Recent advances
in artificial intelligence and machine learning have led to high speed and accuracy for extracting
body composition metrics from CT scans. These may inform preoperative interventions and guide
treatment planning. This review aims to discuss the clinical applications of CT body composition in
clinical practice, as it moves towards widespread clinical implementation.
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1. Introduction

Body mass index (BMI) has long been a key clinical metric that is used in predictive
models to estimate the risk of developing chronic diseases and future mortality [1]. Unfortu-
nately, BMI has several shortcomings and does not account for the distribution of fat in the
body and does not distinguish between excess fat, proportion of bone mass or muscle [2].
Because BMI only measures excess weight, this measure cannot reflect the loss of muscle
mass as in sarcopenia and sarcopenic obesity. Body composition metrics incorporate the
proportion of body fat and skeletal muscles. Many non-invasive measures exist that analyze
body composition starting from the traditional skin-fold tests to other advanced measures
such as bioelectrical impedance analysis, dual-energy X-ray absorptiometry (DXA), hydro-
static (underwater) densitometry and air displacement plethysmography, among others [3].
Despite some studies suggesting their accuracy compared to BMI, many of these latter
metrics are considered inappropriate for widespread clinical implementation because they
are often complex to implement, expensive, and difficult to standardize [2]. As such, the
CDC currently only recommend BMI as an indication of body composition and health
risks, especially as other measures have no available reference standards or validated risk
categories [2].

Advances in CT scan automated segmentation and deep learning have opened the
door for the implementation of CT body composition as a novel tool to assess health and
disease risk (Figure 1) [4]. Multiple studies have shown the clinical importance of CT
body composition in risk prognostication and treatment planning [5]. We project that
these new metrics can eventually replace BMI in many clinical applications. Many patients
currently undergo a CT scan for diagnostic purposes. Much data from these scans are
not being used for clinical decision-making. CT scans have the capability of providing
more information, in addition to their specific clinical indication, allowing opportunistic
screening for disease prognostication and primary prevention. Recently, there have been
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new approaches that have decreased radiation exposure per unit volume of imaging,
making CT more suitable [6–8]. Many targeted interventions can be applied to improve
disease prevention and eventually patient outcomes.
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and can be used to quantify body composition. While these methods are costly, multiple 
people undergo cross-sectional imaging for other clinical indications, allowing for oppor-
tunistic assessment of body composition. CT works by taking multiple X-rays of the body 
from various angles while MRI uses the magnetic properties of hydrogen nuclei in the 
cells of the body to create images of soft tissues. Both methods allow for detailed evalua-
tion of individual skeletal muscles and adipose tissue, although one study showed that 
MRI slightly underestimates visceral adiposity [12]. There have been several attempts to 
compare the performance of CT and MRI in CT body composition analysis, with most 
studies showing a high correlation between both modalities [13,14]. However, MRI voxel 
values are highly dependent on a number of factors related to the interactions between 
protons [12].The inconsistency in voxel values is one of the biggest challenges for MRI, 
thus making advancement of this approach more difficult. Despite MRI not exposing pa-
tients to ionizing radiation, the use of CT is considered quick, easy and less costly. Addi-
tionally, CT imaging is widely available compared to MRI. In a recent 2000–2016 analysis 
of seven US healthcare systems, CT annual imaging rates in the US have increased from 
56 to 141 per 1000 person per year, while MRI increased from 16 to 64 per 1000 person per 
year [15]. This shows the widespread availability of CT imaging, making it a more pow-
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Figure 1. Population-scale machine learning-based CT body composition analysis for better risk
prediction and prognostication. Body composition metrics can be extracted automatically from
abdominal CT scans using machine learning-based segmentation approaches. Population scale CT
body composition analysis can help establish age-, sex-, and race-specific Z-scores and reference
curves for each metric. Patient-specific CT body composition metrics can be adjusted based on
the reference curves prior to incorporation into risk prediction or prognostication models to aid in
improved clinical decision-making.

2. Imaging-Based Body Composition Analysis

CT and MRI are regarded as the gold standard for body composition analysis [9–11]
and can be used to quantify body composition. While these methods are costly, multi-
ple people undergo cross-sectional imaging for other clinical indications, allowing for
opportunistic assessment of body composition. CT works by taking multiple X-rays of
the body from various angles while MRI uses the magnetic properties of hydrogen nuclei
in the cells of the body to create images of soft tissues. Both methods allow for detailed
evaluation of individual skeletal muscles and adipose tissue, although one study showed
that MRI slightly underestimates visceral adiposity [12]. There have been several attempts
to compare the performance of CT and MRI in CT body composition analysis, with most
studies showing a high correlation between both modalities [13,14]. However, MRI voxel
values are highly dependent on a number of factors related to the interactions between
protons [12].The inconsistency in voxel values is one of the biggest challenges for MRI, thus
making advancement of this approach more difficult. Despite MRI not exposing patients to
ionizing radiation, the use of CT is considered quick, easy and less costly. Additionally, CT
imaging is widely available compared to MRI. In a recent 2000–2016 analysis of seven US
healthcare systems, CT annual imaging rates in the US have increased from 56 to 141 per
1000 person per year, while MRI increased from 16 to 64 per 1000 person per year [15].
This shows the widespread availability of CT imaging, making it a more powerful tool
for opportunistic screening, population-based analysis and large scale investigations. As
a result, multiple AI-based algorithms have been developed to perform automated CT
body segmentation and quantification by measuring skeletal muscle and fat, typically at
the L3 vertebrae. These values are then used to estimate whole-body composition and
prognosticate patients.

Below, we summarize the standard metrics extracted from CT body composition
algorithms and expand on their clinical applications (Table 1).
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Table 1. Summary of the standard metrics analyzed from CT body composition: Several metrics can
be obtained from CT body composition analysis using unique ways of technical calculations. Slice
identification is commonly done with the support of DenseNet or ResNeXt which is a multi-class
natural image classification architecture that can help find the optimal slice. CT body composition
analysis is then performed using a tissue segmentation model, commonly based on the U-Net model
which is highly effective for medical image segmentation. Each metric has an important value
in the clinical arena guiding risk prediction and prognostication with the potential to optimize
patients outcomes.

CT Body Composition
Metrics Analysis Method Terminology of an

Abnormal Value Clinical Applications

Skeletal Muscle Index (SMI)
(in cm2/m2)

Localization and
Segmentation of Skeletal
muscle at the appropriate
location (commonly L3)

followed by calculation of the
total skeletal muscle

cross-sectional area divided
by height squared, resulting in

SMI calculation

Sarcopenia

Predict postoperative
outcomes and the risk of
various disease outcomes
including cancer, cirrhosis,

Inflammatory bowel disease,
kidney disease, Severe

COVID-19 and critical illness
[16–27].

Skeletal Muscle Density (in
HU)

After muscle segmentation,
calculation of the mean

muscle radiation attenuation
of a muscle tissue excluding

inter- and intra- muscular
adipose tissue. This gives a
muscle density expressed in

Hounsfield units (HU). A
higher attenuation indicates a

low muscle density.

Myosteatosis or low muscle
quality or muscle fat

infiltration

Associated with poor
metabolic function and worse
perioperative morbidity and

mortality. Can predict the risk
of long-term oncological

outcomes specially in those
receiving treatments. It’s also
an independent predictor of

mortality in necrotizing
pancreatitis, COVID-19 and

those undergoing
hemodialysis [28–34].

Adipose Tissue

- Subcutaneous (SAT)
- Visceral (VAT)(in cm)

CT slice from an appropriate
location is segmented and a
region of interest(ROI) pass

through the abdomen
separating the abdominal wall
from fat in a smooth manner
due to the high difference in
density and intensity, thus
separating SAT from VAT.

Automated analysis of a ROI
that includes all similar grey

pixels of VAT then results in a
sizable area.

- Visceral adiposity
- Subcutaneous adiposity
- Sarcopenic Obesity
- Ratio of Visceral-to-

subcutaneous fat (V/S)
(cm3/cm)

Predictor of major
cardiovascular events,
nonalcoholic fatty liver

cirrhosis, kidney disease,
cancer, metabolic syndrome,

severe COVID-19 and
mortality in asymptomatic

screening population
[28,29,35–38]

Bone Mineral Density (BMD)
(in HU)

The mean vertebral BMD is
measured by placing a ROI

commonly in L1-L3 vertebral
bodies at the coronal, sagittal
and axial images. Automated

analysis of the cortical and
trabecular area/BMD is

obtained in HU.

- Osteopenia
- Osteoporosis

Can accurately screen for
osteoporosis and predict

future risk of osteoporotic
fractures. Can also aid with

measurement of
syndesmophytes and predict

progression of ankylosing
spondylitis [39–43]

2.1. Muscle Mass

Low skeletal muscle is termed sarcopenia and has been associated with worse clinical
outcomes in conditions such as cancer [16], cirrhosis [17] and critical illness [18], among
others as well as postoperatively [19,20]. Sarcopenia has primarily been found to be an
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independent predictor of survival in cancer patients [44]. In one study, cancer patients
who did not look thin or malnourished were found to have sarcopenia only through CT
body composition analysis [45]. In a recent systematic review, eight studies showed that
the reduced muscle mass was mainly detected through CT body composition analysis
with a high number of patients being misclassified based on BMI [46]. CT body compo-
sition detects sarcopenia at a rate that is 27.3–66.7% higher compared to the detection of
malnourishment using BMI.

Sarcopenia can be difficult to assess clinically even with the use of BMI. For instance,
some patients have a high proportion of fat to muscle ratio as seen in sarcopenic obesity. In
another study, obese patients with a BMI > 30 mg/m were found to be sarcopenic through
CT body composition [47]. Sarcopenic obesity is the extreme of two phenotypes being low
muscle mass and high BMI. It has been associated with worse clinical outcomes, especially
in cancer patients [48]. This type of abnormal body composition is not detected clinically
because muscle and fat tissue quantification is required to establish the diagnosis. Multiple
studies have showed that sarcopenia can occur through all ranges of patients’ BMI [46]. CT
body composition can better identify patients at risk of worse clinical outcomes [49]. To
diagnose sarcopenia, the European Consensus Statement now recommends using a CT scan
as the gold-standard technique [50], highlighting the importance of CT body composition
and its potential in clinical practice.

There are several ways suggested to diagnose sarcopenia on CT imaging. In a sys-
tematic review and meta-analysis of 70 studies from 15 countries that used CT to assess
sarcopenia, 88.4% used skeletal muscle index (SMI) L3 to diagnose sarcopenia, five used
visceral fat criteria and three used the total psoas area (TPA) criteria [51]. SMI is determined
by measuring the total skeletal muscle area (cm2) at the L3 level and dividing by the height
squared (m2). Among the studies that used SMI, there were several cutoff criteria used.
The three most common include: (1) the cut-offs introduced by Prado et al., which defined
sarcopenia as SMI < 52.4 cm2/m2 for males and < 38.5 cm2/m2 for females, which have
been used in 20 studies [49]; (2) the cut-offs introduced by Martin et al., which defined
sarcopenia as SMI < 53 cm2/m2 if BMI ≥ 25 kg/m2 or SMI < 43 cm2/m2 if BMI < 25 kg/m2

in males and SMI < 41 cm2/m2 in females, and have been used in 17 studies [45]; (3) those
introduced by Zhuang et al., which defined sarcopenia as SMI < 40.8 cm2/m2 in males and
SMI < 34.9 cm2/m2 in females, and have been used in 12 studies [52]. Of the studies that
used the visceral fat criteria, most used the cut-off from the Japanese Society for the Study
of Obesity which describes a visceral fat area (VFA) of ≥100 cm2 as the cutoff [53]. Of the
studies that used the TPA criteria, most used the cut-off of Fearon et al. which defined
sarcopenia by calculating the total cross-sectional area (mm2) of the psoas muscle at L3 and
dividing by height squared (m2). Its cutoffs have an international consensus defined as
<385 mm2/m2 in women and <545 mm2/m2 in men [54].

2.2. Skeletal Muscle Quality

SMI and skeletal muscle radiation attenuation (SM-RA) obtained from CT scan allows
the evaluation of myosteatosis or low muscle quality. Deposition of fat in muscles is
indicative of muscle wasting. A recent study of HCC patients undergoing hepatectomy
found that myosteatosis is associated with worse perioperative morbidity, mortality and
long-term oncological outcomes compared to sarcopenia [55]. Myosteatosis was also found
to have an important prognostic role in HCC patients undergoing surgery and can be
an independent risk factor of perioperative morbidity. Assessment of myosteatosis is
important to complement other body composition metrics to predict perioperative and
long-term disease outcomes.

2.3. Visceral Fat Content

High visceral fat is associated with increased systematic vascular resistance, lower
cardiac output, insulin resistance and higher pro-inflammatory factors promoting carcino-
genesis [56,57]. The most commonly implicated inflammatory markers are tumor necrosis
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factors, interleukin-6, adiponectin and free fatty acids [58] which are found to directly flow
through the portal vein causing liver inflammation, NASH cirrhosis and hepatocellular
carcinoma [35]. High visceral fat was also found to be an independent predictor of major
cardiovascular events, cancer risk, metabolic syndrome and mortality in asymptomatic
screening populations and in patients with colon cancer [36–38,59]. This emphasizes the
importance of analyzing visceral fat mass, in addition to skeletal muscle, to aid in predicting
overall health and outcomes from various diseases and therapies [45,47].

2.4. Bone Density

CT body composition examinations typically incorporate information on bone density,
providing CT-based opportunistic screening for osteoporosis [60]. Due to its volumetric
nature, CT images may be more accurate in determining bone mineral density compared to
DEXA [61]. Thus, the development of an algorithm that is capable of segmenting CT images
automatically and accurately can assist in predicting future risk of osteoporotic fractures.
Pickhardt et al. used an automated, feature-based image processing algorithm to measure
L1 trabecular attenuation, and the result was consistent with data from manual region-of-
interest placement [62]. Tan et al. created an automated algorithm to segment vertebral
body for measurement of syndesmophytes and progression of ankylosing spondylitis [63].
Opportunistic screening for reduced bone density can be performed simultaneously as
patients undergo CT scanning for other indications [64]. As such, CT body composition
may allow for the opportunistic detection of osteoporosis and may potentially improve
access to early treatment and management.

2.5. Arterial Calcifications

Coronary artery calcification can be quantified using CT body composition software
for opportunistic screening. Studies have shown a strong correlation between coronary
artery calcification score and future cardiac events [65,66]. Additionally, abdominal CT
scan can quantify abdominal aorta calcifications, which are found to have positive cor-
relation with coronary heart disease [39,67]. Pickhardt et al. developed a deep-learning
mask region-based convolutional neural networks (R-CNN) algorithm to segment and
quantify calcified atherosclerotic plague within the abdominal aorta from CT scans [68].
The algorithm automatically selects the L1–L4 vertebral levels to perform segmentation
and quantification of aortic calcification. CT-based abdominal aorta calcification scores
obtained from both semi-automated and automated methods have been shown to better
predict future cardiovascular events compared to the Framingham Risk Score [40].

2.6. Other CT-Based Quantitative Metrics

Several other studies have recently shown that many additional quantitative parame-
ters can be extracted from CT images. CT allows the quantification of epicardial adipose
tissue, which is the biologically active adipose tissue between the myocardium and the
visceral pericardium that is associated with adverse cardiovascular events [10,41]. Given
the unreliability of creatinine excretion and eGFR equations for patients with certain body
compositions, Pieters et al. developed equations that estimated creatinine production
by using deep-learning body composition analysis of CT images [42]. Abdominal CT
biomarkers, such as pancreatic CT attenuation, fat content and fractal dimension, can also
be assessed with deep learning, and in particular can aid in the diagnosis of type 2 diabetes
mellitus [43]. Additionally, CT scans allow for the segmentation of organs at risk, which is
imperative for planning radiotherapy [69]. Deep learning methods have been developed
to automate organ segmentation, such as in the parotid gland [70], prostate [71], adrenal
gland [72], mammary glands [68] and multiple other multi-organs [73,74]. Other emerging
targets for CT-based analysis using automated segmentation include the detection and
assessment of intracranial internal carotid artery calcification [75]. Cui et al. developed an
automated segmentation algorithm using dense V-networks for small gross tumor volumes
in lung cancer from 3D planning CT images [76]. Lin et al. proposed a 3D UNet-based
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deep learning model for automated segmentation and detection of renal tumors [70]. Their
newly created model has shown promising results with high levels of accuracy. Bilic et al.
reviewed and analyzed around 75 state of the art automated liver and liver tumor seg-
mentation algorithms from CT scans and found that the best liver segmentation algorithm
achieved a dice score of 0.963, but for liver tumor segmentation the highest achieved was a
dice score of 0.739, indicating further research need in this area [77]. With new advances
in deep learning and image segmentation, we envision that new metrics will be made
available over the coming years to be used in clinical practice to improve patient disease
screening and management.

3. Clinical Applications of CT Body Composition
3.1. Cancer

Sarcopenia is associated with increased morbidity and mortality in multiple types
of cancer [78] including pancreatic cancer [79], esophageal cancer [80], lung cancer [81],
colorectal liver metastasis [82] and melanoma [83], among others. In a recent systematic
review of CT body composition in abdominal malignancy, seven studies showed that low
muscle mass was associated with a worse clinical outcome [46]. Sarcopenia was linked
to adverse therapeutic and clinical outcomes including higher postoperative infections,
systematic inflammation, chemotherapy toxicity and mortality in patients with abdominal
malignancy [46].

In another multi-center retrospective study of preoperative CT body composition
analysis in lung cancer patients undergoing lobectomy, skeletal muscle mass was an
independent predictor of postoperative complications and increased hospital length of stay
(LOS) [84]. Interestingly, low thoracic muscle mass was more effective than biological age
in predicting postoperative events [85]. In the same population, sarcopenic obesity was an
independent predictor of hospital LOS and postoperative complications. This highlights
the role of CT body composition in identifying cancer patients who carry a high risk of
worse clinical outcomes prior to surgery.

Similar results have been reported in patients with hepatocellular carcinoma (HCC) [58].
CT body composition has been found to be predictive of patient outcomes in those re-
ceiving chemotherapy, radiotherapy, radio-frequency ablation, embolization, hepatectomy
and liver transplant [44]. In a recent study evaluating the prognostic factors associated
with overall survival in elderly patients with HCC receiving trans-arterial chemoemboliza-
tion (TACE), the detection of muscle depletion and visceral adiposity was found to be
independently associated with poor survival outcomes [86]. The same study found no
relationship between BMI and survival [87]. Interestingly, the response to the first TACE
session was better in those with low muscle mass and high visceral fat compared to those
with normal body composition [87]. However, the former group had lower overall survival.
As such, assessment of body composition may be an important clinical consideration for
HCC patients undergoing TACE. Similarly, Faron et al. evaluated the role of sarcopenia to
predict overall survival in those receiving yttrium-90 (Y90) trans-arterial radioembolization
(TARE) [88]. Sarcopenia was found to be an independent prognostic marker of overall
survival and can provide prognostic value in patients receiving Y90 TARE [89]. Another
study assessed sarcopenia before and after treatment with TARE and found it to be predic-
tive of post-TARE progressive HCC disease [90]. Similarly, HCC patients with sarcopenia
undergoing radiofrequency ablation therapy were found to have a lower survival rate
compared to nonsarcopenic patients [91].

In HCC patients undergoing hepatectomy, sarcopenia was associated with high rates
of post-surgical complications [92,93]. One study showed that the 5-year survival rate was
lower in those with sarcopenia compared to non-sarcopenic patients (58.2% vs. 82.4%,
p = 0.0002) [94]. Additionally, having sarcopenia was associated with a worse tumor stage
and microvascular invasion [95]. Another study showed that patients with sarcopenia have
higher rates of morbidity and mortality after hepatectomy [85], similar to those who have
diminished functional reserves [87]. When considering hepatectomy, it is important to
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assess the future liver remnant (FLR), the volume of liver to be left behind after resection [89].
Those with small FLR have a higher risk of post-hepatectomy liver failure [96]. Many of
these patients undergo portal vein embolization (PVE) prior to hepatectomy so as to divert
portal venous blood and trophic factors to the non-embolized section of the liver leading to
liver hypertrophy of the non-resected liver segments. Those with insufficient hypertrophy
are at increased risk of post-hepatectomy liver failure [97,98]. A recent study evaluated the
role of CT body composition in predicting liver remnant hypertrophy following PVE in
patients with colorectal liver metastasis. The study found that patients with sarcopenia
had impaired liver hypertrophy after PVE [99]. Another study also found that the quantity
and quality of skeletal muscle were associated with the degree of liver hypertrophy after
PVE [95]. Low muscle mass on CT body composition was found to be an independent
predictor of poor liver hypertrophy after PVE and increased the risk of post-hepatectomy
liver failure [100]. These studies suggest that the assessment of CT body composition prior
to PVE may be important for identifying patients at risk of post-hepatectomy complications.

In addition to the prognostic association of sarcopenia with poor performance sta-
tus, cancer progression and overall survival, it has also been linked to chemotherapy
toxicity and response to therapy [101,102]. A recent retrospective study found decreased
survival rates in sarcopenic patients receiving sorafenib chemotherapy for HCC compared
to nonsarcopenic patients [103]. Additionally, sarcopenic patients were found to have a
lower response to chemotherapy and lower disease control compared to nonsarcopenic pa-
tients [104]. Another study found sarcopenia to be associated with early dose chemotherapy
toxicity [105]. These results raise the question of possible future adjustments of chemother-
apy dose based on the amount of skeletal muscles that a patient has, to avoid extensive
toxicity [106].

3.2. Liver Disease

Studies have shown an association between CT body composition and severity of
liver disease [100,107,108]. Liver cirrhosis is strongly associated with sarcopenia [109]. The
distribution of body fat is a major predictor of complications and outcomes in patients with
cirrhosis, both before and after liver transplantation [110]. Therapy for liver disease is also
associated with alterations in body composition. For instance, transjugular intrahepatic
portosystemic stent (TIPS), a standard therapy in many patients with portal hypertension,
is associated with improved fat-free mass and fluid-free body weight [104,111,112]. Artu
et al. utilized CT scans to measure body composition in patients post-TIPS placement
and found an improvement in sarcopenia and decreased visceral-to-subcutaneous fat ratio
following intervention [113]. Additionally, Pang et al. were able to demonstrate that pre-
TIPS blood ammonia had a positive association with post-TIPS BMI [114]. These studies
demonstrate the importance of CT body composition analysis before and after treatments
in liver disease.

In addition to its association with response to therapies, CT body composition can
also be used to predict the etiology of liver disease. Zou et al. developed a deep learning
algorithm using Google’s DeepLabv3+ in which body composition was automatically
extracted [115]. Their study showed that patients with NAFLD cirrhosis had decreased
muscle mass and a significant increase in visceral and subcutaneous fat compared to
those with non-NAFLD cirrhosis. The study also showed higher levels of accuracy of CT
body composition compared to that of BMI in distinguishing the two patient populations.
These findings highlight the potential role of CT body composition in risk prediction and
stratification in liver disease.

3.3. Inflammatory Bowel Disease (IBD)

Analysis of abdominal CT body composition can also aid in disease prognostication
in patients with Crohn’s Disease and ulcerative colitis (IBD). IBD is a gastrointestinal
inflammatory disorder associated with malabsorption resulting in low skeletal muscle
mass, decreased bone mineral density and therefore a dynamic change in body composi-
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tion especially in patients with Crohn’s disease [116]. Abdominal CT-based opportunistic
screening has been utilized in several studies for prognostication in IBD. Changes in CT
body composition metrics in patients with IBD are correlated with disease duration and
severity [117]. The pathogenesis of Crohn’s disease is associated with increased visceral
adiposity as identified through CT body composition. In patients with increased visceral
adiposity, studies have reported a more complicated disease course [118], higher postoper-
ative complication rates [119] and higher rates of disease recurrence [120], Grillot J et al.
also reported worse Crohn’s disease outcomes with sarcopenia and visceral adiposity [114].
Another similar study found that muscle volume is strongly associated with hospital length
of stay and that both, muscle volume and visceral adiposity, are strongly associated with
intestinal resection rates [121]. These results highlight that early screening and detection of
body composition changes in patients with Crohn’s disease may help in risk stratification
and may inform early nutritional and pharmacological interventions, potentially improving
patients’ outcomes and quality of life [122].

3.4. Kidney Disease

Paradoxically, higher BMIs are associated with better survival in patients with chronic
kidney disease (CKD) [123–125]. However, due to the limitations of BMI, it is not fully
known whether the increase in survival is associated with levels of adipose tissue or
lean mass. Patients with CKD tend to have fluid retention that cannot be differentiated
with BMI. Lin et al. showed, through using a body composition monitor–multifrequency
bioimpedance spectroscopy device, that a high lean tissue index, not high BMI or high
fat tissue index, predicted a lower risk of adverse outcomes in CKD patients [126]. These
findings illustrate the importance of body composition analysis and its association with
outcomes in patients with kidney disease.

Fully automated CT-based body composition analysis shows great promise as it can
detect total muscle mass and quantify muscle wasting which is frequently seen in this
patient population [127]. It has been already shown that body composition analysis can
accurately predict urinary creatinine excretion, creatinine clearance, and glomerular filtra-
tion rate (GFR) [21]. A recent study showed that machine-learning CT body composition
analysis can estimate creatinine excretion with a high degree of accuracy [75]. These fully
automated body composition analyses can validate Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation results and replace burdensome 24-h urine collection
with spot urine collection, paving the way for integrated diagnostics that use multidisci-
plinary data for better patient care [128,129]. Furthermore, there have been recent efforts to
fully automate kidney segmentation by measuring kidney, cortex and medulla volumes,
which will provide a wide range of clinical applications such as evaluating renal donor
suitability and prognosticating outcomes [130].

Other studies have found a correlation between high visceral adipose tissue and
poor outcomes in patients with kidney disease [131,132]. Sarcopenia was also found to
have a strong association with increased mortality and morbidity in patients with this
condition [133]. Other studies have shown that skeletal muscle and visceral adipose tis-
sue derived from CT scans are stronger predictors of renal disease prognosis and can
outperform established clinical parameters for risk stratification [134]. In summary, utiliza-
tion of CT body composition to accurately quantify muscle mass and calculate visceral-
to-subcutaneous fat ratio has the capability of aiding prognostication in patients with
renal disease.

3.5. COVID-19

Several studies have shown the association between CT body composition parame-
ters and the severity of COVID-19 disease. Hocaoglu et al. and Ufuk et al. utilized CT
to measure pectoralis muscle volume and density. They found that low pectoralis mus-
cle density correlated with increased COVID-19 severity and worse outcomes [135,136].
Chandarana et al. showed that CT-derived muscle adipose tissue measurements at the
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L3 vertebral level were significantly higher in patients with more severe symptoms of
COVID-19; consequently, those patients had a higher risk of hospitalization [137]. Similarly,
Bunnell et al. performed body composition segmentation using an in-house automated
algorithm trained specifically at the L4 vertebral level and found that COVID-19 patients
with high visceral adipose tissue/subcutaneous adipose tissue ratio and high intermuscular
adipose tissue have worse outcomes [138]. Another study analyzed paravertebral muscle
at the 12th thoracic vertebra in COVID-19 patients and found that muscle loss is a predictor
of intensive care admission in COVID-19 patients. Taken together, these findings suggest
that CT body composition analysis can help predict adverse clinical events and outcomes
in patients with COVID-19.

3.6. Cardiovascular Diseases

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality
worldwide [139]. CT-based opportunistic screening can help detect cardiovascular diseases
pre-symptomatically, thus allowing early preventative care to decrease future adverse
clinical events and healthcare costs. O’Connor et al. showed that the abdominal aortic
calcification score using semiautomated CT quantifications is a better predictor of cardio-
vascular events than the Framingham risk score (FRS) [73]. Other studies have shown that
controlling the progression of abdominal aortic calcification was associated with decreased
risk of mortality, coronary artery disease, stroke and heart failure [140,141]. By detecting
aortic calcification early using CT-based opportunistic screening, appropriate interven-
tions can be applied to those patients to address their underlying risk and prevent future
cardiovascular mortality. Similarly, Pickhardt et al. defined several automated CT-based
body composition biomarkers that can predict major cardiovascular events, including
quantification of aortic calcification, muscle density, visceral/subcutaneous and liver fat
and bone mineral density. These metrics outperformed clinical parameters such as the FRS
and BMI for risk prediction [65]. Recently, Magudia et al. described a retrospective study of
9752 outpatient routine CT scans of black people and white people with no recent history
of cancer or cardiovascular diseases [142]. Using a fully automated AI approach, the SMA,
VFA and SFA were extracted from the L3 vertebra, then adjusted to age, race and sex, and
associated with subsequent myocardial infarction and the risk of stroke within 5 years from
the scan. Interestingly, the VFA had a significant association with the risk of developing
MI (HR 1.31, p = 0.04) and Stroke (HR 1.46, p = 0.04) while BMI, weight, SFA and SMA
had no association. This suggests the importance of incorporating SFA instead of BMI in
cardiovascular risk models.

By providing a better assessment of a person’s cardiometabolic profile, CT-based
body composition analysis shows great promise than established clinical parameters in
improving pre-symptomatic detection and risk-stratification of patients vulnerable to
adverse cardiovascular events and can augment the current risk prediction models.

3.7. Critical Illness

CT body composition also plays a role in improving care in critically ill patients. Toledo
et al. demonstrated that critically ill patients with sarcopenia have a lower 30-day survival,
higher hospital mortality, and higher complication rates [22]. Weijs et al. reported that
sarcopenia on CT, during early stages of a critical illness, is strongly associated with a high
risk of mortality in mechanically ventilated critically ill patients [23]. Early identification
of at-risk patients can help inform any necessary interventions for better outcomes in this
critically ill population.

3.8. Contrast Dose Adjustment

Iodinated contrast dosing is currently calculated based on total body weight, regardless
of adipose and muscle content. However, patients with various body composition indexes,
such sarcopenic obesity and athletes with high muscle content, can suffer from overdosing
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or underdosing. To alleviate this concern, CT body composition analysis has been shown to
allow appropriate contrast dosing for each patient during the process of CT scanning [28].

4. CT Body Composition Analysis—Technical Considerations

In this section, we discuss a number of technical considerations associated with the
creation of computational methods for body composition analysis from CT. The first step
in CT body composition analysis is identification of the most appropriate location for
extracting body composition parameters, followed by the segmentation of the structures of
interest. Although most use a single axial CT image slice, commonly located at the level of
the L3 vertebra, some discussed the benefit of 3D-based analysis of CT body composition.
Selecting a single slice for analysis simplifies the process of machine learning model
development both by reducing the annotation burden required for training and validating
the model, and reducing the complexity of the segmentation model itself. Furthermore,
using a single slice eliminates potential variability in volumetry due to different spatial
extents of scans, which may otherwise complicate analysis. However, single slice analysis is
an imperfect proxy for overall body composition and small shifts in the location and angle
of the chosen slice introduce significant variability in the measurements, particularly when
slice selection is an automated process with its own error rate [29,143]. By contrast, 3D
analysis provides a more comprehensive characterization of body composition. Koitka et al.
described a fully automated U-Net 3D neural network for volumetric body composition
analysis using every fifth axial slice from abdominal CT scans to include multiple body
regions [144]. The network produced an excellent result with a Sørensen Dice coefficient of
0.9553 for segmentation and an intra-class correlation coefficient of 0.99 on tissue volumetry.

Adipose tissue is especially sensitive to the angle cut of the slice image; therefore,
its measurements can change dramatically from one slice to another. Although this is
insignificant with population studies, it remains a bias for individual predictions and
decision making especially when analyzing individuals over time [145]. Shen et al. showed
that in group studies, the use of an appropriate single slice analysis compared to volumetric
body composition analysis requires 17% and 6% more subjects for estimating whole body
muscle and fat, respectively [146]. As such, with large scale investigations the use of a
single slice analysis is appropriate since it decreases the cost and complexity of the analysis
whereas the power of the study can easily be increased with a higher number of subjects.
That said, for individual decision making and small-scale investigations, the use of 3D-
based analysis remains a better choice as it provides a topographic information of various
tissues and accurately distinguishes individual variability.

The wealth of information obtained from 3D-based analysis introduced the concept of
“extended body composition” that entails the measurement of multiple organs in the body
and can identify the exact individual phenotype for better decision making and treatment
selection [145]. Because a single slice ca not provide the same detailed measurements
of various tissues in the body, the choice of slice location becomes crucial for accurate
estimation of whole body composition and predicting patient outcomes. Shen et al. showed
that CT scans around the L3 lumbar vertebra have a strong association with the composition
of subcutaneous fat tissue, visceral tissue and skeletal muscles in the body [147]. Similarly,
other studies also showed the accuracy of CT body composition analysis at the level
of the third lumbar vertebra (L3) and have established a fully automated deep-learning
system for L3 selection and body composition analysis [148]. Others found an excellent
correlation between T12 and L3 for estimating body composition and argued against
the need for abdominal CT imaging specially when chest imaging is the only option
available [149]. Another recent study showed that the aggregation of skeletal muscle from
different vertebral levels can better prognosticate and predict patient outcomes [150].

Following the choice of location for CT body composition analysis comes the role of
segmentation for biomarkers’ extraction and analysis. Segmentation is executed either
manually or by using automated segmentation techniques. For manual segmentation,
trained image analysts or board-certified radiologists determine the region-of-interest, then



Diagnostics 2023, 13, 968 11 of 21

select slices and distinguish each body compartment (muscle, visceral fat, subcutaneous
fat) using anatomic knowledge and tissue-specific Hounsfield Unit ranges, then each
slice is manually segmented [145,151,152]. Since analysts must review and segment each
selected slice, the process of manual CT body composition analysis becomes challenging
in a large dataset as it requires time and expertise. This limits large scale investigations
from being easily performed to expand its clinical value. To overcome this issue, the
new mainstay technique for CT body composition analysis uses automated segmentation.
Automated and accurate CT-scan segmentation of subcutaneous fat tissue, visceral fat
tissue and skeletal muscle through artificial intelligence has been reported by multiple
studies [147,153,154]. Segmentation of multiple tissues can be obtained accurately using
the same neural network [153,155] which provides a faster computation speed of analysis
with great accuracy. Studies have reported that the analysis of CT body composition takes
around 15 min/scan for a human analysis, vs. <1 s/scan with the use of neural networks [4].
This higher speed of analysis has made automated machine learning-based analysis the
preferred method for large-scale investigations.

Multiple studies have established automated machine learning algorithms for CT
body composition analysis [156]. Convolutional neural networks, and in particular the
U-Net architecture, a well-established convolutional neural network (CNN) architecture for
various medical image segmentation tasks, are the foundation of most methods. Notable
examples are summarized below.

Paris et al. established a new convolutional neural network (CNN), AutoMATiCA, for
the segmentation of body composition that quantifies Skeletal Muscle (SM), intermuscular
adipose tissue (IMAT), Visceral Adipose Tissue (VAT) and Subcutaneous Adipose Tissue
(SAT) at the L3 vertebral body. The algorithm is a combination of four separate neural
networks representing four different body compartments. Their results suggest that the
algorithm may be generalizable to other populations for body composition calculation [157].
Similarly, Hsu et al. developed a CNN model based on the U-Net architecture to quantify
VAT, SAT and SM at the L3 level, with results consistent with the results obtained through
manual segmentation [158]. CNNs were also adapted for the development of automated
segmentation in the work of Weston et al. The algorithm performs as well as expert
manual segmentation [155]. Bridge et al. developed a fully machine-operated algorithm
to segment body composition from an abdominal CT scan [153]. The method is broken
down into two steps: (1) automatically identify and select a slice at L3 vertebral level
from a full CT scan; and (2) segment body composition using a U-Net-based segmentation
network. Dice score results were comparable between the AI-based segmentation and
manual segmentation [153]. They later extended the same approach to three thoracic
levels (T5, T8, and T10) [159]. Many other works have similarly demonstrated successful
segmentation of body composition using automated approaches [154–156,160–163].

With further advancement in this field, it became evident that there is a need to
establish reference ranges and adjust for body composition values based on demographic
variables such as age and gender. Recent studies performed population-scale CT body
composition analysis and established age-, sex-, and race-specific reference curves for CT
body composition metrics, analogous to reference ranges for the Z-scores used in DEXA
scans [164]. CT body composition reference parameters were found to be different across
demographic groups, unlike the traditional reference ranges for BMI and weight metrics.
In the same work, the derived CT body-composition Z-scores were found to be predictive
of patient survival, further strengthening the value of CT body composition analysis in
clinical care (Figure 1).

5. Future Directions

CT imaging provides physicians with many datapoints, beyond the scan’s clinical indi-
cations. The plethora of data available from CTs have sometimes been viewed unfavorably
due to the concern of incidental findings triggering unnecessary workups. However, there
has also been a concordant rise in interest of CT-based opportunistic screening due to its
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ability to identify at-risk patients and avoid future adverse events [39]. While CT imaging
allow for a whole range of body composition analyses, such as quantifying bone mineral
density for osteoporosis or analyzing visceral fat for metabolic syndrome, the additional
data are often not utilized in routine clinical care [39]. This under-utilization was likely
due to the labor-intensiveness of manual or semi-automated body composition analyses,
especially when outside the clinical indication of the scan. With the recent innovations in
fully automated methods of CT body composition analyses, this technique is now more
readily accessible.

Beyond the traditional CT body composition metrics presented in this article, the
rise in fully automated AI-based methods for analyzing CT scans has further expanded
our capabilities through additional organ-specific segmentation and detection [165]. For
instance, new methods are now available to determine abdominal organ volume for
organomegaly [166], to stage liver fibrosis [167] and to detect tumors [168], among oth-
ers [169]. These new methods present a paradigm shift in how clinicians will be able to use
cross-sectional imaging for clinical management, revolutionizing the state-of-the-art care
that patients can receive.

Despite the promising potential that fully automated AI-based CT body composition
analysis brings to the field, its application remains dependent on robust data analysis
and large-scale investigations to validate its clinical importance and strengthen its value
in the clinical arena. For instance, generating sufficiently large datasets across multiple
sites and patient populations will be necessary and is one of the main obstacles to clinical
implementation. This is now more feasible in today’s era whereby a vast quantity of
medical imaging data are generated daily and are accessible. In fact, the fully automated
methods that have started to replace manual or semi-automated methods are making
analyses less labor-intensive without compromising accuracy [170,171]. Transitioning to a
less labor-intensive approach will be crucial as it can be very challenging to generate the
quantity of labeled data needed to both validate the approach and generalize to unseen
data. Further efforts to increase the scale of investigations will, therefore, speed the era of
implementing CT body composition analysis into routine clinical care.

The clinical use of AI-based body composition analysis is not only dependent on
large-scale data but also on heterogenous data that are reflective of our current populations.
There is a need to establish international parameters and reference ranges that guide
body composition analyses in order to produce generalizable solutions for both research
and clinical use. Efforts to include population reference curves that are adjusted for
several demographic variables have already begun to be implemented and have been
shown to have a great correlation and equivalency to manual methods [68]. Establishing
international parameters is a key step in AI’s large-scale use. As a community, we will need
to use demographic-conscious adjustments to allow these methods to become effective
and generalizable.

The use of fully automated AI-based CT body composition analysis has great potential
to revolutionize the future of medical care both within and outside of radiology. We
envision that AI-based CT body composition analysis will play a crucial role in future
treatment algorithms as they are widely implemented in every CT scan that is performed.
Furthermore, the fully automated methods reduce the burden of analyzing clinical scans
for incidentalomas and creates adequate risk assessment and prognostication that can
better inform patient care. With the wider use of these automated systems, we will be able
to generate more data and better be able to guide decision making, treatment planning,
preoperative optimization, risk mitigation and ultimately improve patient outcomes by
personalizing care without additional exposure to radiation.

Despite the great promise that this new technique presents, the vast clinical potential
of CT-based body composition analysis still faces many challenges prior to widespread
implementation [172,173]. For instance, there are legal liability issues with adopting fully
automated AI systems. Who will be responsible for any errors that may harm patients?
How can we ensure the privacy of the data? The commercialization of AI-based systems
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also raises ethical and equity concerns that have been covered in detail by a joint European
and North American multi-society statement [174].

There are multiple ways to address these issues. The implementation of AI-based
body composition analysis can begin with common problems that have ample clinical data.
Multi-center consortia such as the Opportunistic Screening Consortium in Abdominal Ra-
diology (OSCAR) can be created to clinically implement automated systems. Furthermore,
studies assessing the validity of these fully automated systems and adjusting for various
demographic features will aid in their widespread and equitable implementation [172].
Establishing body composition parameters and reference ranges based on age, sex and race
is of utmost importance.

It is also worth noting that there have been other new measures used to assess ab-
dominal obesity. For instance, waist-to-height ratio (WHtR) has been shown to be a
better screening tool than BMI and waist circumference for predicting cardiometabolic
risk [175,176]. Other measures such as body shape index (ABSI), conicity index (CI) and
body roundness index (BRI) are newer central obesity indexes, and data show that some of
those measures are better suited for specific populations [177–180]. Other novel measures
include the lipid accumulation product (LAP), which uses triglyceride and waist circumfer-
ence; and the triglyceride-glucose index (TyG index), which utilizes fasting blood glucose
and fasting triglyceride [181]. Despite the usefulness of those measures, the literature is
sparse on how they fare with CT-based body composition techniques. Given that these
methods are cheap, future studies showing how they compare to CT-based body com-
position may be warranted, especially for predicting obesity-related metabolic disorders.
Moreover, the use of these clinical data in conjunction with CT-based AI models will be
an interesting direction, since their incorporation may aid in strengthening the analysis of
body composition, which aims to better prognosticate patients for better clinical decision
making and improved patients’ outcomes.

6. Conclusions

Advances in deep learning have led to excellent speed and accuracy in analyzing
body composition on CT scan. Several fully automated CT-based body composition
analyses have been developed and have shown great promise toward potential widespread
investigations and clinical implementation. Multiple studies have shown the great potential
of CT body composition analysis, especially in identifying patients at risk of complications.
This can potentially improve the current risk prediction models and contribute to better
clinical outcomes. CT body composition analysis can potentially help us personalize and
tailor therapy by selecting safer alternative approaches to decrease complications and
mitigate risk. Further studies are still needed to validate existing models and ensure their
generalizability prior to widespread clinical use. Nonetheless, this review provides the
current state of the art applications of CT body composition and suggests future directions
and considerations to guide novel investigations and widespread clinical implementation.
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