
Citation: Ganguly, I.; Buhrman, G.;

Kline, E.; Mun, S.K.; Sengupta, S.

Automated Error Labeling in

Radiation Oncology via Statistical

Natural Language Processing.

Diagnostics 2023, 13, 1215.

https://doi.org/10.3390/

diagnostics13071215

Academic Editor: Dechang Chen

Received: 16 January 2023

Revised: 12 March 2023

Accepted: 16 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Article

Automated Error Labeling in Radiation Oncology via Statistical
Natural Language Processing
Indrila Ganguly 1,†, Graham Buhrman 2,† , Ed Kline 3 , Seong K. Mun 4 and Srijan Sengupta 1,*

1 Department of Statistics, North Carolina State University, Raleigh, NC 27607, USA
2 Department of Educational Psychology, University of Wisconsin–Madison, Madison, WI 53706, USA
3 RadPhysics Services LLC, Albuquerque, NM 87111, USA
4 Arlington Innovation Center, Health Research, Virginia Tech, Arlington, VA 22203, USA
* Correspondence: ssengup2@ncsu.edu
† These authors contributed equally to this work.

Abstract: A report published in 2000 from the Institute of Medicine revealed that medical errors
were a leading cause of patient deaths, and urged the development of error detection and reporting
systems. The field of radiation oncology is particularly vulnerable to these errors due to its highly
complex process workflow, the large number of interactions among various systems, devices, and
medical personnel, as well as the extensive preparation and treatment delivery steps. Natural
language processing (NLP)-aided statistical algorithms have the potential to significantly improve
the discovery and reporting of these medical errors by relieving human reporters of the burden of
event type categorization and creating an automated, streamlined system for error incidents. In this
paper, we demonstrate text-classification models developed with clinical data from a full service
radiation oncology center (test center) that can predict the broad level and first level category of an
error given a free-text description of the error. All but one of the resulting models had an excellent
performance as quantified by several metrics. The results also suggest that more development and
more extensive training data would further improve future results.

Keywords: patient safety; medical errors; neural networks; text classification; statistical modeling

1. Introduction

A milestone report from the Institute of Medicine (IOM), published in 2000, brought
public and political attention to the severe fallout of medical errors and highlighted the need
to address medical errors and their effects on human health [1]. More recently, medical
errors have been shown to be the third leading cause of death in the United States [2].
Based on quality-adjusted life years, the number of preventable deaths caused by medical
mistakes is now 10 times higher than what the IOM estimated [2]. One study estimated
that preventable medical errors may cost the U.S. economy up to $1 trillion in lost human
potential and contributions [2]. Although there has been an intense focus over the past two
decades to improve the safety of medicine in the U.S., progress has been slow.

One of the challenges of addressing medical errors is the manner in which errors are
reported and the sheer amount of information provided in such reports [3]. Medical errors
have traditionally been reported as free-text descriptions by front-line staff [4]. Inconsis-
tencies occur as reporters use different levels of detail and various types of terminology
and vocabulary for both technical and generic uses of language. Furthermore, one of the
primary barriers to error reporting is the varying perspective on errors themselves, since re-
porters may have conflicting perspectives regarding the incident being reported [5]. Given
these problems associated with the analysis of error reports, natural language processing
(NLP), the branch of machine learning that deals with human language and speech, has
emerged as a potential technology in patient safety research to improve error prevention
through better detection, reporting, and analysis [4,6–8]. A significant benefit of NLP
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models for medical personnel is the reduction in time and effort required to report med-
ical errors. These predictive models make the process easier by advising reporters on
the possible categorization of an error report based on statistical confidence. This allows
reporters to make more reliable and timely decisions upstream, before the error propagates
downstream through the various clinical pathways. Furthermore, the model’s suggestions
remove heuristic bias from error reports because they are based on patterns observed across
all reports, not just the experiences of one staff member [9].

Radiation therapy involves a complex process workflow composed of as many as
300 steps and many interactions among various systems, devices, and medical personnel
(see Figure 1). Because of this, the field of radiation oncology is particularly prone to
errors. Any single error or combination of errors can have an adverse measurable impact
on patient outcomes. Ineffective error management can lead to reduced quality, increased
inefficiency, and increased legal and/or regulatory liabilities [10–12].

Figure 1. Process map showing the major steps in the radiation oncology workflow.

Research on using NLP for medical errors in radiation oncology has received limited
attention, although recent work shows promise in developing models that are effective in
error labeling/classification [13,14]. Previous work has been focused on safety assurance
and error reduction, but few studies have incorporated NLP into their methodology. These
studies have, however, identified trends and means by which errors can be effectively
uncovered and reported, providing a foundation for our modelling work in this study.

Our research examines the use of NLP models as a potential mechanism for error
reporting, analysis, and modeling of error propagation in radiation oncology. We collected
data from the clinical database of a radiation oncology treatment center (“test center”) and
developed several multi-class classification models to predict the error categories of reports.
The model development goals were to find a way to effectively use an unevenly distributed
data set for the training of multi-class classification models, and to accurately categorize
errors from a highly heterogeneous and noisy set of free text reports submitted by personnel
at the test center. Predicting when and where errors occur throughout the treatment delivery
process could provide a better systematic understanding of risk management in patient
safety and quality of care.
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One of the best practices identified in prior literature is the use of input and recommen-
dations received from the entire radiation oncology team (e.g., radiation oncologist, medical
physicist, dosimetrist, linac engineer, therapist, nurse, financial counselor/biller, reception-
ist, and management representative) in the model development process [15]. Following
this practice, we chose to build upon deep and diverse data provided by an established,
commercially available error reduction and regulatory compliance program called Medical
Error Reduction Program (MERP©) (https://www.radphysics.com accessed on 15 January
2023). A product of RadPhysics Services LLC (RPS), MERP provides a comprehensive
framework for input and processing of preventable systems-related errors by members of
the radiation oncology team. RPS supplied the test center data. Another theme seen in
clinical practice and supported by various professional organizations is the identification of
various check points (e.g., dose calculation checks, data entry checks, chart checks, etc.) in
the treatment process that serve as places to detect errors [16]. We have incorporated this
into our framework to keep a common language, which ensures that other researchers and
practitioners will be able to understand the results and apply them to their future work.

2. Data Description and Problem Statement

The data collected from the test center’s clinical database consisted of error reports
from both pre-treatment errors (errors discovered before treatment began) and post-
treatment errors (errors caught after treatment started). We are interested in two fields:
the description field, which contains the free text report of the incident, and the event
category field, which contains the broad category of error, i.e., in which step of the clinical
workflow did the error occur. Our data also included reports of quality assurance, radiation
safety, and medical billing errors. In current practice, determining the category or label
of each error incident from available data requires a qualified individual. This manual
labeling task requires dedicated time and resources and is subject to the reporter’s heuristic
interpretation. The goal of our research was to create a statistical model that can automate
this labeling task by taking the free-text narrative as input and predicting the event category
as output.

There are n = 1121 reports, and the event category field had 16 different labels. As
seen in Figure 2, the event categories are heavily imbalanced in frequency, and several
categories are too small for statistical modeling. Therefore, we grouped the 16 event cate-
gories into four broad categories: Administrative, Standards, Treatment, and Treatment
preparation. The broad categories comprise a detailed breakdown of the overall patient
treatment process. These categories are defined as follows: (1) “Administrative” encom-
passes patient data such as patient information, demographics, reports, etc., (2) “Standards”
entails compliance items such as billing, QA and radiation safety recommendations and
requirements for various machine, equipment, measurements, checks, etc., (3) “Treatment”
means the steps in the administration of radiation including patient setup, imaging, treat-
ment delivery, etc., and (4) “Treatment Preparation” comprises the overall groundwork for
initiating patient treatment such as diagnosis/staging, simulation, prescription, treatment
planning, schedule, etc. Figure 2 shows the frequency distribution of the 16 event categories
(left) and the frequency distribution of the four broad categories (right) is color-coded to
show the assignment of event categories into broad categories. For example, the orange
color used for the event categories Scheduling, Registration, and Patient Docs/Notes is
also assigned to the broad category Administrative.

https://www.radphysics.com
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Figure 2. Frequency distribution of the 16 event categories (left) and the 4 broad categories (right).

3. Materials and Methods

We first considered the problem of classifying the full set of reports into the four broad
categories. Next, we separately considered the set of reports under each broad category
and considered the problem of classifying them into the corresponding event categories.
Following the standard supervised learning workflow, we first constructed the training
data by randomly extracting a subset of rows from the full dataset, and then used the
training data to fit a classification model. The fitted model was then applied to the test data,
which consists of the data points that were not selected in the training data. To quantify
model performance, the predicted labels for the test data were compared to the reported
labels. The training proportion was set at 70%.

For the classification task to be meaningful, the test data must include at least one
report from each category. For a given category, suppose there are n reports from that
category in the full dataset, and let X be the number of reports from that category included
in the test data. Since we randomly selected 30% of the reports to be included in the test
data, X follows a Hypergeometric distribution with parameters N, the population size (i.e.,
the total number of reports), and n, the group size (i.e., the number of reports from that
particular category). Therefore

P[X ≥ 1] = ∑
i≥1

(n
i )(

N−n
b0.3Nc−i)

( N
b0.3Nc)

, (1)

where b·c is the greatest integer function. For our dataset, we need n ≥ 19 to ensure that the
right hand side of Equation (1) is at least 99%. Therefore, if a category has a frequency of 18
or lower, there is some chance that no single report from that category will be selected in the
test data, making the classification task meaningless. To prevent this from happening, we
removed the categories with a frequency of 18 or lower. Thus, we considered the following
models and datasets:

1. “Full data” with 1121 error reports and four broad error categories “Administrative”,
“Treatment”, “Treatment Preparation” and “Standards”

2. “Administrative data” with 363 error reports and two event categories
3. “Treatment data” with 236 error reports and two event categories
4. “Treatment Preparation data” with 260 error reports and three event categories
5. “Standards data” with 228 error reports and two event categories.
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3.1. Data Processing and Feature Extraction

We carried out the following data processing steps prior to fitting the classifica-
tion model.

1. Text pre-processing: For both the training and test sets, the following standard NLP
actions were performed:

• Punctuation removal: This involves removal of all punctuation symbols from
the description of the error reports.

• Text normalization: This involves converting all the error reports to lowercase
letters. This ensures that words represented as ‘DOCTOR’ and ‘doctor’, for
example, are treated as the same word.

• Tokenization: This involves converting the text to tokens, which could be just
words (unigrams) or might include N-grams (which are sequences of N words)
for several choices of N. In our case, we took into consideration all possible
unigrams, bigrams (sequences of two words), and trigrams (sequences of three
words) from the error reports.

2. Feature extraction and weighting: This step involves the construction of a numer-
ical representation of the text documents. Corresponding to each report, we con-
structed a feature vector consisting of weights computed using a well-known tech-
nique called Term Frequency-Inverse Document Frequency (t f -id f ) [17,18]. T f -id f
assigns a weight to a token in a document, with the token receiving more weight if
it appears more frequently in the document, but it also inversely weights the token
based on its frequency of appearance across all documents considered.

3. Dimension reduction using Latent Semantic Analysis: We next applied Latent Seman-
tic Analysis (LSA) [19,20] for dimension reduction of the t f -id f matrix. This involves
performing a reduced rank Singular Value Decomposition (SVD) on the t f -id f matrix.
We considered the singular vectors corresponding to the top 200 singular values for
the full data and the top 50 singular values for the four other datasets.

3.2. Classification Procedure

After constructing the feature vectors, the next step is carry out classification. We
considered the following machine learning algorithms for this step:

1. Linear Support Vector Machine: Linear Support Vector Machine (Linear SVM) [21,22]
is a supervised learning technique with well-known generalization properties, high
accuracy, and computational efficiency. Since our data set is not very large with
n = 1121 error reports, the feature vectors are likely to be longer than the number of
data points. Linear SVM is well-suited for such higher dimensional problems because
it automatically applies regularization.

2. Multilayer Perceptron (MLP): A multilayer perceptron is a type of artificial neural
network that is fully connected [23]. It consists of an input layer, one or more hidden
layers, and an output layer. The data were received by the input layer and transferred
to the first hidden layer. Following that, these inputs were transformed using a weight
and a bias and fed into a function known as the ‘activation function’. The resulting
value is sent to the output layer or, if there is one, to the next hidden layer, and so
on. The output layer is also associated with an activation function, which produces
the desired output. To employ MLP, we performed a one-hot encoding of our label
variable. For the full model, for example, the four broad categories are assigned values
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1], and the data were then fed to the neural
network. We considered one hidden layer of dimension 50 for each of the data sets.

3. Convolutional Neural Network (CNN): Convolutional Neural Networks are a type
of artificial neural network that is widely used in image classification. A CNN, like
regular artificial neural networks, is made up of fully connected layers that are linked
to activations in the previous layer. We chose this model based on previous research
that has shown that CNNs can successfully classify sentences and medical text [24,25].
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As with MLP, we considered 1 hidden layer with dimension 50 for this model. We
consider 128 output filters for the convolution layer, with the length of the convolution
window set to 5. These convolution layer hyperparameter values were determined
through cross-validation using the following options: Number of output filters: 32,
64, 128; Convolution window length: 5, 7, 9.

We employed the following Python libraries for this analysis: the Linear SVM model
was implemented using scikit-learn, the neural network based models were implemented
using Keras, and the text processing was carried out using Spacy.

4. Results

After training the model, we investigated the model performance based on the test
data. For the ith label in the data set, let TPi, TNi, FPi, FNi denote the number of True
Positives, True Negatives, False Positives, and False Negatives, respectively. For each label,
we calculated the following performance metrics:

1. Precisioni =
TPi

TPi+FPi

2. Recalli =
TPi

TPi+FNi

3. F1-scorei =
2×Precisioni×Recalli

Precisioni+Recalli
Let ni denote the true number of error reports in the test data with label i, and let

nc denote the number of classification labels. From Figure 2 we know that the classes
are highly imbalanced. Therefore, we used the following metrics to evaluate the model
performance, which take into account the true size of each classification label.

1. Balanced Accuracy = ∑i Recalli
nc

2. Weighted Precision = ∑i ni Precisioni
∑i ni

3. Weighted Recall = ∑i ni Recalli
∑i ni

4. Weighted F1-score = ∑i ni F1-scorei
∑i ni

4.1. Model Performance

In Tables 1–4, we report the performance metrics for the following models, respectively.
The performance metrics for each model are averaged across 10 replications, and the
corresponding standard deviations are given in parentheses.

1. Tf-idf (for feature extraction) + Linear SVM (for classification)
2. Tf-idf followed by LSA (for feature extraction) + Linear SVM (for classification)
3. Tf-idf followed by LSA (for feature extraction) + MLP (for classification)
4. Tf-idf followed by LSA (for feature extraction) + CNN (for classification)

Given the significant class imbalance, the precision value for neural network-based
models may become undefined (Tables 3 and 4). To address this, we used class weights,
assigning higher weights to minority classes and lower weights to majority classes.

Table 1. Model performance on test data with tf-idf + Linear SVM.

Metric Full Administrative Treatment Treatment
Preparation Standards

Balanced
Accuracy 90.8 (1.1) 97.4 (2.8) 98.2 (1.1) 84.5 (5.3) 90.2 (5.0)

Weighted
Precision 91.7 (0.8) 98.9 (0.9) 98.2 (1.1) 91.6 (3.3) 98.4 (0.8)

Weighted
Recall 91.2 (0.9) 98.8 (1.1) 98.2 (1.2) 91.3 (3.2) 98.4 (0.8)

Weighted F1 91.2 (1.0) 98.8 (1.1) 98.2 (1.2) 90.9 (3.4) 98.3 (0.9)
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Table 2. Model performance on test data with tf-idf + LSA + Linear SVM.

Metric Full Administrative Treatment Treatment
Preparation Standards

Balanced
Accuracy 90.2 (1.6) 96.8 (3.4) 97.9 (1.1) 83.1 (5.4) 91.2 (5.9)

Weighted
Precision 91.2 (1.3) 98.6 (0.9) 97.8 (1.2) 91.6 (3.1) 98.6 (0.9)

Weighted
Recall 90.5 (1.5) 98.4 (1.2) 97.7 (1.2) 91.2 (3.0) 98.6 (0.9)

Weighted F1 90.6 (1.4) 98.5 (1.1) 97.8 (1.2) 90.7 (3.2) 98.4 (1.1)

Table 3. Model performance on test data with tf-idf + LSA + MLP.

Metric Full Administrative Treatment Treatment
Preparation Standards

Balanced
Accuracy 88.9 (1.1) 97.2 (1.7) 97.7 (1.2) 89.4 (4.9) 99.0 (3.2)

Weighted
Precision 90.3 (0.7) 97.3 (1.0) 97.6 (1.2) 90.1 (3.8) 99.9 (0.5)

Weighted
Recall 89.2 (0.9) 96.4 (1.6) 97.5 (1.3) 86.7 (4.4) 99.9 (0.5)

Weighted F1 89.3 (0.9) 96.6 (1.5) 97.5 (1.3) 87.4 (4.1) 99.8 (0.5)

Table 4. Model performance on test data with tf-idf + LSA + CNN.

Metric Full Administrative Treatment Treatment
Preparation Standards

Balanced
Accuracy 62.4 (4.6) 89.4 (2.9) 90.1 (3.9) 61.2 (5.9) 84.3 (7.5)

Weighted
Precision 71.7 (6.1) 93.4 (1.2) 91.4 (3.6) 77.4 (4.4) 94.2 (1.8)

Weighted
Recall 63.6 (4.6) 81.1 (5.2) 90.1 (4.0) 56.8 (7.3) 79.9 (17.3)

Weighted F1 63.8 (4.7) 84.5 (4.0) 90.2 (3.9) 60.1 (6.8) 83.4 (13.8)

The automated labeling algorithms, according to these tables, performed quite accu-
rately for the first three models, with performance metrics ranging from 90% to 100% in
most cases. The algorithms are the most accurate for the Administrative data, followed by
the Standards data, then the Treatment data, the Treatment Preparation data, and finally
our Full data (considering all the metrics, and for all classification methods). This was
expected because administrative errors were heavily over-represented in the training data,
implying that our full model would learn more about the language from administrative
errors than from any other type of error. However, the downside to this is that the full
data-based classification procedure is also more biased towards classifying text as an ad-
ministrative error. By comparing the results in Tables 1 and 2, we can conclude that the
model performance with and without LSA is comparable, indicating that the extra step of
LSA is not required.

Looking at the results for the neural network-based models in Tables 3 and 4, we
see that the MLP-based model performs similarly to the SVM-based models, while the
CNN-based model performs worse. This contradicts previous research, which shows that
the CNN model performs well in similar tasks such as sentence categorization and medical
text classification [24,25]. A possible explanation is that our data sets are too small, causing
backpropagation to fail for CNN. It is also possible that the pooling layer is causing us to
lose valuable information during the dimension reduction process.
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4.2. Analyzing Reports Where Predicted Category Is Different from Reported Category

For a deeper dive into the model results, we examined two incidents in which the
reported category differed from the predicted category. To ensure statistical robustness,
we ran our second classification model (T f -id f+LSA+SVM) 1000 times to consider the
full distribution of predicted categories. The results are displayed in Table 5. Reporters
labeled both entries as ‘Treatment’ errors, but the content of each entry suggests that the
error occurred during the ‘Treatment Preparation’ phase. The model correctly predicts the
broad category of ‘Treatment Preparation’ for the first incident 100% of the time and 88.9%
of the time for the second incident.

Table 5. Predicted categories.

Error Report Text
Description Administrative Treatment Treatment

Preparation Standards

Patient’s LMT setup
instructions indicated that the

RMT TSD was changed.
Incorrect naming of field in

setup instrucitons.

0% 0% 100% 0%

Field #1 setup instructions
state shift isocenter, but does
not say in which direction.

0% 11.1% 88.9% 0%

We believe that the reporters may have mislabeled these entries in the MERP program.
The MERP program prompts the reporter to indicate whether the error occurred before or
after the start of patient treatment (pre-treatment error or post-treatment error). Patient
setup instructions are typically entered in the pre-treatment phase of the plan (treatment
preparation) at various points in the process tree such as CT simulation, treatment planning,
initial patient setup (positioning) on the treatment machine, etc. These instructions include
information such as field name, target-source distance, shift amount and directions, etc. A
review of the accuracy of the text features in entries using “setup” showed the vast majority
of actual errors occurred at the pre-treatment stage and not the post-treatment stage. These
reporter entry mislabelings most likely occurred because of confusion as to where to enter
the error in the MERP program. This is because new patient setup instructions may also
be created in the post-treatment phase of subsequent treatments due to changes in patient
anatomy, positioning, original shifts from isocenter or other marks, etc. Confusion over
where to enter these types of errors in the MERP program may have contributed to the
human error in these cases. These are two instances where our model, or future models,
developed in a similar manner and were used as a background observer to error reporting,
which would be useful to the workflow of staff members. Team members may be biased to
report an error based on their current context, but the model assistance would detect the
error and suggest a change in cases where a discrepancy between preparation language
and active language is detected.

5. Discussion

The field of radiation oncology is highly vulnerable to errors due to complex and
intrinsically interdependent treatment workflows. Ineffective error management can lead
to reduced quality, increased inefficiency, and increased legal and/or regulatory liabilities.
The complexity of the entire system connected with large numbers of interactions and
inherent trust of digital transfers may result in errors not being identified. However,
various periodic checks in siloed settings are often performed manually using paper and
spreadsheets.

This study shows that NLP-aided statistical algorithms can perform automated error
labeling with high accuracy, even with a relatively small training dataset. Note that many of
these error reports are not ideal training material because they contain grammatical errors,
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incomplete language, acronyms, and medical jargon. Nonetheless, the models were able to,
for the most part, correctly distinguish labels in both broad categories and event categories.
Furthermore, the model was able to detect certain instances where the human reporter
made a mistake in classifying the error, and the model was able to correctly identify the
“true” root cause of the error (see Table 5). When the model failed, this limitation was most
likely explained by the uneven distribution of the training data set rather than any issues
with the model construction. The second implication of this study for future research,
therefore, is that there is a clear path for improving the model. Moving forward, it will be
critical to use evenly distributed and sufficiently extensive data sets to develop models that
improve on the process outlined in this study. This will require the collection of rich data
sets from various treatment centers to ensure robust training of the classification models.
In this context, we would like to point out related recent research using an Explainable
Artificial Intelligence (XAI) framework, which aims at shortening the distance between AI
and clinical practice for the investigation of breast cancer invasive disease events [26].

Because of their ability to look past contextual bias and the heuristics of individual
reporters and observe the larger patterns, these models have significant implications for the
improvement of workflow and error reporting in radiation oncology. We can see this from
the analysis where the model predictions differed from the reported labels. Our full model
was able to notice nuanced differences in setup vs. active language and, as a result, was
able to identify errors that, while labeled as ‘treatment’ errors by reporters, likely had their
root cause in ‘treatment preparation’. While we do not advocate replacing human reporters
with artificial intelligence that automatically detects and reports deviations, we do believe
that the future of these models will involve the use of artificial intelligence “helpers”. These
helpers will passively observe the actions of human reporters and make suggestions when
these actions deviate from larger patterns, similar to a spell checker software. This type of
AI implementation would keep control in the hands of human reporters while assisting
them by providing access to experiences beyond the immediate reporter perspective. With
time, an AI introduced in this manner would also learn more, improving its ability to make
accurate predictions. Introducing this type of helper AI would require reporters to spend
less time determining what the “correct” error classification is, thereby allowing them more
time to treat and direct their attention to their patients. This will also reduce the number
of different reports that share the same error classification in an institution’s or treatment
center’s system, allowing for a more clear path for determining causal factors and initiating
root cause analysis, and eventually, error mitigation or elimination.

We envision a future where predictive models such as the one we have developed will
be embedded into automated detection or advisory tools for the entire radiation team [27].
Using models in this way allows the team members in charge of reporting and analyzing
errors to retain agency while receiving guidance and access to larger trends. Furthermore,
our models simulate a truly objective and quantifiable risk management strategy free from
human subjectivity. This important benefit can help pivot the perspective on medical errors
from a blame culture to a safety culture [28]. As we will discuss in Section 5, we propose
that models like this one be incorporated into the overall treatment process as guides,
giving practitioners more time to treat patients and relieving the entire radiation team from
their reliance on individual heuristics.

6. Conclusions

Our research shows that even with a relatively small and noisy training database,
NLP-based statistical algorithms show excellent accuracy in carrying out automated error
labeling from free text reports. Our algorithms achieve performance metrics ranging from
90% to 100% in most cases. Remarkably, in some scenarios, the model was able to detect
cases where the human reporter made a mistake in classifying the error, and in these cases,
the model was able to correctly identify the “true” root cause of the error.

Overall, we believe that the results of this study are promising to the potential of AI
utilization in the field of radiation oncology, and that they also offer several direct pathways
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for subsequent research. Our models provide the groundwork for a systematic understand-
ing of the probability of an error occurring in the overall treatment process. The use of
AI as a risk management tool could measurably improve patient safety, compliance, and
efficiency in the radiotherapy industry. Prospective identification of incidents could assist
in effective mitigation of unforeseen hazards. In conclusion, let us leverage the strengths of
machine learning so that radiation oncologists and members of the entire treatment team
are given more time and bandwidth to focus on their strengths and provide better care
to patients. Most importantly, the manner in which error is identified, investigated, and
corrected in such an automated labeling system can alleviate the fear of error and promote
a no-fault, just culture [28].
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