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Abstract: Background: The aim of this study was to exploit integrated PET/MRI to simultaneously
evaluate the morphological, component, and metabolic features of advanced atherosclerotic plaques
and explore their incremental value. Methods: In this observational prospective cohort study, patients
with advanced plaque in the carotid artery underwent 18F-FDG PET/MRI. Plaque morphological
features were measured, and plaque component features were determined via MRI according to
AHA lesion-types. Maximum standardized uptake values (SUVmax) and tissue to background ratio
(TBR) on PET were calculated. Area under the receiver-operating characteristic curve (AUC) and
net reclassification improvement (NRI) were used to compare the incremental contribution of FDG
uptake when added to AHA lesion-types for symptomatic plaque classification. Results: A total of
280 patients with advanced plaque in the carotid artery were recruited. A total of 402 plaques were
confirmed, and 87 of 402 (21.6%) were symptomatic plaques. 18F-FDG PET/MRI was performed
a mean of 38 days (range 1–90) after the symptom. Increased stenosis degree (61.5% vs. 50.0%,
p < 0.001) and TBR (2.96 vs. 2.32, p < 0.001) were observed in symptomatic plaques compared with
asymptomatic plaques. The performance of the combined model (AHA lesion type VI + stenosis
degree + TBR) for predicting symptomatic plaques was the best among all models (AUC = 0.789).
The improvement of the combined model (AHA lesion type VII + stenosis degree + TBR) over AHA
lesion type VII model for predicting symptomatic plaques was the highest (AUC = 0.757/0.454,
combined model/AHA lesion type VII model), and the NRI was 50.7%. Conclusions: Integrated
PET/MRI could simultaneously evaluate the morphological component and inflammation features
of advanced atherosclerotic plaques and provide supplementary optimization information over
AHA lesion-types for identifying vulnerable plaques in atherosclerosis subjects to achieve further
stratification of stroke risk.
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1. Introduction

Atherosclerotic carotid artery disease is found in 15–20% of patients who present with
ischemic stroke or transient ischemic attack [1]. The global prevalence of atherosclerotic
carotid plaque is 21.1%, equivalent to 815.76 million affected people [2]. The most im-
portant mechanism by which carotid plaque causes stroke or transient ischemic attack
is plaque rupture [3]. Such carotid plaques, with a high risk of rupture, are so-called
vulnerable plaques.

Degree of luminal stenosis measured by ultrasound serves as the sole morphological
imaging marker for selecting vulnerable plaque to undergo a therapeutic approach. How-
ever, several trials found discrepancy in absolute risk reduction in patients with the same
degree of luminal stenosis, highlighting the importance of factors other than degree of lumi-
nal obstruction in determining risk [4–6]. Thanks to developments in high-resolution MRI,
several component biomarkers, such as intraplaque hemorrhage, lipid core, and irregular
plaque surface have emerged in characterizing the vulnerability status of plaques [7–9]. Fur-
ther, a scoring system (American Heart Association [AHA] lesion-types) based on plaque
component was proposed to assess plaque vulnerability. However, even with the help of
machine learning, the diagnostic test based on single imaging biomarker mentioned above
showed only average validity [10], highlighting the demand for advanced evaluation.

Recent advances in basic science have established the fundamental role of inflam-
mation in all stages of atherosclerosis, shifting the focus to inflammation evaluation [11].
18F-FDG is the most widely used radiotracer for the molecular imaging of atherosclerosis.
Currently, FDG PET/CT is providing new insights on metabolic evaluation-based stroke
risk classification [12]. The incremental value of PET over CT was demonstrated in a
longitudinal study; however, the component evaluation was neglected [13]. Integrated
PET/MRI could measure both PET activity and plaque component at the same time. How-
ever, the study was focused only on the prevalence of coincident FDG uptake in plaques
detected by MRI [14]. The incremental value of PET over MRI in carotid plaque evaluation
is still unclear.

In the current study, we aim to exploited integrated PET/MRI to simultaneously
evaluate the morphological component and metabolic features of advanced atherosclerotic
plaques and explore the incremental value of PET/MRI.

2. Materials and Methods
2.1. Patient Selection

Subjects were recruited for this observational, prospective cohort study at the Na-
tional Center for Neurological Disorders between September 2020 and December 2022.
Subjects were offered a carotid 18F-FDG PET/MRI study if they met the following clinical
criteria: (a) aged 45–85 years, (b) presence of advanced plaque in unilateral or bilateral
carotid artery determined by ultrasonography (wall thickening >1.5 mm [15]), and (c) no
contraindications for MR imaging or contrast material injection. Exclusion criteria were:
(a) prior carotid endarterectomy, carotid stenting, or neck radiation therapy, (b) any prior
cancer or chemotherapy history, (c) presence of acute or chronic inflammatory or autoim-
mune disease (based on documented medical history) or use of chronic anti-inflammatory
therapy at the time of PET/MR imaging, (d) poor image quality. Demographics and clinical
information were recorded. This study was approved by Xuanwu Hospital Medical Ethics
Committee ([2022]023). All participants provided written informed consent.

2.2. Acquisition Protocols with the Integrated PET/MRI System

PET and MR vessel wall imaging were performed simultaneously. All patients were
asked to fast for at least 6 h before 18F-FDG PET imaging. Imaging was performed only if
fasting glucose was lower than 7.7 mmol/L before tracer injection. 18F-FDG was injected
intravenously at a dose of 3–4 MBq/kg. The acquisition started 90–120 min after tracer
injection using an integrated PET/MRI system (uPMR790, United Imaging Healthcare,
Shanghai, China). MR vessel wall imaging was performed with an 8-channel carotid coil.
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The PET/MR image acquisition range was centered on the carotid bifurcation, with an
18 cm coverage. High-resolution carotid vessel wall MRI sequences included 3D TOF-MRA,
3D T1, 3D T2, and post-contrast (gadolinium-DTPA, 0.1 mmol/kg, 2.5 mL/s) enhanced 3D
T1 (T1C+). The detailed MRI acquisition parameters are listed in Supplemental Table S1.
PET images were reconstructed using a hyperiterative algorithm (matrix size = 256 × 256,
and thickness = 1.4 mm) with time-of-flight information following data corrections for
attenuation, scatter, and random coincidences.

2.3. Analysis of FDG PET/MR Images

PET/MR image clinical conventional analysis was performed using a dedicated plaque
analysis workstation (United Imaging Healthcare, Shanghai, China). MR images were
analyzed by three experienced radiologists (YZ, CZ, and YS; >10 years of experience
in neuroradiology) who were blinded to all other information, of which two (YZ and
CZ) independently reviewed the images. If the review results were inconsistent, a third
radiologist (YS) performed a peer review of the inconsistent MR images. For clinical
qualitative analysis, plaque composition and surface status were classified according to
AHA lesion-types [16]: (a) Type I–II: near-normal wall thickness, (b) Type III: diffuse
intimal thickening or small eccentric plaque with no calcificationno calcification, (c) Type
IV–V: plaque with a lipid or necrotic core surrounded by fibrous tissue with possible
calcification, (d) Type VI: complex plaque with possible surface defect, hemorrhage, or
thrombus, (e) Type VII: calcified plaque, or (f) Type VIII: fibrotic plaque without lipid core
and with possible small calcifications. For quantitative morphological analysis, the degree
of stenosis (NASCET), plaque area, and remodeling index were automatically calculated at
the most stenotic slice by manually drawing regions of interest. The SUVmax of the plaque
was calculated as the maximum of all plaque slices by delineating the circular regions of
interest of each slice. The maximum target-to-background ratio (TBRmax) was calculated as
the ratio of SUVmax to the venous blood pool SUVmean [17,18].

2.4. Clinical Evaluation

Clinical evaluation was performed by two experienced neurosurgeons (10 years’
experience in neurovascular surgery, BY, YBW). An atherosclerotic carotid plaque was
considered a symptomatic plaque when it was within the ipsilateral carotid artery ter-
ritory upstream from a confirmed transient ischemic attack and ischemic stroke within
3 months [19].

2.5. Statistical Methods

Descriptive data are presented as mean ± standard error of the mean (SEM) for
continuous parametric variables, median [interquartile range (IQR)] for continuous non-
parametric data, and frequency with proportions for nominal variables as appropriate. For
subgroup analysis, all plaques were divided into high and low FDG uptake groups. High
FDG uptake defined as ≥median SUVmax of 402 advanced plaques. Independent Student’s
t test and Mann-Whitney U test was used to compare the differences between continuous
variables, and Fisher’s exact test was performed to determine the differences between cate-
gorical variables. Multivariate logistic regression analysis was performed for each single
feature. We assessed the improvement in discrimination (symptomatic or asymptomatic)
by comparing the area under the receiver-operating characteristic curves (AUC) in 3 models
(model 1: AHA lesion type + TBR; model 2: AHA lesion type + stenosis degree; model
3: model 1 + model 2) with component alone. We assessed the classification of risk using
the net reclassification improvement (NRI) formula [20]: NRI = [Prob (being correctly up-
ward reclassified/event) − Prob (being incorrectly downward reclassified/event)] + [Prob
(being correctly downward reclassified /nonevent) − Prob (being incorrectly classified
to an upward category/nonevent)]. Statistical significance was determined if the 2-tailed
probability value was <0.05. All analyses were performed using SPSS 28.0.0.
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3. Results
3.1. Patient Population

A total of 280 patients (mean age 64 ± 7 years; 86.1% male) with advanced carotid
plaque were included in the study. Demographic and clinical characteristics are described
in Table 1.

Table 1. Patient population.

n %

Vascular risk factors/comorbidities
Active smoking 92 32.9
Former smoking 54 19.3
Hypertension 213 76.1
Diabetes mellitus 109 38.9
Hyperlipidemia 90 32.1
Coronary artery disease 68 24.3
Overweight (body mass index > 25 kg/m2) 155 55.4

Baseline medication
Antiplatelet agent plus statin 188 67.1
Statin only 13 4.6
Antiplatelet agent only 10 3.6
Neither antiplatelet agent nor statin 69 24.7

3.2. Features of Advanced Carotid Plaques on MR Vessel Wall Imaging

A total of 402 advanced carotid plaques were confirmed based on MR vessel wall imag-
ing, and 87 of 402 (21.6%) were symptomatic plaques. 18F-FDG PET/MRI was performed a
mean of 38 days (range 1–90) after the symptom. Quantitative analysis of morphological
and component features (Table 2) found significantly higher stenosis degree (61.5% vs.
50.0%, p < 0.001) and higher prevalence of AHA lesion type VI (50.6% vs. 21.9%, p < 0.001)
in the symptomatic plaques compared to asymptomatic plaques, while lower prevalence of
AHA lesion type IV-V (32.2% vs. 46.3%, p = 0.018) and AHA lesion type VII (9.2% vs. 24.4%,
p = 0.002) was found in the symptomatic plaques compared to asymptomatic plaques.

Table 2. PET/MRI features of symptomatic and asymptomatic advanced plaque.

Features Symptomatic Plaque
(n = 87)

Asymptomatic Plaque
(n = 315) p Value

MRI
Mean luminal diameter, mm, median (IQR) 2.43 (1.69–2.95) 3.11 (2.32–4.10) <0.001
Mean wall diameter, mm, x ± SD 8.46 ± 1.99 8.39 ± 1.61 0.938
Mean wall thickness, mm, median (IQR) 2.98 (2.40–3.55) 2.43 (1.95–3.04) <0.001
Stenosis degree, %, median (IQR) 61.5% (53.3–70.5%) 50.0% (38.0–63.0%) <0.001
Wall area, mm2, median (IQR) 55.46 (39.23–75.95) 49.11 (38.47–63.17) 0.069
Luminal area, mm2, median (IQR) 4.97 (2.48–7.28) 8.09 (4.57–13.82) <0.001
Normalized Wall Index, median (IQR) 0.93 (0.88–0.97) 0.85 (0.75–0.93) <0.001
Total vessel area, mm2, median (IQR) 59.05 (43.82–83.22) 60.94 (46.31–76.10) 0.789
Remodeling index, median (IQR) 1.44 (1.06–2.14) 1.36 (1.00–1.77) 0.121
AHA lesion types

Type IV-V, n (%) 28 (32.2%) 146 (46.3%) 0.018
Type VI, n (%) 44 (50.6%) 69 (21.9%) <0.001
Type VII, n (%) 8 (9.2%) 77 (24.4%) 0.002
Type VIII, n (%) 7 (8.0%) 23 (7.3%) 0.815

PET
SUVmax, median (IQR) 2.30 (1.68–2.92) 1.93 (1.52–2.49) 0.007
TBR, median (IQR) 2.96 (2.35–3.80) 2.32 (1.81–3.00) <0.001
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3.3. 18F-FDG Uptake in Advanced Carotid Plaques Measured with PET

Increased 18F-FDG uptake was observed in symptomatic plaques compared with
asymptomatic plaques (Table 2; SUVmax =2.30 (1.68–2.92) vs. 1.93 (1.52–2.49) and TBR = 2.96
(2.35–3.80) vs. 2.32 (1.81–3.00); p = 0.007, p < 0.001, respectively). Further subgroup analysis
divided the advanced carotid plaques into 18F-FDG high uptake and low uptake group
according to the median SUVmax (SUVmax ≥ 1.99 represented high uptake group). For
high uptake group the prevalence of AHA lesion type VI was higher in symptomatic
plaques compared with asymptomatic plaques (56.9% vs. 27.5%, p < 0.001, Figure 1),
while the prevalence of AHA lesion type VII was lower in symptomatic plaques com-
pared with asymptomatic plaques (2.0% vs. 16.9%, p = 0.006). No significant difference
in the prevalence of AHA lesion type IV-V (37.3% vs. 47.9%, p = 0.191) and AHA lesion
type VIII (3.9% vs. 7.7%, p = 0.350) were observed between symptomatic plaques and
asymptomatic plaques. Similarly, for the low uptake group, the prevalence of AHA le-
sion type VI was higher in symptomatic plaques compared with asymptomatic plaques
(41.7% vs. 17.3%, p < 0.001), and no significant difference in the prevalence of AHA lesion
type VIII (13.9% vs. 6.9%, p = 0.292) were observed between symptomatic plaques and
asymptomatic plaques. However, for the low uptake group, the prevalence of AHA le-
sion type IV-V was lower in symptomatic plaques compared with asymptomatic plaques
(25.0% vs. 45.1%, p = 0.026), while no significant difference was found in the prevalence
of AHA lesion type VII (19.4% vs. 30.6%, p = 0.177) between symptomatic plaques and
asymptomatic plaques.
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Figure 1. Prevalence of AHA lesion type in both the symptomatic and the asymptomatic advanced
plaques in the 18F-FDG high uptake (A) and low uptake (B) group. Three patterns can be summarized:
(1) The prevalence of AHA lesion type VI in symptomatic plaques was significantly higher than that
in asymptomatic plaques for both high uptake and low uptake group. (2) No significant difference
was found in the prevalence of AHA lesion type VIII between symptomatic and asymptomatic
plaques for both high uptake and low uptake group. (3) The prevalence of AHA lesion type IV-V was
significantly higher in the asymptomatic plaques only for low uptake group, while the prevalence
of AHA lesion type VII was significantly higher in the asymptomatic plaques only for high uptake
group. * p < 0.05, ** p < 0.01, *** p < 0.001, ns p > 0.05.
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3.4. Reclassification of Ischemic Stroke Risk

In multivariate logistic regression analysis, stenosis degree, component features (AHA
lesion type IV–V, VI and VIII) and TBR were significantly correlated with symptomatic
plaques (Table 3). The AUC of stenosis degree and TBR for predicting symptomatic plaques
were 0.702, 0.673, respectively. The performance of the combined model (AHA lesion type
VI + stenosis degree + TBR) for predicting symptomatic plaques was the best among all
models (AUC = 0.789, Figure 2). NRI analysis showed that compared to the AHA lesion
type model (type IV–V, VI, VII, VIII) the accuracy of the combined models (AHA lesion
type IV–V + stenosis degree + TBR, AHA lesion type VI + stenosis degree + TBR, AHA
lesion type VII + stenosis degree + TBR, AHA lesion type VIII + stenosis degree + TBR)
for predicting symptomatic plaques improved by 44.5%, 13.9%, 50.7%, 38.3%, respectively
(Figures 3 and 4, Supplementary Materials Table S2).
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Figure 2. ROC of combined model in predicting symptomatic plaque. (A) AHA lesion type IV-V. (B) 
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Figure 2. ROC of combined model in predicting symptomatic plaque. (A) AHA lesion type IV-V.
(B) AHA lesion type VI. (C) AHA lesion type VII. (D) AHA lesion type VIII. ROC for AHA lesion type
highlighted in blue, ROC for model 1 (AHA lesion type + TBR) highlighted in red, ROC for model 2 (AHA
lesion type + stenosis degree) highlighted in green, and ROC for model 3 (AHA lesion type + stenosis
degree + TBR) highlighted in purple. AUC = area under the curve; ROC = receiver-operating characteristic.

Table 3. Multivariate logistic regression analysis and ROC of single component model.

OR 95% CI p Value AUC p Value

Stenosis degree 1.742 1.191 2.549 0.004 0.702 <0.001
Type IV–V 5.269 1.178 23.568 0.030 0.485 0.648
Type VI 14.596 3.218 66.202 <0.001 0.666 <0.001
Type VII 4.195 0.852 20.642 0.078 0.454 0.150
Type VIII 7.297 1.329 40.068 0.022 0.512 0.722
SUVmax 0.947 0.625 1.434 0.799 - -
TBR 1.456 1.077 1.968 0.014 0.673 <0.001
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Figure 3. Representative example of AHA lesion type IV-V carotid plaque imaged with integrated
18F-FDG PET/MRI. (A) Symptomatic plaque with high FDG uptake. (B) Asymptomatic plaque
with low FDG uptake. Note the presence of lipid core on post-contrast T1WI (hypo-intensity area
without enhancement) in the two cases. High accumulation of 18F-FDG was detected with PET in the
symptomatic plaque ((A); SUVmax = 2.30, TBR = 3.80). In contrast, low accumulation of 18F-FDG was
detected with PET in the asymptomatic plaque ((B); SUVmax = 1.37, TBR = 1.37).
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Figure 4. Representative example of AHA lesion type VII carotid plaque imaged with integrated
18F-FDG PET/MRI. (A) Symptomatic plaque with high FDG uptake. (B) Asymptomatic plaque with
low FDG uptake. Note the presence of calcification on all sequences (hypo-intensity area) in the
two cases. High accumulation of 18F-FDG was detected with PET in the asymptomatic plaque ((A);
SUVmax = 3.80, TBR = 4.45). In contrast, low accumulation of 18F-FDG was detected with PET in the
symptomatic plaque ((B); SUVmax = 1.47, TBR = 1.22).
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4. Discussion

In this study, we evaluated the morphological, composition and metabolic features of
402 advanced carotid plaques in 280 patients using integrated PET/MRI. The prevalence of
AHA lesion type IV-V and type VII in symptomatic plaques varied under different inflam-
matory uptake status. Compared with AHA lesion-types alone, PET uptake and stenosis
degree could significantly improve the classification of vulnerable plaques, especially for
AHA lesion type IV-V and type VII plaques.

4.1. Association between Morphological and Inflammation Features of Carotid Plaque

PET is the most clinically proven technique to evaluate inflammation, owing to the
assistance of high-sensitivity radioactive tracer 18F-FDG [21]. The relationship between
morphological characteristics and the intensity of 18F-FDG uptake has been previously
evaluated using PET/CT in both normal appearance carotid artery and advanced carotid
plaque. 18F-FDG uptake was significant higher in symptomatic plaques compared to that in
asymptomatic [22–24], which is consistent with the present findings. The degree of luminal
stenosis is the only morphological indicator to determine whether patients with advance
carotid plaque should undergo revascularization, according to the current guideline from
the European Society for Vascular Surgery (ESVS) [25]. Moreover, the risk score including
18F-FDG uptake and stenosis severity in carotid plaque proposed by Kelly et al. [13] could be
used to improve the identification of recurrent stroke. Previous studies have preliminarily
described the relationship between morphology and inflammatory features of carotid
plaque. However, histopathologic studies have demonstrated considerable differences in
rupture risk between plaques with identical morphological features [26]. Further studies
have found that the specific components of the plaque, such as intraplaque hemorrhage,
lipid core, and calcification, were the reasons for this difference [7]. The relationship
between occurrence of calcification, CT low-density plaque, and 18F-FDG uptake have been
previously evaluated by PET/CT study [27]. However, it is difficult to further investigate
other components such as fibrous, lipid, and hemorrhage of advanced plaque with CT
because of overlap in Hounsfield units and the small size of these lesions.

4.2. Association between Component and Inflammation Features of Advanced Carotid Plaque

In this study, we took advantage of simultaneous acquisition of 18F-FDG PET and
MR vessel wall imaging to compare the component and inflammation characteristics of
advanced carotid plaques. Owing to its high resolution, MR vessel wall imaging seems
particularly well suited for the characterization of vulnerable plaques according to the AHA
lesion-types [16]. The relationship between complex compositions of carotid plaques with
MRI and the intensity of 18F-FDG uptake has been previously evaluated using two separate
imaging sessions [28]. High 18F-FDG uptake was associated with lipid core [29], intraplaque
hemorrhage [30] compared to fibrous tissue and calcification. However, the potential risk
of inaccurate uptake measure caused by poor spatial registration between the two separate
imaging sessions restricted the use of inflammation evaluation in carotid plaque. Integrated
PET/MRI system provided the insight to the precise and simultaneous analysis of 18F-
FDG PET images of carotid arteries [31]. High prevalence of AHA lesion type VI as
well as high 18F-FDG uptake was found in symptomatic carotid plaques in the PET/MRI
study [32], and this finding was consistent with ours. Though Hyafil [32] et al. failed
to find any significant difference for other AHA lesion types between symptomatic and
asymptomatic plaques, significantly lower prevalence of AHA lesion type IV-V and type
VII were found in the symptomatic plaques in this study. In addition, another interesting
phenomenon was observed in this study that AHA lesion type IV-V was less prevalent
in the symptomatic arteries (32.2% vs. 46.3%). This unusual finding seems to go against
the convention that symptomatic plaques have larger lipid content [33]. However, it is in
accordance with previous suggestions by Sadat et al. [34] that at the time of plaque rupture
inevitably there was escape of lipid-rich atheromatous debris from the plaque. After the
escape of atheromatous debris, plaque may be left only with MR-evident fibrous content.
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Sadat et al. [34] also found that asymptomatic ruptured plaque had higher percentage
lipid volume than asymptomatic non-ruptured plaques (61% vs. 25%). The process that
asymptomatic evolved to symptomatic plaque might be accompanied by the dynamic
changes of morphologic and component features. Such asymptomatic plaques with large
lipid content might have reached a ‘pre-symptomatic’ state at which they are becoming
high-risk, hence the early classification as well as further intervention to stop or slow down
the process is needed.

4.3. Incremental Value of 18F-FDG PET in Classification Pre-Symptomatic Stage of Advanced
Carotid Plaque

The potential risk factors which prompt asymptomatic plaque to evolve into pre-
symptomatic and ultimately rupture are not fully understood. Recent studies have pre-
liminarily demonstrated several morphological and component features, such as degree
of luminal stenosis [4], intraplaque hemorrhage [8], and lipid core [9], which indepen-
dently predict future cardiovascular events in asymptomatic persons with subclinical
plaques. However, the understanding of the role of plaque inflammation in first-ever
clinical manifestations of cardiovascular disease in asymptomatic persons with subclini-
cal atherosclerosis remains limited, as was explicitly highlighted by a PET/CT study of
symptomatic patients [35]. In the present study, we found the interesting result that the
prevalence of AHA lesion types in symptomatic and asymptomatic plaques varies under
different inflammatory uptake status, which can be summarized into the following three
patterns. (1) The prevalence of AHA lesion type VI in symptomatic plaque was significantly
higher than that in the asymptomatic group. This relationship remained unchangeable
under both inflammation status, indicating complex plaque with possible surface defect,
hemorrhage, or thrombus had a high probability of representing an active state no matter
what the inflammation status was. (2) There was no significant difference in the prevalence
of AHA lesion type VIII between symptomatic and asymptomatic plaque, and this rela-
tionship also remained unchangeable under both inflammation status, indicating fibrotic
plaque was in a stable state. (3) The prevalence of AHA lesion type IV-V and type VII were
higher in asymptomatic plaque, and the differences were only significant under specific
inflammation status, indicating inflammation played an important role in evolution for
plaque with a lipid or necrotic core and plaque with calcification. Inflammation features
measured by 18F-FDG could optimize the AHA lesion-types to identify the more vulnerable,
pre-symptomatic stage carotid plaque.

There were several limitations in this study. First, histological validation of AHA
lesion-types in the carotid plaques could not be provided. Second, further quantitative
evaluation of volume of each plaque component was not performed. Third, the potential
value of 18F-FDG uptake in stroke risk classification needed to be validate in the longitudinal
cohort. Forth, an artificial intelligence and radiomics model should be further developed to
predict FDG uptake status of carotid plaques and offer a feasible method for optimizing
PET examinations to evaluate the risk of stroke.

5. Conclusions

In summary, integrated PET/MRI could simultaneously evaluate the morphological
component and inflammation features of advanced atherosclerotic plaques and provide
supplementary optimization information over AHA lesion-types for identify vulnerable
plaques in atherosclerosis subjects. Longitudinal cohort is needed to further validate the
incremental value of PET/MRI in future stroke risk prediction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics14101006/s1, Table S1. Integrated PET/MR acquisition
parameters. Table S2. Prevalence of high and low risk plaque identified by single component model
and combined model.
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