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Abstract: Background/Objectives: Based on Blind Source Separation and the use of multispectral
imaging, the new approach we propose in this paper aims to improve the estimation of the concen-
trations of the main skin chromophores (melanin, oxyhemoglobin and deoxyhemoglobin), while
considering shading as a fully-fledged source. Methods: In this paper, we demonstrate that the
use of the Infra-Red spectral band, in addition to the traditional RGB spectral bands of dermato-
logical images, allows us to model the image provided by each spectral band as a mixture of the
concentrations of the three chromophores in addition to that of the shading, which are estimated
through four steps using Blind Source Separation. Results: We studied the performance of our new
method on a database of real multispectral dermatological images of melanoma by proposing a new
quantitative performances measurement criterion based on mutual information. We then validated
these performances on a database of multispectral dermatological images that we simulated using
our own new protocol. Conclusions: All the results obtained demonstrated the effectiveness of
our new approach for estimating the concentrations of the skin chromophores from a multispectral
dermatological image, compared to traditional approaches that consist of using only the RGB image
by neglecting shading.

Keywords: Blind Source Separation; chromophores; melanin; oxyhemoglobin; deoxyhemoglobin;
shading; multispectral dermatological images

1. Introduction

Human skin is a complex tissue composed of three main chromophores, melanin,
oxyhemoglobin and deoxyhemoglobin [1,2]. Information about the concentrations of these
chromophores is crucial, as it plays a key role in the early detection of skin diseases and
their monitoring throughout the period of therapeutic treatment [3–6]. To determine these
concentrations, researchers are increasingly relying on RGB or multispectral imaging tech-
niques (multispectral imaging involves acquiring different images of the same area of
interest at various wavelengths) [3] rather than conventional techniques which are mostly
invasive and generally more burdensome. Indeed, the traditional biopsy technique, involv-
ing the extraction of samples from the affected skin area for analysis in a laboratory, is an
invasive procedure that is burdensome for both the patient and the practitioner, especially
considering the possibility of needing to repeat it throughout the period of treatment.

Multispectral and hyperspectral imaging have become indispensable tools for de-
tecting skin diseases through Computer-Aided Detection (CAD) models [7–9]. However,
the major challenge encountered in the exploitation of multispectral dermatological images
lies in establishing a link between the chromophores and the images acquired that is as
rigorous as possible, and this has led to several ways of modeling these optical images
and subsequently to multiple methods for their processing. We begin then in Section 1.1
by shedding light on the optical model most widely adopted by the scientific community
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for the treatment of dermatological images, and then, in the following Section 1.2, we
review the existing methods situating them in relation to this model.

1.1. Physical Modeling of Dermatological Images

By adopting the optical model widely used by the scientific community known as the
dichromatic model [10,11], the reflectance of the image can be represented as an additive
mixture of diffuse reflection and specular reflection. Since the latter can be eliminated using
polarizers [12] or image processing methods [13], only the diffuse reflection remains. Thus,
according to Lambert–Beer’s law [14,15], the diffuse reflection, denoted as Id(λ, u) for each
wavelength λ, is described by the following equation:

Id(λ, u) = G(λ) · Ed(λ) · wd(u) · e−2 f (λ,u), (1)

where f (λ, u) = µox(λ)ℓox(λ)Cox(u) + µdeox(λ)ℓdeox(λ)Cdeox(u) + µm(λ)ℓm(λ)Cm(u) and

• G(λ) represents a gain that characterizes the camera;
• Ed(λ) is the intensity of the diffuse component of the light source;
• wd(u) models the variation of shading that may be present in the image;
• µox(λ), µdeox(λ) and µm(λ) are, respectively, dependent on the absorption coefficients

of oxyhemoglobin, deoxyhemoglobin and melanin;
• ℓox(λ), ℓdeox(λ) and ℓm(λ) are, respectively, the optical paths for oxyhemoglobin,

deoxyhemoglobin and melanin;
• Cox(λ), Cdeox(λ) and Cm(λ) are, respectively, the concentrations of oxyhemoglobin,

deoxyhemoglobin and melanin.

If we denote Iλ(u) = − log(Id(λ, u)), then Equation (1) yields

Iλ(u) = 2µox(λ).ℓox(λ).Cox(u) + 2µdeox(λ).ℓdeox(λ).Cdeox(u) + 2µm(λ).ℓm(λ).Cm(u)

− log(G(λ))− log(Ed(λ))− log(wd(u)) (2)

If we denote λi (i = 1, 2, 3, . . . ) as the wavelength corresponding to the spectral
band of index i in the multispectral image and j ∈ {1, 2, 3} as the index associated to
the concentrations of the three chromophores (oxyhemoglobin, deoxyhemoglobin and
melanin), then we can rewrite Equation (2) in the following form:

Iλi (u) =
j=3

∑
j=1

mij.Sj(u) + pd(u) + ni, i = 1, 2, 3, . . . (3)

where

• mij = 2µj(λi)ℓj(λi),
• Sj(u) = Cj(u),
• pd(u) = − log(wd(u)),
• ni = − log(G(λi))− log(Ed(λi)).

Thus, for any spectral band with index i, the quantity Iλi (u) is a mixture of the
concentrations of the three chromophores Sj(u), which we aim to estimate separately, along
with the shading pd(u). It is therefore an inverse source separation problem, as we seek
to separate the concentrations of the three chromophores Sj(u), viewed as the sources of
interest, knowing only their mixtures Iλi (u). In the case where no a priori information
about either the sources or the mixing coefficients is avalilable, it is referred to as Blind
Source Separation (BSS). It is shown that, in this case, it is an ill-posed inverse problem,
making it essential to introduce hypotheses on the sources and/or mixing coefficients.
Depending on the nature of these hypotheses, three main families of BSS methods are
distinguished. The BSS methods based on Independent Component Analysis (ICA), which
exploit the hypothesis of independence between sources, those based on Sparse Component
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Analysis (SCA), which exploit the hypothesis of sparsity of the sources, and finally, the BSS
methods based on Non-negative Matrix Factorization (NMF), which exploit the positivity
of both sources and mixing coefficients (See [16,17] for more details). We then review,
in the following subsequent section, the main existing methods that focus on estimating
chromophore concentrations and that are mostly based on BSS.

1.2. Existing Methods

Based on the working hypotheses and the procedure followed to estimate the concen-
trations of different chromophores, we can classify the various existing methods into two
main families. The first family includes methods that estimate chromophore concentrations
by exploiting prior knowledge about the absorption spectra of each chromophore and the
depths of light penetration into the skin [4,12,18–21]. Indeed, in [4,12,18–20], the authors
first proposed to simplify the mixture model by eliminating shading and specular reflection
through the use of white paper and polarizers to obtain a mixing model composed only
of the three main chromophores. They then exploited the absorption spectra and light
penetration depths into the skin to empirically estimate the mixing coefficients mij, which
ultimately enable the estimation of the concentrations of the three chromophores. In [21],
the authors adopted a very particular mixture model in that they completely neglected
shading on the one hand and introduced an additional component alongside the three
main chromophores on the other hand, representing the contribution of the absorption
residue of any other molecule contained in the dermis and epidermis. However, they
exploited prior knowledge exactly as in [4,12,18–20] to estimate the concentrations of the
three chromophores after correcting the non-uniformity of brightness in dermatological
images by transforming them into the CIEXYZ color space. We also note that their study
focused on comparing two types of dermatological image acquisition cameras in terms of
the quality of estimation of the concentrations of the different chromophores [21].

The second family groups the methods that treat the mixture model defined by
Equation (3) as a three-source mixture model, considering oxyhemoglobin and deoxyhe-
moglobin as a single source called hemoglobin [22–29]. These methods focus on estimating
the concentrations of melanin and hemoglobin from RGB images by using mainly BSS
methods based on ICA or NMF. Depending on how shading is taken into account in the
mixture model, we distinguish between two classes for these methods. Among the methods
in the first class that neglected shading [22–24,27,29], those proposed by Tsumura et al.
in [22–24] assumed the independence between melanin and hemoglobin, employing a
BSS method based on ICA. In [29], Xinhua et al. proposed using the Shades of Grey
method [30] as a pre-processing step to eliminate color interferences caused by illumination,
and then used [23] to estimate the concentrations of these two chromophores. In [27],
Gong et al. proposed two distinct BSS methods to estimate the concentrations of melanin
and hemoglobin. Both methods are based on NMF using the popular algorithm for mul-
tiplicative updates of matrices solutions named Multiplicative Update [31]. Among the
methods in the second class, which have taken shading into account in their mixture model,
are those proposed in [25,26,28]. Based on ICA, the method proposed in [28] by Luisa et al.
allows estimating the concentrations of both chromophores and shading, assuming they
are all three independent. To improve the estimation of the concentrations of the two
chromophores, Madooei et al. first proposed a technique exploiting the mean geometric
to eliminate shading, and then they used ICA [26]. Liu et al. proposed in [25] to apply a
bilateral filter to remove shading; then, they used the tables of extinction coefficients of
the two chromophores and the depths of light penetration into the skin [32] to estimate
their concentrations. However, it is noteworthy that all methods in this second family are
limited to estimating hemoglobin in addition to melanin and therefore do not allow the
estimation of oxyhemoglobin and deoxyhemoglobin separately.

In this article, we propose a novel method for estimating the concentrations of the
three main chromophores (i.e., melanin, oxyhemoglobin and deoxyhemoglobin) in the
skin by adopting a mixture model that is much more rigorous than existing models [33,34]
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and a separation method that is entirely blind. Indeed, assuming that the model given
by Equation (3) is not perfectly respected regarding the contribution of shading, due to
possible modeling errors, we consider shading as a fully fledged source in the same way as
the concentrations of the three chromophores. As this hypothesis gives rise to mixtures
of four sources, it is necessary to have multispectral dermatological images with at least
four spectral bands. On the other hand, the method we propose is entirely blind compared
to existing methods that rely on prior knowledge related to the mixing coefficients mij,
which can vary depending on the light penetration depth into the skin (for example,
epidermal thickness, which is the first layer of the skin where melanin is located, ranges
from 76.9± 26.2 to 267.4± 120.6 µm, while the dermis thickness, the second layer of the
skin where oxyhemoglobin and deoxyhemoglobin are found, ranges from 2115± 946.4
to 4717.1± 1902.5 µm [35]. Therefore, the penetration depth of light in the skin can vary
from person to person). The new method we propose in this article is an extension of our
recent work published in [36]. This extension covers both the “method” aspect and the
“validation tests” aspect. Indeed, in terms of method, we propose a new processing step
aimed at improving the final versions of the estimated chromophore concentrations. This
processing consists of applying NMF to the matrix formed by these concentrations, thus
remedying the problem of negative pixels encountered in the concentrations estimated by
the basic version of our method proposed in [36]. Furthermore, we expand our validation
tests on the one hand by increasing the number of real images processed, and on the other
hand by also processing artificial multispectral images generated using a new simulation
protocol that we developed. Indeed, validating our new method on artificial images allows
us to assess the validity of our mixture model and working hypotheses. Finally, we also
propose a new performance measurement criterion that is much more rigorous than the
one proposed in [36] in the case of real dermatological images. The remainder of this
article is structured as follows. Section 2 describes in detail our new method for estimating
the concentrations of the three chromophores and shading. Section 3 presents the results
of the tests carried out, followed by a discussion and a concluding section dedicated to
summarizing our work and outlining future directions.

2. Proposed Method

Our method is principally distinguished by a first key idea which consists of consider-
ing shading as a fully fledged source, which we denote as S4(u), in the same way as the
three sources of interest, i.e., the three chromophores. This idea is founded in the fact that in
practice, due to modeling errors (which are closely related to image acquisition conditions),
the contribution of shading cannot be exactly the same in all spectral bands, as ideally
formulated in Equation (3). Our idea was in fact supported by experimental results relative
to the estimation of principal components contained in biomedical images processed in [37].
These results demonstrate that the contribution of shading varies as a function of spectral
bands and does not follow a strict uniformity, but rather exhibits slight variations along the
reflectance ranges from 500 to 800 nm. Thus, by substituting the component pd(u) with
mi4S4(u) in Equation (3), where mi4 is a real coefficient, we obtain

Iλi (u) =
j=3

∑
j=1

mij · Sj(u) + mi4 · S4(u) + ni, i = 1, 2, 3, . . . (4)

On the other hand, as in [23], the quantities ni can be estimated and subtracted from
the mixtures. Indeed, assuming that there is at least one pixel where the concentrations
of the three chromophores and shading are all zero, these quantities are given by the
following relation:

ni = min(Iλi (u)). (5)
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So, by denoting Xi(u) = Iλi (u)− ni, we obtain

Xi(u) =
j=4

∑
j=1

mij · Sj(u), i = 1, 2, 3, . . . (6)

The second key idea of our method is based on the exploitation of the Infra-Red band
as a fourth spectral band in addition to the classic Red, Green and Blue bands. On one
hand, as we now have four sources to identify, we need at least four mixtures of these
sources provided, respectively, by the four spectral bands (in this case, we refer to so-
called determined mixtures, meaning there are as many mixtures as sources). On the
other hand, our choice of the Infra-Red band as the fourth band, which was not made
randomly, is based on the exploitation of properties related to the behavior of the absorption
coefficients of the chromophores when the wavelength increases. In fact, we relied on the
observations of Zhao et al. [25,38], who noted, according to the data illustrated in Figure 1,
that the absorption coefficients mij of oxyhemoglobin and deoxyhemoglobin are negligible
compared to melanin for wavelengths greater than 620 nm, meaning ideally that [25,38]{

m31 = m32 = 0
m41 = m42 = 0

(7)
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Figure 1. Chromophore absorption coefficient [25,39] and the 4 spectral bands of multispectral imaging.

So, Equation (6) for the four selected spectral bands offers us
X1(u) = m11 · S1(u) + m12 · S2(u) + m13 · S3(u) + m14 · S4(u)
X2(u) = m21 · S1(u) + m22 · S2(u) + m23 · S3(u) + m24 · S4(u)
X3(u) = m33 · S3(u) + m34 · S4(u)
X4(u) = m43 · S3(u) + m44 · S4(u)

(8)

Taking these elements into account, the method we propose, which aims to estimate
the concentrations of the three chromophores separately, proceeds in four steps. During the
first step, we focus on mixtures X3(u) and X4(u) to estimate the concentrations of melanin
and shading. Subsequently, in the second step, we propose a procedure to properly subtract
their contributions from the first two mixtures X1(u) and X2(u), allowing us to focus on
the concentrations of oxyhemoglobin and deoxyhemoglobin in the third step. Based on
NMF, the fourth step aims to improve the estimations of the concentrations of the three
chromophores provided at the end of the first three steps of our method. These four steps
are the subject of the following four subsequent sections, respectively.
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2.1. Estimation of Sources S3(u) and S4(u)

During this first step, we only exploit the mixtures X3(u) and X4(u) provided by the
Red and Infra-Red spectral bands, which can be expressed as{

X3(u) = m33 · S3(u) + m34 · S4(u)
X4(u) = m43 · S3(u) + m44 · S4(u)

(9)

This system of Equation (9) can be formulated in the matrix form as follows:

X34(u) = M34 · S34(u), (10)

where X34(u) = [X3(u), X4(u)]T , S34(u) = [S3(u), S4(u)]T and M34 =

(
m33 m34
m43 m44

)
.

The aim is therefore to estimate the matrix M−1
34

, called the unmixing matrix, in order
to recover the source matrix S34(u) and subsequently the two sources S3(u) and S4(u).
Knowing that melanin depends only on the diffusion of matter by the melanocyte cells
while shading depends only on the geometry of the skin, which can be described by the
dot product between the surface normal vector of the skin and the lighting direction vector.
This geometry influences the concentration of light at the surface, leading us to deduce
that the two corresponding sources S3(u) and S4(u) are independent. Thus, to separate
them, we can effectively use one of the BSS methods based on ICA. As these two sources
are auto-correlated, an ICA method exploiting second-order statistics is sufficient. In this
regard, we opted here for the popular Algorithm for Multiple Unknown Signals Extraction
(AMUSE) [40], known for its simplicity and efficiency, as long as the following working
hypotheses are verified:

Hypothesis 1. The sources S3(u) and S4(u) are mutually uncorrelated, i.e.,

∀ v, E[S3(u) · S4(u− v)] = E[S3(u)] · E[S4(u− v)] (11)

Hypothesis 2. The sources S3(u) and S4(u) satisfy the following identifiability condition:

∃ v ̸= 0 /
E[S3(u) · S3(u− v)]

E[S2
3(u)]

̸= E[S4(u) · S4(u− v)]
E[S2

4(u)]
(12)

It is then shown that if these working hypotheses are satisfied, the AMUSE method [40]
ultimately allows estimating the unmixing matrix M−1

34
up to a permutation matrix and a

diagonal matrix, denoted respectively, as P and D. Denoted as U, the estimated unmixing
matrix by the AMUSE method is then expressed as [40]

U = PDM−1
34

. (13)

After estimating the unmixing matrix U, in addition to the centered sources denoted
as S̃j(u) usually estimated by the AMUSE method, we propose in this step to also estimate
the non-centered sources Sj(u), which are needed in the second step. Indeed, according to
Equations (10) and (13), the product U · X34(u), denoted as Y(u), is expressed as

Y(u) =
(

PDM−1
34

)
(M34 S34(u)) (14)

= PD · S34(u) (15)

Thus, we obtain an estimation of the source matrix S34(u) with the same indeterminacies
as the unmixing matrix M−1

34
. On the other hand, by writing Y(u) = [Y3(u), Y4(u)] and

knowing that in our case the permutation matrix P can be reduced to the identity matrix,
as we can easily differentiate the distribution of shading (due to its nature) from that of
melanin, we obtain Equation (16). Indeed, in BSS, the permutation matrix P is introduced
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solely to specify that the order of the estimated sources (i.e., Y3(u) then Y4(u)) is not
necessarily the same as that in their matrix (i.e., S3(u) for melanin and S4(u) for shading),
which was initially arbitrarily fixed, and this does not pose any problems.

Yj(u) = dj · Sj(u), j = 3, 4 (16)

where the dj are the two coefficients contained in the diagonal of the matrix D. Furthermore,
according to this Equation (16), the centered versions of these signals Yj(u), denoted as
Ỹj(u), are expressed as

Ỹj(u) = dj · S̃j(u), j = 3, 4 (17)

2.2. Removing Sources S3(u) and S4(u) from Mixtures

In this step, our goal is to remove from the mixtures X1(u) and X2(u) the contributions
of the sources we just estimated, S3(u) and S4(u). To achieve this, we rely on the following
independence hypothesis:

Hypothesis 3. The sources Si(u) (i = 1, 2) and Sj(u) (j = 3, 4) are mutually uncorrelated
instantaneously, i.e.,

E[S̃i(u) · S̃j(u)] = E[S̃i(u)] · E[S̃j(u)] = 0, ∀(i, j) ∈ {1, 2} × {3, 4} (18)

By using Equations (17) and (18), we can write

E[X̃i(u) · Ỹj(u)] = E

[(
l=4

∑
l=1

mil · S̃l(u)

)
·
(

dj · S̃j(u)
)]

= mij · dj · E[S̃2
j (u)] +

l=4

∑
l=1,l ̸=j

mil · dj ·��������:0
E[S̃l(u) · S̃j(u)]

= mij · dj · E[S̃2
j (u)] (19)

On the other hand, by referring to Equation (17), we can write

E[Ỹ2
j (u)] = d2

j · E[S̃2
j (u)]. (20)

Thus, we have
E[X̃i(u) · Ỹj(u)]

E[Ỹ2
j (u)]

=
mij · dj

d2
j

=
mij

dj
. (21)

From the basic mixtures X1(u) and X2(u) expressed in System (8) and using
Equations (16) and (21), we can create two new mixtures that contain only the sources S1(u)
and S2(u). Denoted as X′i(u) (i = 1, 2), these new mixtures are obtained as follows:

X′i(u) = Xi(u)−
E[X̃i(u) · Ỹ3(u)]

E[Ỹ2
3 (u)]

·Y3(u)−
E[X̃i(u) · Ỹ4(u)]

E[Ỹ2
4 (u)]

·Y4(u)

= Xi(u)−
mi3
d3
· (d3. · S3(u))−

mi4
d4
· (d4 · S4(u))

= mi1 · S1(u) + mi2 · S2(u) (22)

Hence, {
X′1(u) = m11 · S1(u) + m12 · S2(u)
X′2(u) = m21 · S1(u) + m22 · S2(u)

(23)

2.3. Estimation of Sources S1(u) and S2(u)

The objective of this step is to estimate the remaining sources S1(u) and S2(u), repre-
senting the concentrations of oxyhemoglobin and deoxyhemoglobin, respectively, from the
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new mixtures X′1(u) and X′2(u) expressed in the system of Equation (23). However,
as these two sources are statistically dependent, since they both come from the same
source, i.e., blood, no BSS method based on ICA can be used to separate them. This is why
in this article we propose to explore another alternative, which is to exploit the sparsity of
these two sources to separate them, unlike all the existing methods that focus on estimating
the concentrations of the different chromophores using BSS. Here, then, is our working
hypothesis relating to the exploitation of the sparsity of the sources S1(u) and S2(u).

Hypothesis 4. For each source Sj(u) (j = 1, 2), there exists at least one spatial zone, denoted Uj,
where it is present in both mixtures X′1(u) and X′2(u), i.e.,

∃ U1 / ∀ u ∈ U1, X′1(u) = m11S1(u) and X′2(u) = m21S1(u) (24)

∃ U2 / ∀ u ∈ U2, X′1(u) = m12S2(u) and X′2(u) = m22S2(u) (25)

Note that there are several BSS methods that exploit this hypothesis of source spar-
sity [41,42]. In this study, we opted for the TEMPROM method (here, in this context, ‘Temp’
and ‘Rom’ represent spatial ratios rather than temporal ones. These terms do not refer
to temporal aspects but rather to spatial relations between sources) [41], known for its
simplicity in terms of implementation and effectiveness. It is based on exploiting the ratio
between mixtures X′2(u) and X′1(u) to identify zones Uj qualified as mono-source zones.
Indeed, the calculation of this ratio in these zones Uj, denoted as rj, yields

∀ u ∈ U1,
X′2(u)
X′1(u)

=
m21S1(u)
m11S1(u)

=
m21

m11
= r1 (26)

∀ u ∈ U2,
X′2(u)
X′1(u)

=
m22S2(u)
m12S2(u)

=
m22

m12
= r2 (27)

By exploiting Equations (23), (26) and (27), we can write{
r2 · X′1(u)− X′2(u) = (r2 ·m11 −m21) · S1(u) = d1 · S1(u)
r1 · X′1(u)− X′2(u) = (r1 ·m12 −m22) · S2(u) = d2 · S2(u)

(28)

where d1 = r2 ·m11 −m21 and d2 = r1 ·m12 −m22. Thus, we obtain each of the two sources
Sj(u), (j = 1, 2) up to the coefficient dj.

However, it remains necessary to discuss how the identification of the different mono-
source zones U1 and U2 and the estimation of the ratios r1 and r2 are performed, and then
the differentiation between them. To address this, we propose an enhanced version of
the basic TEMPROM method [41]. Initially, as in [41], we use a criterion based on the

calculation of the variance of the ratio X′2(u)
X′1(u)

. Indeed, it is evident that the variance of
this ratio is zero over any mono-source zone according to Equations (26) and (27). In this
regard, we begin by subdividing the mixtures into several segments of equal length L
and calculating the variance of the ratio for each of these segments. Any segment with
negligible variance (having a value below a user-defined threshold in practice) is retained
as a mono-source zone, resulting in a finite number denoted as K of mono-source zones.
The set of these K mono-source zones, denoted as U (k)(k = 1, 2, . . . , K), is thus constituted
of two parts, one part of zones is of type U1 and another part of zones of type U2. On each of

these zones U (k), we then estimate the mean of the ratio X′2(u)
X′1(u)

, denoted as R(k), as follows:

R(k) = E
[

X′2(u)
X′1(u)

]
, ∀ u ∈ U (k), k = 1, 2, . . . , K. (29)
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These K mono-source zones are then ranked based on their variances in ascending order.
Obviously, the first ranked zone, referred to as the best mono-source zone, provides us
with an estimation of r1 or r2, i.e.,

R(1) = r̂1 or R(1) = r̂2. (30)

Since the second mono-source zone U (2) could very well be of the same type as the
first one, and thus provide the estimation of the same ratio ri, i.e., R(2) = R(1), the authors
of the basic method [41] have proposed exploring the set of zones U (k) until finding a
ratio R(k) such that |R(k)− R(1)| ⩾ e, where e is a threshold which is fixed heuristically,
in which case they associate R(k) with the estimation of the second ratio rj as follows:

R(k) = r̂2 if R(1) = r̂1 or R(k) = r̂1 if R(1) = r̂2. (31)

However, their heuristic choice for the threshold e may potentially degrade the method,
as its true value, which is equal to |r2 − r1|, is typically unknown and varies from one
dermatological image to another. The alternative we propose in this article to address
this issue is to introduce a variable threshold e that adjusts automatically according to the
processed dermatological image. Indeed, we chose for this threshold e the value Rmin+Rmax

2 ,
corresponding to the midpoint of the interval [Rmin, Rmax]. This method provides a greater
likelihood of obtaining an estimation of the second ratio rj that is dissimilar to that of the
first ratio ri(i ̸=j), where Rmin = min{R(k)} and Rmax = max{R(k)} for k ∈ [1, K].

Finally, if we take up Equation (28), which provides us with estimates of the concen-
trations of oxyhemoglobin (S1(u)) and deoxyhemoglobin (S2(u)), we see that we need
to propose a method to determine which of the two estimated ratios R(1) and R(k) is r̂1
(which allows us to find the source S2(u)) and which one is r̂2 (which allows us to find the
source S1(u)). To address this potential permutation problem of the estimated sources, we
propose to use the absorption spectra of these two chromophores represented in Figure 1,
since the absorption spectra of oxyhemoglobin informs us about the ratio r̂1 ⋍ m21

m11 , while
that of deoxyhemoglobin provides information about the ratio r̂2 ⋍ m22

m12 . Based on these
spectra and considering that the mixtures we exploited (X′1(u) and X′2(u)) to estimate these
two sources correspond, respectively, to the blue and green spectral bands, we deduce
easily that r̂2 > r̂1, allowing us to write Equation (32). Indeed, we recall, on one hand,
that the mixture coefficients mij are expressed as mij = 2µj(λi)ℓj(λi), where µj(λi) is the
absorption coefficient of the chromophore Sj(u) at the wavelength λi (represented by one of
the curves in Figure 1), and ℓj(λi) represents the optical path of this chromophore. On the
other hand, we note that the optical paths of light passing through the two chromophores
S1(u) and S2(u) (i.e., oxyhemoglobin and deoxyhemoglobin) are nearly the same (as they
are both located at the same layer of the skin). Thus, based on Figure 1, focusing on the
blue bands (i.e., λ1 ∈ [453, 473] nm) and green bands (i.e., λ2 ∈ [550, 570] nm), we easily
deduce that µ2(λ2)

µ2(λ1)
> µ1(λ2)

µ1(λ1)
, and consequently, m22

m12
> m21

m11
.

r̂2 = max{R(1), R(k)} and r̂1 = min{R(1), R(k)}. (32)

So, if we define Y1(u) = r̂2 ·X′1(u)−X′2(u) and Y2(u) = r̂1 ·X′1(u)−X′2(u); then, according
to Equation (28), we have:

Yj(u) ⋍ dj · Sj(u), j = 1, 2. (33)

This equation, in addition to Equation (16), allows us to finally conclude that each of the
four sources Sj(u) is estimated up to the coefficient dj (j = 1, 2, 3, 4). Thus, if we denote ∆

as the diagonal matrix such that ∆(j, j) = dj, then we can express this result in matrix form
as follows:

Y = ∆ · S + E, (34)

where Y = [Y1(u), Y2(u), Y3(u), Y4(u)]
T , S = [S1(u), S2(u), S3(u), S4(u)]

T and E is a matrix
of the same size as the matrix S that models the deviations due to cumulative estimation
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errors during the first three steps of our method. These errors, which may manifest as the
presence of negative samples in the estimated concentrations of chromophores, are not
tolerable, as the concentration is always non-negative (i.e., Sj(u) ⩾ 0, ∀u). Therefore, in the
next step, we propose to enhance the estimation obtained for each of the four sources by
using Non-negative Matrix Factorization (NMF).

2.4. Improvement of Source Estimations Using NMF

The goal of this step is to improve the estimation of each source, including the con-
centrations of the chromophores of interest, by minimizing the errors incurred in the three
previous steps. These expected errors are primarily due to the fact that the working hy-
potheses made about the sources (in terms of independence and sparsity) during these
steps are not perfectly validated. For this reason, in this article, we opt for an additional step
of BSS, which exploits the non-negativity of the sources Sj(u) and the mixing coefficients
mij. This involves a BSS step based on Non-negative Matrix Factorization (NMF) of the matrix
formed by the initial mixtures Xi(u), denoted as X and which, according to the system of
Equation (8), is expressed as

X = M · S, (35)

where X = [X1(u), X2(u), X3(u), X4(u)]
T , S = [S1(u), S2(u), S3(u), S4(u)]

T and
M =

(
mij
)

1⩽i,j⩽4.
We recall that BSS methods based on NMF seek to decompose the matrix X into

two non-negative matrices N and H that best approximate the matrices M and S, respec-
tively, i.e.,

X = M · S = N ·H, (36)

with
N ⋍ M and H ⋍ S. (37)

As for the determination of matrices N and H, it is achieved through the minimization
of a criterion based on measuring the deviation between the matrix X and the matrix
product NH. Given that there are several criteria to measure this deviation [43], we
opted here for the most commonly used criterion by the BSS methods based on the NMF,
namely the Euclidean Distance between matrices X and NH, denoted as Deuc(X|NH) and
defined by

Deuc(X|NH) =
1
2
||X−NH||2. (38)

There are various algorithms for minimizing this criterion [31,44]. We opted here for
the Alternating Least Squares (ALS) algorithm [45], which is known both for its simplicity in
terms of implementation and for its good performance, particularly in terms of speed [46].
By using this algorithm, the two solution matrices H and N are updated as follows [45]:

N ←− XHT(HHT)−1 (39)

H ←− (NTN)−1NTX (40)

We point out, however, that the NMF is known for the problem of non-uniqueness
of the factorization provided by all its algorithms. One of the solutions to this problem
that has been proposed in the literature is to replace the random initialization of the
solution matrices N and H by a particular initialization generally chosen by exploiting
a priori knowledge of at least one of the two matrices being sought. It is shown in [47]
that initializing at least one of the two solution matrices (N or H) with a version close to
the corresponding sought matrix (M or S) generally makes it possible to reduce the set of
solutions (infinite number) to a subset restricted to so-called permissible solutions, ideally
expressed as follows:

N = M(ΠΛ)−1 and H = (ΠΛ)S, (41)
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where Π and Λ are, respectively, a permutation matrix and a diagonal matrix. In this
article, to solve the non-uniqueness problem of the factorization, we propose to exploit
the knowledge of an approximate version of the matrix S, specifically the one estimated
at the end of the third step of our method. In other words, we propose initializing the
matrix H with the matrix Y given by Equation (34). The update of the two matrices N
and H through Equations (39) and (40) is then performed until the convergence of the ALS
algorithm. In practice, this convergence is considered to be achieved when the difference
between the matrix X and the product NH is less than a predetermined threshold ϵ.

Furthermore, by adopting the same approach as in Section 2.3 to solve the possible
permutation problem of the estimated sources, we can rearrange the elements of the matrix
H, provided in Equation (41), so that they correspond to the sources Sj(u), (j = 1, 2, 3, 4) in
the same order. Thus, we can omit the permutation matrix Π appearing in these equations
and keep only the diagonal matrix Λ which reflects the fact that each source Sj(u) is
estimated up to a scaling factor equal to Λ(j, j). Therefore, Equation (41) offers us

nij = mij ·Λ(j, j)−1 and Hj(u) = Λ(j, j) · Sj(u). (42)

On the other hand, in order to overcome this scaling factor problem, which can vary
from one source to another and from one dermatological image to another, we are rather
interested in the contribution of each source Sj(u) at each spectral band indexed by “i”,
which is equal to nij · Hj(u), and then in the sum of these contributions, which is written
according to Equation (42):

i=4

∑
i=1

nijHj(u) =
i=4

∑
i=1

mijSj(u). (43)

Henceforth, we refer to the contribution of a source Sj(u) to designate the summation
∑i=4

i=1 mijSj(u), and this by abuse of language. Furthermore, as our new method to Blind
Chromophore Separation (BCS) of the skin in the presence of shading, by exploiting the
Infrared band in addition to the three RGB spectral bands, differs from the one proposed
in [36] by the important step of NMF, we call the resulting method “BCSnmf-Irgb”. However,
we call the method resulting from our method at the third step (which we can qualify as
a partial method) “BCS-Irgb”. Finally, the main aspects of our method, BCSnmf-Irgb, are
summarized in the flowchart presented in Figure 2.
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Multispectral Dermatological Image: RGB+Infrared

X1(u) X2(u) X3(u) X4(u)

Estimation of Sources S3(u) and S4(u)

Y3(u) Y4(u)

Removing Sources S3(u) and S4(u) from Mixtures

X′1(u) X′2(u)

Estimation of Sources S1(u) and S2(u)

Y1(u) Y2(u)

Improvement of source estimations using NMF

H1(u) H2(u) H3(u) H4(u)

Figure 2. Flowchart illustrating the main steps of our method BCSnmf-Irgb.

3. Results

In this section, we study the performance of our new method for estimating the
concentrations of the main skin chromophores from multispectral dermatological images
containing shading. For this, we first use a database of real multispectral dermatological
images and then a database of artificial multispectral dermatological images that we
developed in order to validate our results in terms of working hypotheses. On the other
hand, as mentioned in Section 1.2, in absolute terms, none of the existing methods in
the literature can be used for comparative purposes. We point out that all the Signal
Processing (and/or BSS) methods focused on estimating skin chromophore concentrations
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are limited to estimating melanin and hemoglobin, which is a mixture of oxyhemoglobin
and deoxyhemoglobin (see Section 1.2). Consequently, these methods do not allow for a
comprehensive comparison. However, we can still study the performance of our method
at the third step only through our method, BCS-Irgb [36], in order to highlight the interest
of the fourth step of NMF of our global method through our new method BCSnmf-Irgb.
Finally, in order to highlight the interest of considering shading as a fully fledged source,
we are also interested in estimating the concentrations of the three chromophores from the
RGB dermatological image, i.e., by neglecting the presence of shading. For this, we exploit
only the second and third steps of our method, which can be seen as a subversion of our
global method and which we call method “BCS-rgb” for the rest of this article.

For performance evaluation, in addition to the one based on the visual analysis
of the representations of estimated concentrations, which is qualitative and therefore
subjective, we propose a new criterion based on measuring the independence between
melanin concentration and the concentrations of two other chromophores (oxyhemoglobin
and deoxyhemoglobin) using the mutual information. Indeed, unlike the criterion used
in [36], which exploits the four-order cross moments, our new criterion based on mutual
information is invariant with regard to the scaling factors which are always present in the
estimated concentrations of chromophores and typically vary from one dermatological
image to another. It is important to note that the criterion for measuring the independence
by exploiting the four-order cross moments, as defined in [36], is sensitive to scale factors
and does not allow for a rigorous comparison between different chromophores in terms of
independence. We recall that the mutual information between two random vectors Vi and
Vj of the same length N, denoted as I(Vi; Vj), is defined as [48]

I(Vi; Vj) =
N

∑
m=1

N

∑
n=1

p(V(m)
i , V(n)

j ) log2

 p(V(m)
i , V(n)

j )

p(V(m)
i )p(V(n)

j )

, (44)

where p(V(m)
i , V(n)

j ), p(V(m)
i ) and p(V(n)

j ) are, respectively, the joint and marginal prob-

ability mass functions of vectors Vi and Vj (V(m)
i ∈ Vi and V(n)

j ∈ Vj), and are defined
as follows:

p(V(m)
i ) =

Fa(V
(m)
i )

N
and p(V(m)

i , V(n)
j ) =

Fa(V
(m)
i , V(n)

j )

N
, (45)

where Fa represents the frequency of occurrence. Note that in practice, to calculate quantity
I(Vi; Vj), we adopt an approach based on a three-dimensional (3D) histogram of the
data [49]. This approach involves discretizing the data space into three-dimensional bins,
where each dimension corresponds to two variables, namely melanin associated with either
oxyhemoglobin or deoxyhemoglobin. Subsequently, we count the number of occurrences
of each combination of values in each of these bins, giving rise to a 3D histogram. From this
histogram, we can extract the joint and marginal probabilities needed to calculate the
mutual information. Finally, in the case of artificial dermatological images, as in [47], we
also use a numerical performance measurement criterion based on the comparison of the
estimated sources with the true sources, which are known in advance. The test results
obtained for the two cases of dermatological images (real and artificial) are presented,
respectively, in Sections 3.1 and 3.2.

3.1. Real Dermatological Images

In this section, we examine the performances of our two new methods, BCSnmf-
Irgb and BCS-Irgb, and that of method BCS-rgb using a database of real dermatological
images. Developed by O. Lézoray et al. [50] and accessible via [51], this database consists
of 30 multispectral dermatological images of patients with melanoma skin disease. The
images were acquired as part of the Melascan project through collaboration with three
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companies—Intuiskin, Newton and Cynove—that specialize in developing imaging devices
for skin analysis. More specifically, Intuiskin, based in Grenoble, designed a camera capable
of capturing images under two different lighting conditions: white light and infrared. When
the dermatologist activates the device, two consecutive images are recorded, each under
one of the lighting modes. Intuiskin provided O. Lézoray et al. [50] with images of 30 skin
lesions, captured in both visible light and infrared, with a resolution of 800× 600 pixels.
These multispectral dermatological images, accessible via [51], serve as the basis for our
tests. To enhance the quality of the images, we first addressed the issue of specular reflection.
We eliminated these reflections by detecting the affected areas using the method proposed
in [13] and filling these areas with neighboring pixels through an interpolation technique
(see Figure 3). Then, we applied these three methods to the entire set of 30 available images.
For each image, we evaluated the performances qualitatively by referring to the visual
analysis of the estimated chromophore concentrations and quantitatively by calculating
the mutual information between these concentrations.

(a) (b)

Figure 3. Processed dermatological image: (a) Image with specular reflection, (b) Image without
specular reflection.

3.1.1. Qualitative Study of Performances

The tests we carried out on the entire set of 30 available images showed that our two
methods, BCSnmf-Irgb and BCS-Irgb, are more performant than method BCS-rgb. Indeed,
by referring to the visual analysis of the estimated concentrations by each of the three
methods, we observed that the concentrations of the three chromophores estimated by
method BCS-rgb are always affected by the concentration of shading. To illustrate this
observation, and knowing that the results obtained are more or less similar from one image
to another, we represent in Figure 3 one of the 30 images processed, and in Figure 4 the
contributions of the chromophores and shading estimated by each of the three methods for
this image.

From Figure 4, we can see that our methods, BCSnmf-Irgb and BCS-Irgb, are more
performing than method BCS-rgb. Indeed, on the one hand, knowing that the presence of
shading in a dermatological image is generally more important at its edges (we recall that
the presence of shading in an image of a skin area is linked to the geometry and the variation
of light incident on the surface of the skin), we deduce that the contributions of shading
estimated by methods BCS-Irgb and BCSnmf-Irgb are more credible. We can see then that
the concentration of oxyhemoglobin obtained by method BCS-rgb was poorly estimated
because it is affected by the shading which inevitably alters the expected distribution for
this chromophore in the case of melanoma and subsequently biases the identification of
this disease.

On the other hand, we observe that the concentrations of oxyhemoglobin and deoxy-
hemoglobin estimated by method BCS-Irgb present negative values, which is not physically
acceptable since a concentration is always positive or zero. This is not the case for the four
concentrations (including those of the three chromophores) provided by our new method,
BCSnmf-Irgb, which are always positive due to the fourth step of NMF, and thus the most
credible. This demonstrates the relevance of this fourth step of our new global method,
BCSnmf-Irgb, compared to our partial method, BCS-Irgb, that we proposed in [36].
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Figure 4. Contributions of chromophores and shading estimated by each of the three methods:
(a) BCS-rgb, (b) BCS-Irgb and (c) BCSnmf-Irgb.

3.1.2. Quantitative Study of Performances

In order to evaluate the performance obtained numerically, for all the images, we refer
to the calculation of mutual information to measure the independence between the different
concentrations estimated for the chromophores. Indeed, we recall that the hypothesis of
independence between chromophores is exploited both by our method and by all existing
Blind Chromophore Separation (BCS) methods [22–24,26]. In other words, the aim is to
measure the independence between the estimated chromophores with or without taking
shading into account. To achieve this, we compare the mutual information between the
chromophores estimated by method BCS-rgb (which neglects shading) with that between
the chromophores estimated by our method at the stage of its third step, i.e., by our method
BCS-Irgb. We specify that it is not relevant to be interested in the estimation of the mutual
information between the chromophores after the fourth step of NMF in our method since,
as mentioned in Section 2.4, the latter provides them with an update that could decrease
their degree of independence achieved after Step 3.

Thus, for each of these two methods BCS-Irgb and BCS-rgb, we estimate the mutual
information between the concentrations of oxyhemoglobin and melanin (Y1(u) and Y3(u))
and between those of deoxyhemoglobin and melanin (Y2(u) and Y3(u)) denoted, respec-
tively, as I(Y1(u); Y3(u)) and I(Y2(u); Y3(u)), which are defined by Equation (44). We then
define their mean denoted as Im as follows:

Im =
1
2
{I(Y1(u); Y3(u)) + I(Y2(u); Y3(u))}. (46)

Furthermore, in order to have an idea of the degree of improvement in independence
regarding the four base mixtures Xi(u) (provided by the four IRGB spectral bands), we also
provide an estimation of the quantity Im at the input of our system (i.e., before separation),
which involves all quantities I(Xi(u); Xj(u)) for i < j, (i, j = 1, 2, 3, 4). We then calculate
the mean value as well as the standard deviation of the mutual information Im, denoted,
respectively, as Im and σ, over the set of 30 processed images before and after separation
by each of the two methods. The obtained results are presented in Table 1.
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Table 1. Mean value and standard deviation of the mutual information Im at the input (between the
4 Irgb-bands), then at the output using methods BCS-rgb and BCS-Irgb.

Input Output

Method Irgb-bands BCS-rgb BCS-Irgb

Im 0.26 0.22 0.14

σ 0.02 0.05 0.04

From Table 1, we observe that our method BCS-Irgb provides a mutual information
value (equal to 0.14) much lower than that of method BCS-rgb (equal to 0.22) and that
obtained at the input between the different spectral bands IRGB (equal to 0.26). Since the
mutual information is inversely proportional to the independence, we deduce that our
method BCS-Irgb provides chromophore concentrations that are much more independent
than those provided by method BCS-rgb. This result demonstrates the relevance of our
key idea of considering shading as a fully fledged source and then exploiting the four
spectral bands IRGB instead of the three classical RGB spectral bands. Indeed, the fact
that method BCS-rgb does not improve the degree of independence (compared to that
obtained at the input between the four spectral bands IRGB) is simply explained by the fact
that the estimated concentrations of the different chromophores are generally affected by
shading, which has not been taken into account in the mixing model at the beginning. In
other words, in the estimated concentration of each chromophore, there is a more or less
significant residue of shading. However, it should be noted that the non-zero standard
deviation we obtained for our method BCS-Irgb reflects the existence of some images for
which the mutual information Im is relatively higher than 0.14, which means that the
estimated chromophore concentrations corresponding to these images are relatively less
independent. We indeed observed that these particular images all contain a non-negligible
level of hair. This result, as expected, is explained by the fact that these images do not
perfectly satisfy our initial mixing model. An example of these images is provided in
Figure 5.

Figure 5. Example of dermatological images containing hair.

On the other hand, in order to quantify the contribution of the fourth step of NMF of
our global method BCSnmf-Irgb in terms of performance, compared to our partial method
BCS-Irgb [36], we propose this time to refer to the estimated mixing matrix M. We recall
that the coefficients mij of this matrix are closely related to the absorption coefficients of the
chromophores (the coefficients mij are in fact proportional to the absorption coefficients of
the chromophores, as mentioned in Section 2.3) which are always positive and depend on
the wavelength as shown in Figure 1. Thus, by exploiting on the one hand the hypothesis
that the absorption coefficients of oxyhemoglobin and deoxyhemoglobin in the two red
and infrared bands are almost zero (according to this Figure 1), and on the other hand the
hypothesis that the contribution of shading varies very little from one spectral band to
another [37], we can very well take as a criterion for measuring the performances degree
of coherence of the numerical values obtained for the coefficients mij with these working
hypotheses. To achieve this, given that we cannot present here all the mixing matrices
corresponding to the 30 images tested, we provide in Table 2 the matrix M obtained for the
image used in Figure 3 (referred to as Image (a)), and on the other hand the mean matrix,
denoted as M, of all the estimated matrices (corresponding to the 30 images tested).
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Table 2. Estimation of the mixing matrix M for image (a) (first row) and the mean matrix M over all
images (second row) using our two methods BCS-Irgb and BCSnmf-Irgb.

Method BCS-Irgb BCSnmf-Irgb

M for image (a)


1.00 1.00 0.08 0.001
0.38 0.75 0.12 −0.02
−0.00 −0.00 0.06 −0.002
−0.00 −0.00 −0.00 0.09




0.82 0.28 0.30 0.29
0.17 0.71 0.35 0.20

0 0 0.29 0.21
0 0 0.03 0.27



M for all images


1.00 1.00 0.18 −0.003
0.10 0.30 0.32 −0.03
−0.00 −0.00 0.19 0.001
−0.00 −0.00 0.03 0.04




0.84 0.26 0.26 0.20
0.14 0.72 0.33 0.24

0 0 0.36 0.25
0 0 0.02 0.30



From the estimations of the two matrices M and M provided in Table 2, we can see
that the fourth step of NMF of our global method BCSnmf-Irgb is of great utility. Indeed,
we can see that some coefficients of the matrix M estimated by method BCS-Irgb are
negative, which is intolerable, since they are directly related to the absorption coefficients
of different chromophores that are always positive or zero. This result, which is due to
errors in estimating the coefficients of the matrix M, is expected since the independence
and sparsity hypotheses on which the method BCS-Irgb is based are not perfectly verified
(as mentioned in Section 2.4). In contrast, the coefficients of the matrix M estimated using
our global method BCSnmf-Irgb are all positive and are much more in line with the working
hypotheses. Indeed, on the one hand, the coefficients mij (i = 3, 4 and j = 1, 2) associated
with oxyhemoglobin and deoxyhemoglobin, respectively, are almost zero, which is perfectly
consistent with the information provided by the experimental curves in Figure 1. On the
other hand, the coefficients of the fourth column associated with shading are slightly
different, which is consistent with the fact that physically the contribution of shading varies
very little from one spectral band to another. Furthermore, all these observations are more
or less valid for all the images tested, according to the estimation of the matrix M provided
in Table 2. Indeed, despite the existence of some images which present particularities
related to the existence of hairs (such as the one presented in Figure 5), the difference
between the values obtained for the mij coefficients and the expected values (similar to
those of Image (a)) remains very reasonable. We therefore conclude that our global method
BCSnmf-Irgb is quite robust regarding this type of particularity.

3.2. Artificial Dermatological Images

We first recall that in the source separation community, it is usual to study the per-
formance of any BSS method on artificial mixtures of artificial sources that are known in
advance. This allows to compare the sources estimated by any BSS method to the true
sources (which are known) by using a numerical criterion based on a measure of the devia-
tion between the two, and thus to be able to precisely quantify the separation quality of
this method. Furthermore, this also enables us to ensure that if the working hypotheses are
verified by the sources involved, then their separation by the proposed method is guaran-
teed. In this regard, it is relevant to validate our new BCS method (with our two methods
BCS-Irgb and BCSnmf-Irgb) also on artificial dermatological images. However, since there is
no database of this type in the literature, we proposed in this article to artificially simulate
our own dermatological images by adopting a well-studied protocol to generate the four
sources Sj(u) which are nothing other than the concentrations of the three chromophores
and shading. Indeed, based on the principle that the simulated dermatological image
should be as close as possible to a real dermatological image, we exploited physiological
knowledge about human skin with its various diseases as well as about chromophores [52]
while respecting, as much as possible, the hypotheses made about their concentrations
in terms of positivity, independence and sparsity. However, we note that we deliberately
avoided using chromophore concentrations estimated from real images, on the one hand to
avoid simulating images that are identical to real images that have already been processed,
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and on the other hand to be able to better control chromophores in terms of working
hypotheses. In this regard, after testing a multitude of configurations for simulating the
four concentrations, which give rise to the four spectral bands IRGB of the simulated image
through the mixture model (6), we selected the following configuration:

• Take for the concentration of melanin (S3(u)) a perfectly realistic version corresponding
to the concentration estimated from one of the real melanoma dermatological images
processed in Section 3.1. Indeed, we observed that this choice allowed us to obtain
artificial images that are quite close to real ones. This is because melanin is the most
visible chromophore to the eye compared to the other two chromophores, as it is
present in the first layer of the skin. Knowing that the concentrations of the other two
chromophores as well as the shading were generated artificially as explained below.

• Simulate artificially a concentration of oxyhemoglobin (S1(u)) while respecting the
working hypotheses, i.e., the hypothesis of its sparsity according to Equation (24) and
the hypothesis of its independence from melanin (S3(u)) according to Equation (18).

• Simulate artificially a concentration of deoxyhemoglobin (S2(u)) by exploiting the
simulated concentration of oxyhemoglobin (S1(u)). We based this on the fact that the
concentrations of these two chromophores combine to produce the total concentration
of hemoglobin [37], which we set to one in all pixels of the image for simplicity. This
allowed us to simultaneously satisfy our two working hypotheses, i.e., the hypothesis
of complementary sparsity of these two chromophores S1(u) and S2(u), ruled by
two Equations (24) and (25), and the hypothesis of their independence from melanin
(S3(u)) ruled by Equation (18).

• Simulate artificially a shading concentration (S4(u)) that is as independent as possible
of the three chromophores, as assumed in the working Hypotheses (11) and (18).
Knowing that shading, which represents the variation in the flux of incident light on
the surface of the skin and also depends on the geometry of that surface, is always
much greater at the edges of the dermatological image, the values of its concentration
S4(u) that we simulated are high at the edges of the image and progressively decrease
as we move toward the center of the image. However, we note that we encountered
difficulty in perfectly satisfying all the working hypotheses simultaneously to simulate
our four concentrations. We observed that increasing the degree of independence
between our simulated concentrations comes at the expense of the sparsity of S1(u)
and S2(u).

To artificially simulate a mixing matrix M, we exploited, on the one hand, the ab-
sorption spectra of the three chromophores provided in Figure 1, and on the other hand
the expressions of some mixing matrices that we estimated in the case of real dermatological
images. In this regard, here is the expression of the mixing matrix that served as a basis for
generating other mixing matrices:

M =


0.86 0.70 0.37 0.25
0.13 0.29 0.36 0.26

0 0 0.18 0.23
0 0 0.07 0.24

. (47)

By exploiting the four simulated sources and the mixing matrix M, we simulate an
artificial dermatological image using Equation (1), with G(λ) = 2 and Ed(λ) = 1 which
represent the image acquisition conditions in our simulation.

In order to have a testing protocol that is similar to that of real dermatological images,
we simulated 30 artificial dermatological images. To generate a new artificial image, we
varied the base concentration values as well as the coefficients of the base mixing matrix M
by adding small randomly generated positive values to them (we added positive random
values generated by MATLAB Online [53] using the rand command). In Figure 6, we
provide one of our 30 artificial dermatological images, which we represent in the three
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visible RGB bands along with the contributions of three chromophores and shading that
allowed us to generate it.
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Figure 6. (a) Simulated contributions of the three chromophores and shading, (b) Resulting RGB
dermatological image.

3.2.1. Qualitative Study of Performances

After processing all 30 simulated images, we observed that the results obtained are
roughly similar from one simulated image to another, based on the visual analysis of the
concentrations estimated by each of the three methods BCS-rgb, BCS-Irgb and BCSnmf-Irgb.
To illustrate this observation, Figure 7 shows the contributions of the chromophores and
shading estimated by each of these three methods.
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Figure 7. Contributions of the chromophores and shading estimated by each of the three methods:
(a) BCS-rgb, (b) BCS-Irgb and (c) BCSnmf-Irgb.

From Figure 7, we can see that our methods BCS-Irgb and BCSnmf-Irgb perform better
than the method BCS-rgb. Indeed, referring to the visual analysis of the contributions
estimated by each of these methods, we see that the contributions estimated by method
BCS-rgb are the furthest from the simulated ones (which are now known and shown in
Figure 6). This is particularly noticeable in the contribution of deoxyhemoglobin. All
these observations are confirmed by referring to the color bars that provide numerical
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information on the concentration range of each chromophore. Moreover, these color bars
also allow us to conclude that method BCSnmf-Irgb performs better than method BCS-Irgb,
which provides an estimation of the oxyhemoglobin contribution indicating the presence
of negative values in the estimated concentration of this chromophore. Therefore, method
BCSnmf-Irgb provides the best estimations of the chromophore contributions compared to
the simulated contributions, which is consistent with the results obtained in the case of
real images.

3.2.2. Quantitative Study of Performances

For the quantitative performance study, we begin by numerically evaluating the
performance of methods BCS-rgb and BCS-Irgb exactly as we did for the real images, i.e., by
referring to the calculation of the mutual information. We then calculate the mean and
standard deviation of the mutual information Im (defined by Equation (46)) over all 30
simulated images, both at the input (between the four spectral bands Irgb) and at the
output between the different contributions estimated by each of the two methods. Since we
now know the simulated contributions, we additionally calculate the mutual information
between them using Equation (46) for Yj(u) = Sj(u). The results obtained are presented in
Table 3.

Table 3. Mean and standard deviation of mutual information Im at the input (between simulated
contributions and between spectral bands) and at the output between chromophores estimated by
each of the methods BCS-rgb and BCS-Irgb.

Simulated
Contributions

Mixtures
Irgb-Bands

Estimated Contributions

Method BCS-Rgb Method BCS-Irgb

Im 0.15 1.96 0.20 0.17

σ 0.68 × 10−3 0.15 0.01 1.1× 10−3

From Table 3, we observe that our method BCS-Irgb provides a mean value and a
standard deviation of mutual information (equal to 0.17 and 1.1× 10−3, respectively) that
are lower than those provided by method BCS-rgb (equal to 0.20 and 0.01, respectively).
Since our two values of Im and σ are closest to those obtained at the input between the
simulated contributions (equal to 0.15 and 0.68× 10−3, respectively), we deduce that our
method BCS-Irgb performs better than method BCS-rgb in terms of independence between
the estimated concentrations of the chromophores.

On the other hand, as mentioned at the beginning of Section 3.2, it is usual to numeri-
cally evaluate the performance of any BSS method by comparing the estimated sources to
the simulated ones using a criterion that measures the deviation between them. Therefore,
we propose to compare each simulated source Sj(u) with its estimated Yj(u) by each of
the three methods BCS-rgb, BCS-Irgb and BCSnmf-Irgb using the most popular criterion in
the BSS community [17], namely the Signal to Interference Ratio (SIR), denoted SIRj and
defined by the following equation:

SIRj = 10 · log10

 E
[
Sj(u)2]

E
[(

Sj(u)−Yj(u)
)2
]
, j ∈ [1, 4], (48)

where Yj(u) represents the estimation of the source Sj(u), knowing that both Yj(u) and
Sj(u) are previously centered and normalized to have the same variance. We then calculate
the mean and standard deviation of SIRj denoted, respectively, SIRj and σj, over the
30 available realizations. The results obtained for the three methods BCS-rgb, BCS-Irgb and
BCSnmf-Irgb are presented in Table 4.
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Table 4. Mean and standard deviation of SIRj in dB using methods BCS-rgb, BCS-Irgb and BCSnmf-Irgb.

SIRj (dB) σj (dB)

Method S1(u) S2(u) S3(u) S4(u) S1(u) S2(u) S3(u) S4(u)

BCS-rgb 13.42 13.61 15.51 – 4.52 4.75 1.49 –

BCS-Irgb 26.01 24.47 35.15 40.12 0.12 0.31 0.63 1.29

BCSnmf-Irgb 33.14 26.00 35.15 40.12 3.00 0.81 0.63 1.29

From Table 4, we observe that our two methods BCS-Irgb and BCSnmf-Irgb perform
better than method BCS-rgb in terms of SIR. Indeed, we can see that our partial method
BCS-Irgb surpasses method BCS-rgb as it provides SIRj values that are significantly higher
than those provided by the latter, with much lower standard deviations, for all three
chromophores. However, it should be noted that concentrations S1(u) and S2(u) (of
oxyhemoglobin and deoxyhemoglobin) are estimated with significantly lower performance
compared to concentrations S3(u) and S4(u) (of melanin and shading) by our method
BCS-Irgb. From this result, we can deduce that the hypothesis of sparsity at the level
of S1(u) and S2(u) as well as the hypothesis of their independence regarding S3(u) and
S4(u) required by this method are not verified to the same degree as the hypothesis of
independence between S3(u) and S4(u) at the level of the artificial dermatological images
that we simulated. Nevertheless, we observed an improvement in the estimation of these
two concentrations (S1(u) and S2(u)) by our global method BCSnmf-Irgb, confirming the
contribution of the NMF step, which constitutes the fourth step of this method.

4. Discussion and Conclusions

In this article, we proposed a new method for the Blind Separation of principal
Chromophores (BCS) of the skin (i.e., melanin, oxyhemoglobin and deoxyhemoglobin)
from multispectral dermatological images. The novelty of our method lies, on the one
hand, by taking into account the shading during modelling as a fully fledged source in
the same way as the three chromophores (unlike all existing methods that neglect it or
consider that its contribution to the different spectral bands of the image is exactly the
same), and on the other hand in the approach we adopted to separate them. We modeled
the image provided by each spectral band as a mixture of four sources corresponding to
the three main chromophores in addition to the shading. Thus, in addition to the three
classic visible RGB spectral bands, we used a fourth spectral band to have as many mixtures
as the unknown sources to identify. Hence the necessity of having at least four bands of
multispectral images for our new method, which proceeds in four steps. Our first step is
based on the key idea of exploiting the Infrared band as the fourth spectral band, and the
fact that at this band as well as the Red band, only melanin and shading are present,
allowing us to separate them by using only these two bands. In our second step, these two
sources are subtracted from the mixtures provided by the green and blue bands to obtain
two new mixtures that contain only oxyhemoglobin and deoxyhemoglobin. Assuming that
these latter sources are sparse and independent of melanin and shading, we proceed to
their separation in the third step of our method. Based on NMF, the fourth step reduces
the errors in the source estimates obtained in the first three steps, which are due to the
fact that the working hypotheses are never perfectly verified in practice. To demonstrate
the interest of this fourth NMF step, we proposed two versions of our new BCS method,
which exploits the four IRGB spectral bands: a first version with only three steps, which
we named BCS-Irgb and which can qualify as a partial method, then a second version
including the NMF step which we named BCSnmf-Irgb, and which we can qualify as a
global method. On the other hand, as our aim is to demonstrate the relevance of taking
shading into account, we compared our performances with those obtained by neglecting
it, which corresponds to the use of the method we named BCS-rgb, which consists of
separating the three chromophores by exploiting only the three classic RGB spectral bands
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(which is adopted by almost all existing methods). Knowing that we have studied the
performances qualitatively and quantitatively on both real and artificial multispectral
dermatological images, we found that

• For real dermatological images: The qualitative performance study based on visual
analysis of the estimated concentrations of the three chromophores showed that our
two methods BCS-Irgb and BCSnmf-Irgb perform better than method BCS-rgb since
the latter produced concentrations affected by shading. Furthermore, this qualitative
study clearly demonstrated that the fourth NMF step in our method is of great impor-
tance, as it significantly improved the concentrations estimated by method BCS-Irgb.
The quantitative performance study, based on measuring the independence between
the estimated concentrations of the chromophores (using mutual information as the
numerical criterion), confirmed the results of the qualitative study, showing that the
concentrations estimated by our method BCS-Irgb are significantly more independent
than those provided by method BCS-rgb.

• For artificial dermatological images: The results obtained are generally in perfect
coherence with those obtained for real dermatological images, both qualitatively and
quantitatively. Furthermore, since in this case, we know in advance the concentrations
that produced these artificial dermatological images, we were able to evaluate the
performances even more precisely by comparing these known concentrations with
those estimated by the three tested methods (using SIR as the numerical criterion).
This comparison once again confirmed the superiority of our two methods over
method BCS-rgb.

We are, however, aware that some aspects of our work require further study and thus open
up various perspectives for us. Indeed,

• The results we presented in this paper correspond to 30 real multispectral dermato-
logical images of melanoma [50] and 30 artificial multispectral dermatological images
of melanoma. It is therefore desirable to validate these results on more databases
of real dermatological images, potentially covering different skin diseases, and on a
much larger database of artificial dermatological images. Nevertheless, based on our
tests, we point out that simulating multispectral dermatological images that are as
realistic as possible is not an easy task and thus deserves much more in-depth study.
We believe that a database of such artificial images will be of great use to researchers
in the field of dermatology.

• Knowing that the concentrations of the three main chromophores estimated separately
from dermatological images have been used for the identification of some skin dis-
eases [5,6,36], and given that our study in this article has shown that taking shading
into account in our mixing model significantly improves the quality of these concen-
trations, it is desirable to validate the contribution of this improvement in terms of
skin disease identification.

• We observed that the presence of disruptive elements such as hair in a dermatological
image degrades our performance. Therefore, the use of existing preprocessing methods
or the development of new methods capable of reducing the artifacts caused by these
various disruptive elements is desirable.
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