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Abstract: Objectives: The aim of this study was to evaluate the diagnostic performance, image quality,
and inter- and intra-observer agreement of the 3D T1 multi-echo fast field echo (mFFE) sequence
in cervico-thoraco-lumbar vertebral fractures compared with conventional computed tomography
(CT) as the gold standard. Methods: We conducted a prospective single-centre study including
29 patients who underwent spinal magnetic resonance imaging (MRI) at the surgeon’s request, in
addition to CT for vertebral fracture assessment and classification. A 3D T1 mFFE sequence was
added to the standard MRI protocol. Consecutively, two readers analyzed the 3D mFFE sequence
alone, the 3D mFFE sequence with the entire MRI protocol, including the STIR and T1 sequences,
and, finally, the CT images in random order and 1 month apart. A standardized assessment was
performed to determine the presence or absence of a fracture, its location, its classification according
to the Genant and AO classifications for traumatic and osteoporotic fractures, respectively, the loss
of height of the anterior and posterior walls of the vertebral body, and the presence of concomitant
disco-ligamentous lesions. Contingency tables, intraclass correlation coefficients, and Cohen’s kappa
tests were used for statistical analysis. Results: A total of 25 fractures were recorded (48% cervical,
20% thoracic, and 32% lumbar), of which 52% were classified A, according to the AO classification
system. The quality of the 3D mFFE image was good or excellent in 72% of cases. Inter-observer
agreement was near perfect (0.81–1) for vertebral body height and for AO and Genant classifications
for all modalities. Intra-observer agreement was strong-to-near perfect between CT and the 3D
mFFE sequence. Regarding the diagnostic performance of the 3D mFFE sequence, the sensitivity
was 0.9200 and 0.9600, the specificity was 0.9843 and 0.9895, and the accuracy was 0.9861 and 0.9769
for Readers 1 and 2, respectively. In addition, up to 40% of intervertebral disc lesions and 33% of
ligamentous lesions were detected by the 3D mFFE sequence compared to CT, allowing four AO type
A fractures to be reclassified as type B. Conclusions: The 3D mFFE sequence allows accurate diagnosis
of vertebral fractures, with superiority over CT in detecting disco-ligamentous lesions and a more
precise classification of fractures, which can prompt clinicians to adapt their management despite
an image quality that still requires improvement in some cases. Key points: Vertebral fractures and
disco-ligamentous lesions can be assessed using CT-like MRI sequences, with 3D T1 mFFE being
superior to CT for the detection of disco-ligamentous lesions. CT-like images using the 3D T1 mFFE
sequence improve the diagnostic accuracy of bone structures in MRI.

Keywords: magnetic resonance imaging; CT-like; bone; disc and ligamentous lesions; spine; spinal fracture

1. Introduction

Vertebral fractures are associated with back pain and disability that worsen with the
number and severity of the fractures [1–3] and with increased mortality, regardless of gen-
der [4,5]. Vertebral fractures are best assessed by analyzing the bony structures in addition
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to the medullary, discal, and ligamentous structures, as well as the perivertebral soft tissues,
using complementary computed tomography (CT) and magnetic resonance imaging (MRI)
modalities. Despite being essential for the assessment of vertebral fractures, the combined
use of these two imaging modalities adds significant costs to the healthcare system, delays
diagnostic management, and exposes patients to radiation from the use of CT [6,7]. With
this in mind, a number of studies have proposed the use of new high-resolution MRI
sequences to complement the usual MRI protocol for exhaustive bone assessment, with the
aim of replacing CT in the evaluation of vertebral fractures, degenerative changes [8–10],
or bone tumours [11]. Using MRI-derived CT-like images based on ultra-short echo time
(UTE) [8,9], high-resolution 3D T1-weighted spoiled gradient echo [8–11] (T1SGRE), or
susceptibility-weighted imaging (SWI) [10] sequences, these studies have demonstrated
substantial-to-perfect diagnostic performance, inter-observer agreement, and the morpho-
logical assessment of fractures compared with conventional CT. The 3D T1 multi-echo fast
field echo (mFFE) sequence is a high-resolution 3D gradient-echo technique that uses multi-
ple echoes with constant spacing, corresponding to in-phase time echoes based on an MRI
scanner field strength of 4.6 ms at 1.5 T. This provides superior cortical and trabecular bone
contrast and contours, minimizing chemical shift for better delineation and localization
of the bone with reduced edge blurring, and reducing the additional dephasing caused
by T2* decay to help reduce signal loss at bone tissue interfaces. After acquisition, two
additional post-processing steps are performed to produce images with contrast closer
to that of CT. The first post-processing step consists of summing the amplitude of all the
echoes, which increases the signal-to-noise ratio in the sequence. After summation, the
images from the last echo are subtracted from the summed images to invert the grayscale
and provide the bone with a CT-like contrast [12].

The aim of this study was to evaluate the inter- and intra-observer agreement, diagnos-
tic performance, and diagnostic quality of the 3D T1 mFFE sequence in the morphological
assessment of cervico-thoraco-lumbar vertebral fractures compared with conventional CT
as the gold standard.

2. Material and Methods
2.1. Patient Population

In this prospective single-centre study, all consecutive patients admitted to the emer-
gency department of our institution between August 2021 and November 2021 were
screened for possible participation in the study. Inclusion criteria were suspected acute
cervical, thoracic, or lumbar vertebral fractures for which a CT scan was performed as part
of the diagnostic process, with an additional MRI carried out within 48 h of the trauma if
concomitant ligamentous injury was suspected.

Of the twenty-nine patients identified as eligible for the study, nine were excluded for
various reasons: four patients underwent surgery without MRI, three had a contraindication
to MRI, and two refused to undergo MRI (see Figure 1).

The protocol was approved by the institutional ethics committee, Geneva University
Hospitals (CCR number: 2017–01276).

2.2. Imaging Protocol and Analysis

CT images were acquired on a Somatom Force CT scanner (Siemens Healthineers,
Forchheim, Germany) with the following parameters: pixel spacing, 0.2948/0.2949; pitch
factor, 0,8; collimation, 0.6 mm; tube voltage peak, 120 kV; modulated tube current, 250 mA.
Images reformatted in 1.5 mm slice thickness were analyzed in a bone kernel (window
width 1500; window level 300). MRI images were acquired on a 1.5-T Philips Ingenia
scanner (Philips Healthcare, Best, The Netherlands) with a head–neck 20-channel and
flex-coverage osterior 44-channel coils. In addition to the usual MRI protocol (T1 spin echo
sagittal; T2 spin echo sagittal; T2 STIR [short TI inversion recovery] sagittal; T2 spin echo
axial) performed in the context of a traumatic spine, a 3D mFFE sequence (with 4 multiple
echoes) was also implemented (see Table 1). CT-like images were reconstructed according
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to Johnson B et al. [12]. Images were analyzed using Osirix MD (Pixmeo SARL, Bernex,
Switzerland) under anonymized conditions. Two radiologists specializing in osteoarticular
disorders with 10 years (M.H) and 7 years (K.G) experience, respectively, performed the
measurements separately, with an interval of approximately 4 weeks between readings of
the different imaging modalities, including CT images alone, CT-like images alone, and the
combination of CT-like images and other MRI sequences from the routine spine protocol.
To minimize observer variability, we applied a standardized protocol to record the presence
or absence of a fracture, its location, and morphological data, including the loss of vertebral
height according to the Genant classification, loss of height of the anterior and posterior
walls of the vertebral body, fracture classification according to the AO classification, the
presence of concomitant disco-ligamentous damage, and diagnostic quality of the images
using a Likert scale (see Table 2). For one case, a consensual lecture was performed to avoid
the inter-individual variability of measurements.
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Figure 1. Patient population.

Table 1. Three-dimensional mFFE sequence parameters.

3D mFFE Cervical Spine 3D mFFE Thoracic or Lumbar Spine

Field of view 320 × 250 mm 320 × 250 mm
Acquisition voxel size 0.8 × 0.8 × 1.5 mm 0.8 × 0.8 × 1.5 mm
Reconstruction voxel size 0.42 × 0.42 × 0.75 mm 0.42 × 0.42 × 0.75 mm
Parallel imaging CS-SENSE factor 2 CS-SENSE factor 2
Echo time (ms) 4.6 ms 4.6 ms
Repetition time (ms) 31 ms 35 ms
Delta echo time (ms) 5.8 ms 5.8 ms
Acquisition time 3 min 46 s 5 min 09 s

mm: millimetre; min: minute; ms: millisecond; s: second.
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Table 2. Imaging parameters for vertebral fracture assessment.

Parameter Description Grading Scale

Genant classification Semiquantitative visual grading of vertebral
deformities

Grade 1 (20–25%)
Grade 2 (25–40%)
Grade 3 (>40%)

Anterior vertebral body height

Measured in the median sagittal plane, from
the anterosuperior to the anteroinferior
corner of the vertebral body, excluding
osteophytes or fragments

mm

Posterior vertebral body height

Measured in the median sagittal plane, from
the posterosuperior to the posteroinferior
corner of the vertebral body, excluding
osteophytes or fragments

mm

AO/Magerl classification
Classification of fractures in compression,
distraction, and translation injuries according
to Magerl et al. and Vaccaro et al.

A1: wedge compression
A2: split
A3 + 4: incomplete and complete burst
B: distraction
C: displacement or dislocation

Disc fracture Fracture or traumatic displacement Yes or no
Ligamentous injury Yes or no

Diagnostic quality of the images Likert scale

1: inadequate
2: poor
3: moderate
4: good
5: excellent

2.3. Statistical Analysis

To estimate inter- and intra-observer agreement, intraclass correlation coefficients
(ICCs) were used for numerical, normally distributed data, and weighted Cohen’s kappa
was used for ordinal data, with 95% confidence intervals (CIs) calculated for each value.
To interpret the agreement statistic scores, we used the criteria developed by Landis and
Koch [13]. According to these criteria, values from 0 to 0.20 represent poor agreement, 0.21
to 0.40 moderate agreement, 0.41 to 0.60 moderate agreement, 0.61 to 0.80 strong agreement,
and 0.81 to 1 almost perfect agreement.

Contingency tables were used to assess the diagnostic performance of CT-like imaging
in detecting vertebral fractures. MDCalc software version 23.0.6 (Ostend, Belgium) was
used for these statistical analyses.

3. Results

Overall, 20 patients were examined in this study, with a mean age of 58.3 years
and a sex ratio of 0.65 in favour of males. A total of 25 fractures were recorded on CT,
yielding an average of 1.25 fractures per patient (range 1–4). Of these, 48% were cervical
fractures (n = 12), 20% were thoracic fractures (n = 5), and 32% were lumbar fractures
(n = 8). According to the AO classification, 52% of the fractures were classified A (n = 13),
44% were classified B (n = 11), and 4% were classified C (n = 1) (see Figure 2a,b).
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Using a Likert scale, the observers rated the diagnostic quality of the images with a
median score of four (good). Specifically, 4% (n = 1) of cases were rated inadequate, 20%
(n = 5) were rated poor, 4% (n = 1) were rated moderate, 52% (n = 13) were rated good, and
20% (n = 5) were rated excellent.

Inter-observer agreement was near perfect (0.81–1) for all quantitative (vertebral body
height) and ordinal (AO and Genant classifications) parameters and for both modali-
ties. Inter-observer agreement was slightly higher for all CT measurements than CT-like
measurements (see Table 3). Given the high inter-observer agreement, the intra-observer
agreement was calculated based on the measurements of the most experienced observer
(M.H). The intra-observer agreement between CT and CT-like images based on the mea-
surements of Observer 1 was strong (0.61–0.80) for the Genant classification (0.79039;
95%CI 0.60741–0.97338) and near perfect (0.81–1) for the AO classification (0.87027; 95%CI
0.73079–1.000), the anterior vertebral body height (0.9600; 95%CI 0.9098–0.9825), and the
posterior vertebral body height (0.9757; 95%CI 0.9447–0.9894).

Table 3. Inter- and intra-observer agreement.

Parameters Inter-Observer Agreement
for CT Images

Inter-Observer Agreement
for CT-like Images

Intra-Observer Agreement
Between CT and CT-like
Images (Observer 1)

AO classification
(weighted kappa)

0.93321
95%CI (0.83866–1.0000)

0.91289
95%CI (0.81294–1.0000)

0.87027
95%CI (0.73079–1.0000)

Genant classification
(weighted kappa)

0.94783
95%CI (0.84661–1.0000)

0.94643
95%CI (0.84161–1.0000)

0.79039
95%CI (0.60741–0.97338)

Anterior vertebral body
height
(ICC)

0.9684
95%CI (0.9284–0.9862)

0.9474
95%CI (0.8824–0.9769)

0.9600
95%CI (0.9098–0.9825)

Posterior vertebral body
height
(ICC)

0.9795
95%CI (0.9533–0.9911)

0.9692
95%CI (0.9302–0.9866)

0.9757
95%CI (0.9447–0.9894)

CI: confidence interval; ICC: intraclass correlation coefficient; CT: computed tomography.

Using CT as the gold standard, we calculated the diagnostic performance of the mFFe
CT-like MRI sequence. Observer 1 detected 24 of the 25 fractures visualized on CT with
two false positives and one false negative, resulting in a sensitivity of 0.9600, a specificity
of 0.9895, and an accuracy of 0.9861. Observer 2 detected 23 of the 25 fractures visualized
on CT, with two false positives and three false negatives, resulting in a sensitivity of 0.9200,
a specificity of 0.9843, and an accuracy of 0.9769.

Regarding the detection of ligamentous and intervertebral disc lesions, reading the
CT-like images alone versus reading the CT images alone allowed for the detection of 20%
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(n = 1) of intervertebral disc lesions and 33% (n = 4) of ligamentous lesions for Observer
1, while it allowed the detection of 40% (n = 2) of intervertebral disc lesions and 25%
(n = 3) of ligamentous lesions for Observer 2, out of a total of five intervertebral disc lesions
and twelve ligamentous lesions, which was confirmed by reading the CT-like images
along with the complete spinal MRI protocol. Reading the CT-like images resulted in
the reclassification of four fractures originally classified as AO type A on CT to type B in
each observer.

4. Discussion

The purpose of this study was to evaluate the diagnostic performance, as well as
the inter- and intra-observer agreement of CT-like sequences. Inter-observer agreement
for CT-like sequences and intra-observer agreement between CT and CT-like images for
morphological assessment were in line with the literature [8–11], with weighted kappa
and ICC greater than or equal to 0.90 for quantitative and ordinal parameters. Inter- and
intra-observer agreement were better for quantitative parameters (anterior and posterior
vertebral body height [ICC > 0.95]) than for ordinal parameters (AO and Genant classifica-
tions [weighted kappa > 0.90]), which is consistent with data in the literature [8–10].

The diagnostic performance of the CT-like sequence in detecting fractures was re-
markable for both observers, with respective sensitivity, specificity, and accuracy of 0.9600,
0.9895, and 0.9861 for Observer 1, and 0.9200, 0.9843, and 0.9769 for Observer 2, which
is in accordance with the previously published results by Schwaiger et al. [8] (sensitivity
0.95/0.93; specificity 0.98/0.98; and accuracy 0.97/0.97 for both observers [8]). We attribute
these slight differences to the diagnostic performance between the two observers and the
difference in experience between them. These results are very promising and highlight
the ability of these sequences to reach the level of CT in the bone assessment of vertebral
fractures without significantly increasing the management time, extending the duration of
the MRI from a minimum of 3 min 46 s for a cervical acquisition to a maximum of 14 min
4 s for a cervico-thoraco-lumbar acquisition, with the total MRI protocol time being at least
13.5 min for a cervical MRI (see Table 1). However, this sequence cannot completely replace
CT in trauma cases, especially when extraosseous visceral lesions are suspected; in these
cases, the combination of CT and MRI remains essential despite a longer acquisition time of
at least 26.5 min (13 min for the polytrauma CT whole-body protocol and at least 13.5 min
if MRI is performed only at the cervical level).

Studies have demonstrated the value of specific CT-like sequences in the assessment
of soft tissues, notably the ligament, muscle, and tendon structures [14–16], in particular
3D gradient-echo sequences, including the 3D T1 mFFE sequence we used. Our study
showed that reading CT-like sequences alone led to the detection of four ligamentous
lesions in Observer 1 that were not visualized when reading the CT images alone and three
ligamentous lesions in Observer 2, representing 33% of all ligamentous lesions confirmed
when reading the CT-like sequences together with the rest of the MRI protocol (n = 12).
Our results confirm the data in the literature and are perfectly illustrated in the following
images (see Figure 3).

The improved contrast [14–16] within the soft tissues compared to CT may also be
of interest in detecting the edematous infiltration [16] of these tissues, as illustrated in
Figure 4.

Gas accumulations in the intervertebral discs are devoid of signal and appear bright
on the inverted reformatted CT-like images [8]. The two cases (see the Results) in which
disc lesions were detected by reading the CT-like sequences alone, which were not visible
on CT and were confirmed on MRI, correspond to cases in which the readers visualized
intra-discal air that is not specific to a traumatic origin [17], and therefore, cannot be used
as the sole diagnostic criterion for a traumatic disc lesion.
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in C4–C5 and C5–C6 (see arrow), distinct from the vascular structures visible at the superior level in
C3–C4 (arrowhead), (c) which was confirmed on the MRI protocol with the sagittal T2 STIR sequence.

The evaluation of all these parameters allowed 16% (n = 4/25) of fractures to be
initially classified as A, according to the AO classification when reading CT images alone,
to be reclassified as B after reading the CT-like images prior to their correlation with the rest
of the MRI protocol. The use of this sequence may, therefore, play a role in the classification
of vertebral fractures [18] and, consequently, modify therapeutic management [19,20].
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The median score for the diagnostic quality of these images was four (good) on the
Likert scale, which is slightly lower than the results in the literature [8].

Our study has several limitations. Although the distribution of fractures in our
population is representative of all cervical, thoracic, and lumbar levels, with fractures
defined as stable and unstable classified as A, B, and C according to the AO classification,
including translation and distraction lesions, our population was relatively small, and
similar studies need to be performed in larger populations.

No pathological fractures with bone lesions were included in this study, and the value
of such a sequence as an adjunct to MRI for this type of fracture remains to be demonstrated.

Despite the use of 1.5-T MRI, no patients with spondylodesis material were included
in this study. The presence of metallic material and the potentially associated artefacts must
be considered, and the CT-like sequence must be evaluated in this situation to determine
its usefulness.

Spectral CTs encompass several CT techniques, including dual-energy (DECT) and,
more recently, photon-counting CT. There is a new interest in this imaging technique
because of its physical principle, which is based on the simultaneous acquisition of data at
multiple energy levels, allowing for the better characterization and differentiation of the
structures under study [21].

Recent studies have focused on this technique to assess the presence of bone marrow
edema, using virtual non-calcium (VNCa) reconstruction algorithms that suppress the high
attenuation of trabecular bone by reducing or eliminating the presence of calcium, allowing
for better visualization of the underlying marrow for the detection and characterization of
vertebral fractures [22]. These studies [23,24] have demonstrated sensitivities of over 80%
and specificities of almost 100%, highlighting the value of this modality, particularly for
assessing the acute nature of a fracture. However, the assessment of ligaments is essential
for the examination of unstable fractures, and, in these cases, the use of the CT-like sequence
instead of CT or DECT could allow the detection of lesions before confirmation by the rest
of the MRI protocol. We could imagine using this sequence as a screening technique that
may or may not lead to a full MRI protocol. However, further studies would be needed to
confirm these hypotheses.

Despite the potential of CT-like sequences, it is important to bear in mind that their
use requires the widespread availability of MRI, which is not the case in many parts of
the world.

5. Conclusions

Three-dimensional T1 mFFE CT-like sequences have a high diagnostic performance
and have shown strong-to-perfect agreement with CT for the detection of vertebral fractures
while allowing the detection of ligamentous lesions in potentially unstable fractures, leading
to a full MRI protocol in these patients.
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