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Abstract: Background: Intracerebral hemorrhages (ICH) and perihematomal edema (PHE) are
respective imaging markers of primary and secondary brain injury in hemorrhagic stroke. In this
study, we explored the potential added value of PHE radiomic features for prognostication in ICH
patients. Methods: Using a multicentric trial cohort of acute supratentorial ICH (n = 852) patients,
we extracted radiomic features from ICH and PHE lesions on admission non-contrast head CTs.
We trained and tested combinations of different machine learning classifiers and feature selection
methods for prediction of poor outcome—defined by 4-to-6 modified Rankin Scale scores at 3-month
follow-up—using five different input strategies: (a) ICH radiomics, (b) ICH and PHE radiomics,
(c) admission clinical predictors of poor outcomes, (d) ICH radiomics and clinical variables, and
(e) ICH and PHE radiomics with clinical variables. Models were trained on 500 patients, tested, and
compared in 352 using the receiver operating characteristics Area Under the Curve (AUC), Integrated
Discrimination Index (IDI), and Net Reclassification Index (NRI). Results: Comparing the best
performing models in the independent test cohort, both IDI and NRI demonstrated better individual-
level risk assessment by addition of PHE radiomics as input to ICH radiomics (both p < 0.001), but
with insignificant improvement in outcome prediction (AUC of 0.74 versus 0.71, p = 0.157). The
addition of ICH and PHE radiomics to clinical variables also improved IDI and NRI risk-classification
(both p < 0.001), but with a insignificant increase in AUC of 0.85 versus 0.83 (p = 0.118), respectively.
All machine learning models had greater or equal accuracy in outcome prediction compared to the
widely used ICH score. Conclusions: The addition of PHE radiomics to hemorrhage lesion radiomics,
as well as radiomics to clinical risk factors, can improve individual-level risk assessment, albeit
with an insignificant increase in prognostic accuracy. Machine learning models offer quantitative
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and immediate risk stratification—on par with or more accurate than the ICH score—which can
potentially guide patients’ selection for interventions such as hematoma evacuation.

Keywords: intracerebral hemorrhage; perihematomal edema; radiomics; machine learning

1. Introduction

Acute intracerebral hemorrhages (ICH) represent one of the most devastating types of
strokes, with up to 80% rate of mortality and morbidity [1]. The mechanical injury from
hematoma and subsequent expansion serve as the primary mechanism of injury to the
brain tissue, followed by a cascade of neuroinflammatory reaction to neurotoxic byproducts
from hemoglobin degradation that leads to secondary brain injury and manifests by perihe-
matomal edema (PHE) [2–4]. Previous studies have identified PHE volume as a potential
independent contributor to unfavorable outcomes following ICH [1]. From a neuroimaging
standpoint, hematoma and surrounding edema are respective representatives of primary
and secondary brain injuries and, thus, serve as main imaging prognostic variables of
acute ICH.

Radiomics refers to the extraction of quantitative features representing the shape,
texture, and intensity of target lesions from medical images. These features have been
shown to provide valuable biological correlates regarding underlying tissue pathology.
The admission non-contrast and angiographic CT radiomics have also proven as a reli-
able prognostic marker in ischemic and hemorrhagic stroke [5,6]. Previous studies have
demonstrated a stronger association between the admission CT radiomics of hematoma
with clinical outcome than ICH volume [5]. Although the association of ICH and PHE
radiomics with clinical outcomes has been demonstrated separately [7,8], a knowledge gap
remains regarding models that leverage the combined prognostic value of ICH and PHE
radiomics for outcome prediction.

In this study, we aimed to determine the added value of combining the radiomic
features from ICH and PHE, as respective imaging markers of primary and secondary brain
injury, to predict 3-month clinical outcome. We used a large multicentric trial dataset of
patients with hypertensive supratentorial ICH to develop and validate prognostic models
using radiomics features extracted from hematoma and surrounding edema to predict
3-month outcome. We trained, optimized, and validated different combinations of machine
learning and feature selection models for prediction of functional outcome with inputs
from ICH radiomics alone, ICH and PHE radiomics, baseline clinical variables, and a
combination of ICH and PHE radiomics with clinical variables. We also compared the
prognostic performance of machine learning models with ICH score [9], the most widely
validated clinical tool for risk-stratification in ICH patients [10].

2. Materials and Methods
2.1. Ascertainment of Study Subjects

We used the Antihypertensive Treatment of Acute Cerebral Hemorrhage II (ATACH-2)
Trial dataset for this study [11]. The ATACH-2 was a multicenter, randomized, open-
label trial comparing the efficacy of intensive blood pressure reduction versus standard
treatment in patients with acute supratentorial ICH, at least one systolic blood pressure
of ≥180 mmHg, and hematoma volume < 60 mL [11]. For our analysis, we excluded
subjects with a poor quality of head CTs and missing clinical information (Figure 1). The
study protocol for the trial and current analysis was approved in corresponding centers’
institutional review boards.
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2.2. Segmentation of ICH and PHE on Non-Contrast CTs

Both hematoma and surrounding edema were manually segmented on axial slices of
admission non-contrast head CT scans, using MRIcron (associated with NeuroDebian, BSD
Licence, University of South Carolina, Columbia, SC, USA) and 3D-Slicer (Brigham and
Women’s Hospital, Boston, MA, USA; BSD-style open source license). Separate segmenta-
tion masks were generated for ICH and PHE by trained research associates [12], and then
reviewed and refined by an expert neuroradiologist (SP). We applied a 1-to-40 Hounsfield
unit (HU) threshold for PHE, and up to 200 HU threshold for ICH segmentations, as
described previously [12–14]. Distinction of PHE from pre-existing leukoaraiosis and small
vessel disease remains technically challenging. We delineated the neuroanatomical distribu-
tion of hypodensity around the hematoma to differentiate PHE from leukoaraiosis, which
typically has a symmetric pattern in the periventricular and deep white matter regions. In
addition, a subset of scans was segmented again to determine the inter- and intra-rater
reliability of radiomics features and restrict the analysis to those features with consistency
across inter- and intra-rater segmentations.

2.3. Extraction of Radiomic Features

We adapted and applied a customized pipeline for pre-processing of head CTs and
radiomic feature extraction pipeline based on pyradiomics version 2.2.0 [15,16]. To compen-
sate for slice thickness and matrix size differences across different scans, we resample all
scans to isotropic 1 mm voxel dimensions. Subsequently, we extracted n = 14 “shape”, n = 18
“first-order”, and n = 75 “texture-matrix” features from original CT scans followed by eight
“coif-1” wavelet decompositions and three Laplacian of Gaussian (LoG) filter image deriva-
tives (at 2 mm, 4 mm, and 6 mm sigma) for the first-order and texture features—resulting
in a total of 1130 ICH and 1130 PHE radiomics features [15] (Supplementals Table S1).
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2.4. Models’ Input and Outcome

We trained and tested models with five different input strategies: (1) “ICH” using
1130 radiomic of hematoma lesions alone; (2) “ICH + PHE” using 2260 radiomic fea-
tures from ICH and PHE lesions, separately; (3) “clinical” using clinical predictors of
outcome at the time of admission (Supplemental Table S2) [17]; (4) “ICH + clinical” using
1130 radiomic of hematoma lesion and clinical variables and; (5) “ICH/PHE + clinical”
using 2260 radiomic features from ICH and PHE as well as clinical variables to predict
outcomes. The modified Rankin Scale (mRS) at three-month follow-up or closest interval
available was used for clinical outcome. The models were trained to predict binarized
outcome as favorable (0-to-3 mRS) versus poor (4-to-6 mRS), as commonly applied for ICH
patients [11].

2.5. Training, Cross-Validation, and Independent Validation of Models

The data were split into training/cross-validation versus independent test cohort
(Figure 1) by stratification. Feature selection, cross-validation, and optimization were
exclusively performed in a training set, strictly isolating the test cohort from the training
process. The process has been described previously [5,6]. Briefly, to ensure the robustness
of radiomic features, we first calculated features’ intraclass correlation coefficients (ICC)
in subset of scans with multiple segmentation and limited analysis to features with the
lower bounds of 95% confidence intervals (CI) above 0.8, using the “psych” package in R.
Then, we combined 6 different machine learning classifiers with 6 feature selection methods.
Feature selection methods included: Minimum Redundancy Maximum Relevance (MRMR),
Pearson Correlation-based Redundancy Reduction and Mutual Information Maximization
Filter (pMIM), Ridge regression (RIDGE); Hierarchical Clustering (HClust), Principal Com-
ponent Analysis-based feature selection (PCA), and no Feature Selection (noFS). Machine
learning classifiers were Elastic Net-regularized logistic regression (ElNet), Random Forest
(RF), Support Vector Machine with sigmoid kernel (SVM sig), Support Vector Machine
with radial kernel (SVM rad), Naïve Bayes (NBayes), and XGBoost (XGB). For each of
the 36 combinations, we optimized the number of features, and machine learning model
parameters using Bayesian hyperparameter optimization (with the “rBayesianOptimiza-
tion” package) through a repeated 5-fold cross-validation. Details of hyperparameters
for each model are provided in Supplemental Table S3. Subsequently, we applied each
model combination with optimized hyperparameters, performed 20× repeats of 5-fold
for cross-validation performance, and determined the performance across validation folds
using area under curve (AUC) of receiver operating characteristics (ROC). The average
AUCs from 100 validation folds are reported for each model combination performance.
Final model combinations of the machine learning classifier and feature selection method
were trained on whole training/cross-validation cohorts using optimized hyperparameters
and then tested in the independent test cohort. Notably, given the small number of clinical
variables, we applied no feature selection in models using clinical variables alone as input.

2.6. Model Failure Analysis

We compared the clinical and imaging variables between patients with favorable
outcome (true positive and false positive) versus poor outcome (true negative and false
negative) of correct and wrong predictions by the model in the independent test cohort
using Student’s t-test for continuous variables, the Mann–Whitney rank sum test for
ordinal variables, and Fisher’s exact test for binary categorical variables. This analysis
(Table 1) delineates potential differences between subjects in whom the model combination
performed accurately versus those with prediction failure.
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Table 1. Failure analysis of the different models in prediction of 3-month poor outcome.

ICH Radiomics

Favorable Outcome Poor Outcome

Correct
Prediction
(n = 120)

Wrong
Prediction

(n = 98)
p-Value

Correct
Prediction
(n = 104)

Wrong
Prediction

(n = 30)
p-Value

ICH Volume (mL) 4.3 ± 3.8 13.5 ± 9.6 <0.001 18.2 ± 12.9 4.7 ± 4.6 <0.001
PHE Volume (mL) 0.8 ± 0.96 1.9 ± 1.9 <0.001 2 ± 2.6 0.8 ± 0.8 0.014

CT slice Thickness (mm) 5 ± 1.5 5 ± 1.9 1 5 ± 2 5 ± 1.2 1
Sex (male) 77 (64%) 71 (72%) 0.243 59 (57%) 15 (50%) 0.538

NIHSS 6 (1–11) 11 (4–17) <0.001 17 (8–26) 10 (6.25–13.75) <0.001
GCS 15 (15–15) 15 (13–17) 1 14 (10–18) 15 (14–16) 0.032

Age (years) 61.5 ± 10.6 58 ± 12.9 0.029 64.5 ± 14.5 57 ± 14.6 0.014

ICH and PHE
Radiomics

Favorable Outcome Poor Outcome

Correct
Prediction
(n = 121)

Wrong
Prediction

(n = 97)
p-Value

Correct
Prediction
(n = 107)

Wrong
Prediction

(n = 27)
p-Value

data data data
ICH Volume (mL) 4.6 ± 5.1 12.3 ± 10.2 <0.001 17.3 ± 13.3 10.4 ± 10.2 0.013
PHE Volume (mL) 0.8 ± 1.2 1.8 ± 1.9 <0.001 1.9 ± 2.6 1.1 ± 1.4 0.126

CT slice Thickness (mm) 5 ± 1.5 4.9 ± 1.9 0.665 5 ± 1.9 5 ± 1.7 1
Sex (male) 78 (64%) 70 (72%) 0.246 57 (53%) 17 (63%) 0.395

NIHSS 6 (0–12) 10 (3–17) <0.001 17 (9.5–24.5) 9 (3–15) <0.001
GCS 15 (15–15) 15 (13–17) 1 14 (10–18) 14 (12–16) 1

Age (years) 61 ± 11.3 59 ± 12.7 0.221 65 ± 13.8 57 ± 14.6 0.009

Clinical Only

Favorable Outcome Poor Outcome

Correct
Prediction
(n = 179)

Wrong
Prediction

(n = 39)
p-Value

Correct
Prediction
(n = 100)

Wrong
Prediction

(n = 34)
p-Value

ICH Volume (mL) 7.2 ± 8.7 12.7 ± 9.6 0.007 16.2 ± 13.9 13.8 ± 10.7 0.360
PHE Volume (mL) 1.0 ± 1.6 1.7 ± 1.7 0.015 1.8 ± 2.6 1.5 ± 1.9 0.533

CT slice Thickness (mm) 5 ± 1.7 4.9 ± 1.8 0.742 5 ± 1.9 5 ± 1.2 1
Sex (male) 124 (69%) 24 (62%) 0.351 51 (51%) 23 (68%) 0.112

NIHSS 7 (2–12) 15 (6.5–23.5) <0.001 17 (8–26) 9 (2.25–15.75) <0.001
GCS 15 (15–15) 14 (9.5–18.5) <0.001 14 (10–18) 15 (14–16) 0.027

Age (years) 59 ± 11.9 65 ± 10.8 0.004 68.5 ± 13.7 57 ± 13.2 <0.001

ICH Radiomics
+ Clinical

Favorable Outcome Poor Outcome

Correct
Prediction
(n = 172)

Wrong
Prediction

(n = 46)
p-Value

Correct
Prediction
(n = 106)

Wrong
Prediction

(n = 28)
p-Value

ICH Volume (mL) 6.9 ± 7.2 13.4 ± 11.7 <0.001 16.7 ± 13.9 13.5 ± 9.9 0.255
PHE Volume (mL) 1.1 ± 1.5 1.6 ± 1.9 0.056 1.8 ± 2.5 1.2 ± 2 0.243

CT slice Thickness (mm) 5 ± 1.5 5 ± 1.99 1 5 ± 1.8 5 ± 1.6 1
Sex (male) 119 (69%) 29 (63%) 0.478 58 (55%) 16 (57%) 0.835

NIHSS 7 (2–12) 14 (4.25–23.75) <0.001 17 (8.25–25.75) 9 (3.75–14.25) <0.001
GCS 15(14.75–15–25) 14 (11.25–16.75) <0.001 14 (10–18) 15 (14–16) 0.042

Age (years) 59 ± 11.7 64 ± 13 0.013 66 ± 13.7 60 ± 15.2 0.046
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Table 1. Cont.

ICH and PHE
Radiomics
+ Clinical

Favorable Outcome Poor Outcome

Correct
Prediction
(n = 181)

Wrong
Prediction

(n = 37)
p-Value

Correct
Prediction

(n = 93)

Wrong
Prediction

(n = 41)
p-Value

ICH Volume (mL) 7.1 ± 7.9 13.3 ± 11.6 <0.001 17.1± 14.2 12.3 ± 9.85 0.185
PHE Volume (mL) 1.1 ± 1.5 1.7 ± 2.1 0.041 1.9 ± 2.7 1.2 ± 1.5 0.122

CT slice Thickness (mm) 5 ± 1.5 4.9 ± 1.8 0.722 5 ± 1.9 5 ± 1.7 1
Sex (male) 126 (69.6%) 22 (60%) 0.249 49 (53%) 25 (61%) 0.452

NIHSS 8 (3–13) 14 (4–24) 0.537 18 (9–27) 10 (4–16) 0.261
GCS 15 (14–16) 14 (11–17) 0.722 14 (10–18) 15 (13–17) 0.742

Age (years) 59 ± 12 64 ± 11.1 0.020 67 ± 13.5 63 ± 14.8 0.128

Favorable outcome defined by a 3-month modified Rankin Score ≤ 3. GCS = Glasgow Coma Scale; NIHSS = NIH
Stroke Scale; PHE = Perihematomal Edema.

2.7. Risk Assessment Plots

To examine the risk assessment capabilities of a new model to an existing one, some
investigators have introduced Integrated Discrimination Index (IDI) and Net Reclassifica-
tion Index (NRI) [17,18]. These indices quantify the ability to correctly reclassify events and
non-events for both models. The NRI estimates the proportion of patients reclassified to a
more appropriate risk category, and IDI quantifies the slope improvement of the discrimi-
nant curves. These indices can provide additional information to AUC analysis. We used
the “predictABEL” R package to calculate NRI and IDI for comparison of different models
and generate the risk assessment plots for visual depiction of NRI and IDI differences.

2.8. Comparison with “ICH Score”

The “ICH score” is the most widely used and validated clinical grading scale to assess
the severity and predict the prognosis of ICH patients. The ICH score ranges from 0 to 6
and is the sum of individual points assigned based on admission GCS score (2 points for
≤ 4 and 1 point for 5-to-12); age ≥ 80 years (1 point); infratentorial origin (1 point);
hematoma volume ≥ 30 mL (1 point), and presence of intraventricular hemorrhage (IVH, 1
point). We calculated the ICH score for all subjects in independent test cohort and compared
its predictive performance with each of the five machine learning models.

2.9. Statistical Analysis

We presented continuous variables as mean ± standard deviation, summarized ordinal
variables as median with interquartile range, and reported nominal variables as frequency
with accompanying percentage. To compare training/cross-validation versus test cohorts,
we utilized Student’s t-test for continuous variables, the Mann–Whitney rank sum test for
ordinal variables, and Fisher’s exact test for binary categorical variables. All statistical
analyses were executed using R version 3.6.3. For statistical comparisons of paired AUCs,
we applied DeLong’s test and calculated associated p-values and AUC (95% CI), using the
“pROC” package in R.

3. Results
3.1. Patients’ Characteristics

The flowchart in Figure 1 depicts the inclusion process for 852 patients in our analysis.
We then randomly split patients into training/cross-validation (n = 500) versus independent
test (n = 352) cohorts. In Supplemental Table S4 we compared the clinical characteristics
between these two study cohorts, which showed no significant difference. The supple-
mental Table S5 summarizes the clinical characteristics between those with poor versus
favorable outcome in the study population (n = 852). Favorable outcome (mRS 0-to-3)
was associated with younger age, less severe symptoms at admission, smaller hematoma
and edema volumes, and absence of intraventricular hemorrhage. The mean intra- and
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inter-rater ICC for ICH segmentation volumes were 0.94, and 0.92, and for PHE were 0.94
and 0.93, respectively.

3.2. Best Performing Models for Outcome Prediction

Figure 2 depicts the heatmap of different model combinations’ performance for pre-
diction of poor outcome in independent test cohort. Detailed average AUCs from the
cross-validation process and the AUCs of the final optimized models in independent test
cohorts are included in supplemental Figure S1. Using ICH radiomics alone, the NBayes
and RIDGE combination achieved the best outcome prediction with AUC = 0.71 (95%
CI: 0.65–0.77) in the independent test cohort (Supplemental Table S6). Using ICH + PHE
radiomics, the Elastic Net and RIDGE combination achieved the best performance with
AUC = 0.74 (95% CI: 0.70–0.79) in the independent test cohort, without significant difference
from ICH radiomics alone (p = 0.157) (Supplemental Table S7). Using clinical variables
alone, the SVM rad model achieved the best prediction with AUC = 0.83 (95% CI: 0.78–0.87)
in the independent test cohort, which was higher than ICH + PHE radiomics (p = 0.004)
and ICH radiomics (p < 0.001). The best performing ICH + Clinical model with inputs
from ICH radiomics and clinical variables was the combination of SVM rad and PCA,
achieving an AUC = 0.85 (95% CI 0.81–0.89), which was not significantly different from
the Clinical model (p = 0.07) but higher than the ICH + PHE and ICH radiomics models
(p < 0.001). Finally, adding baseline clinical variables to ICH + PHE radiomics as a model
input (ICH/PHE + clinical), the SVM rad and PCA combination achieved the best per-
formance with AUC = 0.85 (95% CI 0.81–0.89) in the independent test cohort, which was
significantly higher than the ICH + PHE radiomics and ICH radiomics models (both
p < 0.001) but not significantly different from the clinical (p = 0.118) or ICH + Clinical
model (p = 0.750). Figure 3 shows ROC curves and their integrated Sensitivities of the best
performing models in comparison.
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marked with bold font and borders. A green color refers to an AUC of 0.5, yellow to 0.7, and red to 0.9
as summarized in the cohort bar in upper right corner. AUC = area under curve of receiver operating



Diagnostics 2024, 14, 2827 8 of 14

characteristic analysis; ElNet = Elastic Net-regularized logistic regression; HClust = Hierarchi-
cal Clustering; MRMR = Minimum Redundancy Maximum Relevance; NBayes = Naïve Bayes;
noFS = no Feature Selection; PCA = Principal Component Analysis-based feature selection;
pMIM = Pearson Correlation-based Redundancy Reduction with Mutual Information Maximization
Filter; RF = Random Forest; RIDGE = Ridge regression; SVM rad = Support Vector Machine with
radial kernel; SVM sig = Support Vector Machine with sigmoid kernel; XGB = XGBoost.
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3.3. Comparison Risk Assessment Plots of the Best Performing Models’

In risk assessment analysis, the ICH + PHE radiomics input model compared to ICH
radiomics model (Figure 4A), demonstrated a 17% improvement in NRI (p < 0.001), and
11.95% increase in IDI (p < 0.001). The ICH/PHE + clinical risk assessment compared to
ICH + PHE radiomics (Figure 4B) input showed 37.7% improvement in NRI and 3.73%
increase in IDI (p < 0.001). The ICH/PHE + clinical compared to the clinical model
(Figure 4C) demonstrated a 28% improvement in NRI, and the 6.5% increase in IDI
(p < 0.001). The ICH/PHE + clinical compared to ICH + clinical model (Figure 4D) demon-
strated a 3.9% improvement in NRI and a 1.01% increase in IDI (p < 0.001).
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3.4. Failure Analysis of Models’ Prediction

The failure analysis of the select models is summarized in Table 1. Wrong predictions
were more likely in patients with favorable outcome than those with poor outcomes
in ICH and ICH + PHE radiomic models (p < 0.001); however, in ICH/PHE + clinical
and ICH + clinical models, wrong predictions were more likely in those with poor outcome
(p = 0.015, p = 0.036, respectively). The analysis across all five models indicates that
overall patients with favorable outcomes who were incorrectly predicted tend to exhibit
significantly larger hematoma and edema volumes and more severe symptoms (higher
NIHSS and lower GCS) compared to those correctly predicted. In contrast, among those
with poor outcomes, the patients who were incorrectly predicted exhibited significantly
smaller hematoma and edema volumes and less severe symptoms (lower NIHSS and higher
GCS) compared to those with correct predictions.
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3.5. Comparing Machine Learning Models with the ICH Score

The ROC analysis of the ICH score demonstrates an AUC of 0.688 for predicting
poor outcomes (mRS score of 4 to 6), which was significantly lower than the clinical,
ICH + clinical, and ICH/PHE + clinical models (all p values < 0.001). However, it was
not significantly different from the ICH radiomics (p = 0.424) and ICH + PHE radiomics
(p = 0.081) models.

4. Discussion

In this study, we applied a rigorous and methodological framework of cross-validation
and independent testing to explore the added prognostic value of PHE radiomics to ICH
features from admission non-contrast head CT for prediction of 3-month clinical outcome.
We also examined radiomics-based models with those including a combination of clinical
and radiomic features. In both cross-validation and independent testing, although the
addition of PHE radiomic features to those of ICH had statistically insignificant increase
in prognostic accuracy, it still improved the IDI and NRI metrics for individual-level risk
assessment. Similarly, when comparing multimodal models that incorporate both clinical
and radiomics inputs with those of clinical variables alone, we found improvements in
IDI and NRI metrics, but without a significant difference in AUC. The IDI and NRI results
suggest that the inclusion of radiomic features alongside clinical variables—or the addition
of PHE radiomics to ICH radiomics (with or without clinical variables)—has improved
predicted probabilities of poor versus favorable outcomes at the individual level, even
though the overall ranking of predictions, as measured by AUC, did not change significantly.
Since AUC reflects the overall ranking of predictions, improvements in individual-level
risk estimates—captured by IDI and NRI—will not significantly affect AUC unless the
ranking of patients changes sufficiently to improve outcome classification. Nonetheless,
improvements in risk estimates may be particularly valuable when focusing on high-risk
subcohorts of ICH patients.

We also demonstrated that machine learning models using clinical variables (with or
without radiomic features) are more accurate in predicting outcomes than the widely used
ICH score. Additionally, radiomics-based models achieved prognostic accuracy on par
with the ICH score. The primary practical benefit of such radiomics-based models is their
potential for fast, quantitative risk stratification. With automated ICH and PHE segmenta-
tion, these radiomics-based risk stratification tools can quickly identify patients likely to
have a poor prognosis immediately after the baseline head CT detects ICH. Subsequently,
additional clinical information, physical examinations, and laboratory tests can improve
prognostication once they become available. Then, the addition of radiomics to clinical
variables in machine learning models can improve individual-level risk estimation, with
the practical benefit becoming most relevant in high-risk sub cohorts. Of note, the final
model, with optimized hyperparameters, runs on the independent test cohort (n = 352) in
just 26 s, highlighting the machine learning tools’ potential for efficient treatment guidance
in urgent clinical settings.

It is noteworthy that the list of features selected for inclusion in the final best perform-
ing ICH + PHE radiomics model show that shape metrics of hematoma as well as both
ICH and PHE texture features are included; however, PHE volumetric feature were not
selected. Specifically, hematoma maximum coronal diameter and the smallest axis length
of an enclosing ellipsoid were predictors of outcome. This suggests that shape metrics of
ICH as well as texture of both ICH and PHE on admission non-contrast head CT provide
more prognostically relevant information than baseline PHE volumetric variables.

Prediction failure in models with radiomics input was more likely among patients with
favorable outcomes, whereas the addition of clinical variables made wrong prediction less
likely among those with favorable outcome. Thus, a combination of models can provide
more balanced risk assessment in ICH patients.

Our study extends beyond prior research focused solely on individual PHE metrics,
as highlighted by Levine et al.’s [19] observation of an association between higher absolute
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PHE volume and decreased 90-day mortality, along with similar findings from other
studies [20,21] employing relative PHE volume indicators to predict functional outcomes
post-ICH. It should, however, be noted that the prognostic relevance of PHE volumetric
measures may become stronger in the subacute phase as secondary brain injury progresses,
as is suggested by some prior studies [22,23].

Recently, multiple studies applied admission CT radiomics to predict hematoma
expansion and ICH outcomes [6,24–26]; however, to the best of our knowledge, this is the
first study to include both ICH and PHE radiomics for outcome prediction. Given that
ICH and PHE, respectively, represent areas of primary and secondary brain injury, we
hypothesized that combination of radiomics features from these two lesions would provide
more robust prognostication [27].

Huang et al. have recently reported an AUC of 0.714 for prediction of 3-month poor
outcome using PHE radiomics features on admission CT [7]. Combining PHE radiomics
with hematoma volume and clinical variables, they achieved an AUC of 0.91 in outcome
prediction [7]. However, in their dataset, the average hematoma and edema volumes among
patients with poor outcomes were three times larger than those with favorable outcomes [7].
This three-fold difference in hematoma volumes between outcome cohorts was much
greater than in our dataset, where the average ICH and PHE volumes in patients with poor
outcomes were less than twice those observed in patients with favorable outcomes. This
inherently more drastic difference between those with poor versus favorable outcomes in
their study has likely contributed to higher AUC of their multimodal model combining
PHE radiomics with hematoma volume and clinical variables [7].

Our study has multiple strengths. We utilized a large, homogenous, and prospectively
collected dataset of supratentorial ICH patients. The outcome measures were methodologi-
cally gathered as part of the clinical trial design. We applied a rigorous feature selection
and machine learning training process with hyperparameter optimization followed by
independent testing on a cohort that was strictly isolated from the training/optimization
process to prevent any data leakage. The ICH and PHE radiomics features included in the
final model provide insight into the inner workings of the model decision making and the
relative importance of these features in the prediction process. Finally, model bias analysis
revealed that our models tend to overestimate the likelihood of poor outcome.

The two main etiologies of spontaneous ICH are chronic hypertension and cerebral
amyloid angiopathy [28]. Our study is inherently limited by the inclusion criteria of
ATACH-2 trial, which only enrolled patients with supratentorial ICH who had at least one
systolic blood pressure reading above 180 mmHg [11]. As a result, the main mechanism
of ICH in the majority of our patients was likely hypertensive, as evidenced by the high
proportion of deep hemorrhages compared to lobar ones. Among consecutive ICH patients,
nearly half present with deep hemorrhages, which are the typical imaging manifestation
of hypertensive cerebral small vessel disease. Although the ATACH-2 trial did not es-
tablish a definitive etiology for ICH, it is important to note that our study cohort was
more likely to have hypertensive ICH, which may limit the generalizability of our findings
to patients with cerebral amyloid angiopathy and lobar ICH. In addition, differentiating
hypodensities on head CT that are due to PHE from other etiologies, such as prior lacunar
infarcts [29,30], cerebral small vessel disease, leukoaraiosis, or previous neuroinflammatory
lesions, presents a technical limitation. In our dataset, brain MRIs were not available to
provide a clear distinction of PHE. Therefore, for PHE segmentation, we relied on the
distribution of hypodensity, which surrounds the hyperdense ICH and appears slightly
denser than pre-existing chronic white matter injury. While non-contrast CT scans are
crucial in initial stroke imaging due to its accessibility, CT perfusion metrics provides a
superior tool for predicting hemorrhagic transformation by evaluation perfusion parame-
ters [31]. Notably, the patients in our dataset had smaller hematoma volumes and better
outcomes—with lower rates of morbidity and mortality—compared to general population
of ICH patients [11], which limit the generalizability of our model. This is reflected in the
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higher baseline GCS scores observed in our cohort, as the ATACH-2 trial predominantly
included patients with less severe presentations.

5. Conclusions

We found that the addition of radiomic features from PHE to those from hemorrhagic
lesions, as well as the inclusion of radiomics with clinical risk-factors, can improve the
individual-level risk assessment of machine learning models, although the overall increase
in outcome prediction accuracy was statistically insignificant. We also demonstrated that
machine learning models, including those using input from hemorrhagic lesion radiomics
alone, can achieve prediction accuracy equal to or higher than the widely used ICH score.
The practical benefit of such models is providing immediate risk stratification after the
completion of the admission head CT, which can potentially guide patient selection for
neurosurgical interventions such as hematoma evacuation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics14242827/s1, Supplemental Table S1: Parameters for
radiomic features extraction; Supplemental Table S2: Clinical variables; Supplemental Table S3: Ma-
chine learning hyperparameters; Supplemental Table S4: Patients Characteristics for training/cross-
validation vs independent test Cohort; Supplemental Table S5: Comparison of patients with favorable
versus poor outcomes; Supplemental Table S6: List of ICH radiomics in final “ICH Radiomics” model;
Supplemental Table S7: List of ICH and PHE radiomics in final “ICH + PHE” model; Supplemental
Figure S1: Different models’ performances.

Author Contributions: Conceptualization, F.D., S.P.H. and S.P. (Seyedmehdi Payabvash); methodol-
ogy, F.D., A.T.T., H.L., S.P.H., S.A. and S.P. (Seyedmehdi Payabvash); validation, F.D., A.T.T., S.P.H.,
S.A. and S.P. (Seyedmehdi Payabvash); data curation, F.D., A.T.T. and S.P. (Seyedmehdi Payabvash);
writing—original draft preparation, F.D., A.T.T., H.L., S.P.H., I.L.M., S.A., P.C.S., A.M., A.I.Q., J.C., S.P.
(Soojin Park), S.B.M., G.J.F., J.K.S., K.N.S. and S.P. (Seyedmehdi Payabvash); writing—review and
editing, F.D., A.T.T., H.L., S.P.H., J.K.S., I.L.M., S.A., P.C.S., A.M., A.I.Q., J.C., S.P. (Soojin Park), S.B.M.,
G.J.F., K.N.S. and S.P. (Seyedmehdi Payabvash); funding acquisition, F.D., and S.P. (Seyedmehdi
Payabvash). All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Doris Duke Charitable Foundation (2020097), NIH (K23NS118-
056), and NVIDIA Applied Research Accelerator Program.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board of Yale University (protocol c#2000024296
and date of approval: 22 October 2020).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jiang, C.; Guo, H.; Zhang, Z.; Wang, Y.; Liu, S.; Lai, J.; Wang, T.J.; Li, S.; Zhang, J.; Zhu, L.; et al. Molecular, Pathological, Clinical,

and Therapeutic Aspects of Perihematomal Edema in Different Stages of Intracerebral Hemorrhage. Oxid. Med. Cell Longev. 2022,
2022, 3948921. [CrossRef] [PubMed]

2. Jiang, C.; Wang, Y.; Hu, Q.; Shou, J.; Zhu, L.; Tian, N.; Sun, L.; Luo, H.; Zuo, F.; Li, F.; et al. Immune changes in peripheral blood
and hematoma of patients with intracerebral hemorrhage. Faseb. J. 2020, 34, 2774–2791. [CrossRef]

3. Jiang, C.; Zuo, F.; Wang, Y.; Wan, J.; Yang, Z.; Lu, H.; Chen, W.; Zang, W.; Yang, Q.; Wang, J. Progesterone exerts neuroprotective
effects and improves long-term neurologic outcome after intracerebral hemorrhage in middle-aged mice. Neurobiol. Aging 2016,
42, 13–24. [CrossRef]

4. Lan, X.; Han, X.; Li, Q.; Yang, Q.W.; Wang, J. Modulators of microglial activation and polarization after intracerebral haemorrhage.
Nat. Rev. Neurol. 2017, 13, 420–433. [CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/diagnostics14242827/s1
https://www.mdpi.com/article/10.3390/diagnostics14242827/s1
https://doi.org/10.1155/2022/3948921
https://www.ncbi.nlm.nih.gov/pubmed/36164392
https://doi.org/10.1096/fj.201902478R
https://doi.org/10.1016/j.neurobiolaging.2016.02.029
https://doi.org/10.1038/nrneurol.2017.69
https://www.ncbi.nlm.nih.gov/pubmed/28524175


Diagnostics 2024, 14, 2827 13 of 14

5. Haider, S.P.; Qureshi, A.I.; Jain, A.; Tharmaseelan, H.; Berson, E.R.; Zeevi, T.; Majidi, S.; Filippi, C.G.; Iseke, S.; Gross, M.; et al.
Admission computed tomography radiomic signatures outperform hematoma volume in predicting baseline clinical severity and
functional outcome in the ATACH-2 trial intracerebral hemorrhage population. Eur. J. Neurol. 2021, 28, 2989–3000. [CrossRef]
[PubMed]

6. Haider, S.P.; Qureshi, A.I.; Jain, A.; Tharmaseelan, H.; Berson, E.R.; Zeevi, T.; Werring, D.J.; Gross, M.; Mak, A.; Malhotra, A.; et al.
Radiomic markers of intracerebral hemorrhage expansion on non-contrast CT: Independent validation and comparison with
visual markers. Front. Neurosci. 2023, 17, 1225342. [CrossRef]

7. Huang, X.; Wang, D.; Ma, Y.; Zhang, Q.; Ren, J.; Zhao, H.; Li, S.; Deng, J.; Yang, J.; Zhao, Z.; et al. Perihematomal edema-based
CT-radiomics model to predict functional outcome in patients with intracerebral hemorrhage. Diagn. Interv. Imaging 2023, 104,
391–400. [CrossRef] [PubMed]

8. Wang, J.; Xiong, X.; Zou, J.; Fu, J.; Yin, Y.; Ye, J. Combination of Hematoma Volume and Perihematoma Radiomics Analysis on
Baseline CT Scan Predicts the Growth of Perihematomal Edema. Clin. Neuroradiol. 2023, 33, 199–209. [CrossRef]

9. Hemphill, J.C., 3rd; Bonovich, D.C.; Besmertis, L.; Manley, G.T.; Johnston, S.C. The ICH score: A simple, reliable grading scale for
intracerebral hemorrhage. Stroke 2001, 32, 891–897. [CrossRef] [PubMed]

10. Nisar, T.; Alchaki, A.; Hillen, M. Validation of ICH score in a large urban population. Clin. Neurol. Neurosurg. 2018, 174, 36–39.
[CrossRef]

11. Qureshi, A.I.; Palesch, Y.Y.; Barsan, W.G.; Hanley, D.F.; Hsu, C.Y.; Martin, R.L.; Moy, C.S.; Silbergleit, R.; Steiner, T.; Suarez, J.I.;
et al. Intensive Blood-Pressure Lowering in Patients with Acute Cerebral Hemorrhage. N Engl. J. Med. 2016, 375, 1033–1043.
[CrossRef] [PubMed]

12. Dierksen, F.; Tran, A.T.; Zeevi, T.; Maier, I.L.; Qureshi, A.I.; Sanelli, P.C.; Werring, D.J.; Malhotra, A.; Falcone, G.J.; Sheth, K.N.;
et al. Peri-hematomal edema shape features related to 3-month outcome in acute supratentorial intracerebral hemorrhage. Eur.
Stroke J. 2024, 23969873231223814. [CrossRef] [PubMed]

13. Volbers, B.; Staykov, D.; Wagner, I.; Dorfler, A.; Saake, M.; Schwab, S.; Bardutzky, J. Semi-automatic volumetric assessment of
perihemorrhagic edema with computed tomography. Eur. J. Neurol. 2011, 18, 1323–1328. [CrossRef]

14. McCourt, R.; Gould, B.; Gioia, L.; Kate, M.; Coutts, S.B.; Dowlatshahi, D.; Asdaghi, N.; Jeerakathil, T.; Hill, M.D.; Demchuk, A.M.;
et al. Cerebral perfusion and blood pressure do not affect perihematoma edema growth in acute intracerebral hemorrhage. Stroke
2014, 45, 1292–1298. [CrossRef] [PubMed]

15. van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.;
Pieper, S.; Aerts, H. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107.
[CrossRef]

16. Avery, E.; Sanelli, P.C.; Aboian, M.; Payabvash, S. Radiomics: A Primer on Processing Workflow and Analysis. Semin. Ultrasound
CT MR 2022, 43, 142–146. [CrossRef] [PubMed]

17. Huang, X.; Wang, D.; Zhang, Q.; Ma, Y.; Zhao, H.; Li, S.; Deng, J.; Ren, J.; Yang, J.; Zhao, Z.; et al. Radiomics for prediction of
intracerebral hemorrhage outcomes: A retrospective multicenter study. NeuroImage Clin. 2022, 36, 103242. [CrossRef] [PubMed]

18. Pickering, J.W.; Endre, Z.H. New metrics for assessing diagnostic potential of candidate biomarkers. Clin. J. Am. Soc. Nephrol.
2012, 7, 1355–1364. [CrossRef]

19. Levine, J.M.; Snider, R.; Finkelstein, D.; Gurol, M.E.; Chanderraj, R.; Smith, E.E.; Greenberg, S.M.; Rosand, J. Early edema in
warfarin-related intracerebral hemorrhage. Neurocritical Care 2007, 7, 58–63. [CrossRef]

20. Gebel, J.M., Jr.; Jauch, E.C.; Brott, T.G.; Khoury, J.; Sauerbeck, L.; Salisbury, S.; Spilker, J.; Tomsick, T.A.; Duldner, J.; Broderick, J.P.
Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002,
33, 2636–2641. [CrossRef] [PubMed]

21. Gupta, M.; Verma, R.; Parihar, A.; Garg, R.K.; Singh, M.K.; Malhotra, H.S. Perihematomal edema as predictor of outcome in
spontaneous intracerebral hemorrhage. J. Neurosci. Rural Pract. 2014, 5, 48–54. [CrossRef]

22. Yang, J.; Arima, H.; Wu, G.; Heeley, E.; Delcourt, C.; Zhou, J.; Chen, G.; Wang, X.; Zhang, S.; Yu, S.; et al. Prognostic significance of
perihematomal edema in acute intracerebral hemorrhage: Pooled analysis from the intensive blood pressure reduction in acute
cerebral hemorrhage trial studies. Stroke 2015, 46, 1009–1013. [CrossRef]

23. Gebel, J.M., Jr.; Jauch, E.C.; Brott, T.G.; Khoury, J.; Sauerbeck, L.; Salisbury, S.; Spilker, J.; Tomsick, T.A.; Duldner, J.; Broderick, J.P.
Natural history of perihematomal edema in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 2002, 33,
2631–2635. [CrossRef] [PubMed]

24. Zhang, Y.; Zhang, B.; Liang, F.; Liang, S.; Zhang, Y.; Yan, P.; Ma, C.; Liu, A.; Guo, F.; Jiang, C. Radiomics features on non-contrast-
enhanced CT scan can precisely classify AVM-related hematomas from other spontaneous intraparenchymal hematoma types.
Eur. Radiol. 2019, 29, 2157–2165. [CrossRef]

25. Xie, H.; Ma, S.; Wang, X.; Zhang, X. Noncontrast computer tomography–based radiomics model for predicting intracerebral
hemorrhage expansion: Preliminary findings and comparison with conventional radiological model. Eur. Radiol. 2020, 30, 87–98.
[CrossRef]

26. Ma, C.; Zhang, Y.; Niyazi, T.; Wei, J.; Guocai, G.; Liu, J.; Liang, S.; Liang, F.; Yan, P.; Wang, K.; et al. Radiomics for predicting
hematoma expansion in patients with hypertensive intraparenchymal hematomas. Eur. J. Radiol. 2019, 115, 10–15. [CrossRef]
[PubMed]

https://doi.org/10.1111/ene.15000
https://www.ncbi.nlm.nih.gov/pubmed/34189814
https://doi.org/10.3389/fnins.2023.1225342
https://doi.org/10.1016/j.diii.2023.04.008
https://www.ncbi.nlm.nih.gov/pubmed/37179244
https://doi.org/10.1007/s00062-022-01201-x
https://doi.org/10.1161/01.STR.32.4.891
https://www.ncbi.nlm.nih.gov/pubmed/11283388
https://doi.org/10.1016/j.clineuro.2018.09.007
https://doi.org/10.1056/NEJMoa1603460
https://www.ncbi.nlm.nih.gov/pubmed/27276234
https://doi.org/10.1177/23969873231223814
https://www.ncbi.nlm.nih.gov/pubmed/38179883
https://doi.org/10.1111/j.1468-1331.2011.03395.x
https://doi.org/10.1161/STROKEAHA.113.003194
https://www.ncbi.nlm.nih.gov/pubmed/24692481
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1053/j.sult.2022.02.003
https://www.ncbi.nlm.nih.gov/pubmed/35339254
https://doi.org/10.1016/j.nicl.2022.103242
https://www.ncbi.nlm.nih.gov/pubmed/36279754
https://doi.org/10.2215/CJN.09590911
https://doi.org/10.1007/s12028-007-0039-3
https://doi.org/10.1161/01.STR.0000035283.34109.EA
https://www.ncbi.nlm.nih.gov/pubmed/12411654
https://doi.org/10.4103/0976-3147.127873
https://doi.org/10.1161/STROKEAHA.114.007154
https://doi.org/10.1161/01.STR.0000035284.12699.84
https://www.ncbi.nlm.nih.gov/pubmed/12411653
https://doi.org/10.1007/s00330-018-5747-x
https://doi.org/10.1007/s00330-019-06378-3
https://doi.org/10.1016/j.ejrad.2019.04.001
https://www.ncbi.nlm.nih.gov/pubmed/31084753


Diagnostics 2024, 14, 2827 14 of 14

27. Wu, T.Y.; Sharma, G.; Strbian, D.; Putaala, J.; Desmond, P.M.; Tatlisumak, T.; Davis, S.M.; Meretoja, A. Natural History of
Perihematomal Edema and Impact on Outcome After Intracerebral Hemorrhage. Stroke 2017, 48, 873–879. [CrossRef] [PubMed]

28. Magid-Bernstein, J.; Girard, R.; Polster, S.; Srinath, A.; Romanos, S.; Awad, I.A.; Sansing, L.H. Cerebral Hemorrhage: Pathophysi-
ology, Treatment, and Future Directions. Circ. Res. 2022, 130, 1204–1229. [CrossRef] [PubMed]

29. Sporns, P.B.; Kemmling, A.; Minnerup, H.; Meyer, L.; Krogias, C.; Puetz, V.; Thierfelder, K.; Duering, M.; Kaiser, D.; Langner, S.;
et al. CT Hypoperfusion-Hypodensity Mismatch to Identify Patients With Acute Ischemic Stroke Within 4.5 Hours of Symptom
Onset. Neurology 2021, 97, e2088–e2095. [CrossRef] [PubMed]
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